首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Azhgaliyev  D. K.  Karimov  S. G. 《Geotectonics》2020,54(4):529-542

The paper presents a comprehensive analysis of new data for drilling and seismic survey of the oil and gas potential of deep-seated Paleozoic horizons of the Caspian Basin in Kazakhstan. The features of the development and occurrence of large Paleozoic uplifts and sedimentary strata promising for prospecting are specified. A set of geological and geophysical methods was applied, and magnetic and gravitational anomalies of potential fields were analyzed in the southern, southeastern, and eastern marginal parts of the southeastern sector of the Caspian Basin. This is supplemented with new data obtained by a set of reconnaissance methods, and the section attributed to the Paleozoic at depths up to 5.5–8.0 km and its Devonian–Lower Carboniferous sequence are specified. New data were obtained on the area of distribution and occurrence of Upper Devonian and Lower Carboniferous sediments, geological conditions and prerequisites were revealed that refined the trace of the pre-Devonian complex and of the Lower–Middle Devonian sediments. Analysis of the distribution of large local prospecting objects has confirmed the presence and development of megauplifts, which are zones of hypsometrically elevated Devonian–Lower Carboniferous sediments. In the contour of the megauplift, structural elements have developed that are less significant, but promising in terms of hydrocarbon content. Based on the results of studying and refining the distribution patterns of large Devonian‒Lower Carboniferous objects and identifying megauplifts, it is possible to optimize regional studies in the Caspian Basin for the period of 2020–2030.

  相似文献   

2.
Geotectonics - New data on the crust structure of the Black Sea?Caspian region, including the Scythian and Anatolian plate margins, the Caucasus, Black Sea and Southern Caspian structures are...  相似文献   

3.
Many geophysical characteristics of the Caspian and Black Seas' deep basins are similar, having: suboceanic type of the crust, low average seismic velocity, absence of earthquakes and relatively small variation of magnetic anomalies. However, the sediments in the Caspian Sea deep basin are folded whereas in the Black Sea they are approximately horizontal. The Caspian Sea also has a far greater thickness of sediment accumulation.

The deep basins of the Caspian, Black and Mediterranean seas represent a sequence having similar crustal structures but with a decreasing thickness of sediments and consolidated layer, in that order. It is possible that the intensive sinking and accumulation of sediments began earliest in the Caspian Sea and spreaded continuously to the Black Sea and then the Mediterranean Sea. The Caspian and Black Sea deep basins have existed for long time (perhaps from Paleozoic time or even earlier) as areas with a specific and related type of evolution.  相似文献   


4.
The first data of investigation into the relation between changes in magnetic properties of the Northern Caspian sediments and variations in the Caspian Sea level in the Late Neo-Pleistocene are presented. It is shown that there is a certain correlation between magnetic characteristics of sediments and variations in the Caspian Sea level that cause changes in the lithological and faunistic composition of sediments.  相似文献   

5.
3D models of apparent magnetization and density of rocks allow us to provide insights into the deep structure of the Volga-Ural, Pericaspian, and Fore-Caucasus petroliferous basins. In the Volga-Ural Basin, some Riphean rifts reveal close spatial relations to Paleoproterozoic linear zones, presumably of the rift nature as well. The structure of the Paleoproterozoic Toropets-Serdobsk Belt is interpreted in detail. Rocks with petrophysical properties inherent to basic volcanics are established in the pre-Paleozoic basement of the marginal zone of the Pericaspian Basin. These rocks locally spread beyond the boundary escarpment and may be regarded as a part of the Riphean plume-related basaltic province. It is shown that the Pericaspian Basin was formed on the place of a triple junction of Riphean rifts: the Sarpa and Central Pericaspian oceanic branches and the continental branch of the Pachelma Aulacogen. The drastically different petrophysical properties of the basement beneath Baltica and the Astrakhan Arch indicate that this arch is an element of the large terrane that was attached to Baltica in the Vendian. The suture along which the Astrachan Terrane is conjugated with the basement of the central and southern segments of the Karpinsky Ridge is traced beneath the Paleozoic complex. A system of northwest-verging thrust faults formed during the collision between Scythia and Eurasia is mapped in the basement of the junction zone between the Karpinsky Ridge and Scythian Platform (Terrane). According to geological data, this event took place in the Early Paleozoic.  相似文献   

6.
The results of detailed seismological observations with bottom recording systems carried out in 2004 and 2006 near the Dagestan coast of the Middle Caspian are considered. The records of more than 550 micro- and weak earthquakes with ML = 0.1–4.7 (MLH = ?0.7 to 4.3) were obtained during 165 days of recording; a fifth of these earthquakes occurred in the upper mantle at a depth of 50–200 km. Over the entire period of instrumental recording since the 1930s, only 10 mantle earthquakes with MLH = 3.5?6.3 have been recorded by on-land systems. The highest density of earthquake epicenters with source depths down to 50 km is established on the Middle Caspian coast between Derbent and Izberbash and in the adjacent water area. The mantle earthquakes with hypocenters at a depth of 60–80 km cluster beneath the western wall of the Derbent Basin, whereas deeper hypocenters are located beneath both the wall of this basin and the Middle Caspian coast. The sporadic mantle earthquakes recorded in 2004 (about 30 shocks), determined by a network of systems with a small aperture, depicted a zone plunging beneath the Greater Caucasus with indications of a peculiar “subduction” of the Scythian Plate beneath the Caucasus. Subsequent observations based on a more extensive network were carried out in 2006. They substantially changed the pattern of mantle earthquake hypocenters. According to this evidence, the sources of mantle earthquakes make up a dispersed cloud extended in the vertical direction beneath the Middle Caspian coast and water area, which may be regarded as a relic of tectonic activity of a bygone tectonic epoch. A comprehensive tectonic interpretation of the detected seismological phenomenon is given.  相似文献   

7.
松辽盆地是中国东北部中—新生代陆相沉积盆地,本文在深入分析东北地区古生代地层特征、沉积环境及构造演化基础之上,以过松科二井地区综合地球物理资料解译为基础,开展基底的属性和地球物理特征研究。松科二井南北剖面发现:布格重力异常具有中间高两边低的特点;磁异常呈现出与重力异常负相关的趋势;电性表现为浅部分层、高—低阻交叉重叠和深部分区的特征。东西剖面发现:布格重力异常具有西高东低的趋势;磁异常形态呈"碗状";电性结构与南北剖面相比深部出现了高阻异常。结合地球物理特征与岩相古地理分析,得到以下结论:(1)上古生界晚石炭世至晚二叠世期间,具有浅海相、陆相、河湖相多种沉积环境,相应岩性组合具有不同的物性特征;(2)重磁电地球物理特征揭示了研究区基底主要由泥砂岩、大理岩和侵入岩组成,基底顶面埋深位于7 km左右,上古生界和侵入岩共同组成了研究区基底;(3)识别出了滨州断裂带、孙吴—双辽断裂带、海伦—任民断裂带以及深层次断裂体系的位置和走向,断裂构造主要以SN和EW向为主,它们作为构成古生代构造骨架的重要组成部分,控制着深部油气运移和贮藏。  相似文献   

8.
The area from the Greater Caucasus to the southeast Turkey is characteri:;.ed and shaped by several major continental blocks. These are Scythian Platform, Pontian-Transcaucasu.,; Continent-Arc System (PTCAS), the Anatolian-lranian and the Arabian Platforms. The aim of this paper is to define these continental blocks and describe and also compare their boundary relationships along the suture zones. The Scythian Platform displays the evidence of the Hercynian and Alpine orogens. This platform is separated from the PTCAS by the Greater Caucasus Suture Zone. The incipient collision began along this suture zone before middle-late Carboniferous whereas the final collision occurred before Oligocene. The PTCAS can be divided into four structural units: (1) the Georgian Block - northern part of the Pontian-Transcaucasian island-arc, (2) the southern and eastern Black Sea Coast-Adjara-Trialeti Unit, (3) the Artvin-Bolnisi Unit, comprising the northern part of the southern Transcaucasus, and (4) the Imbricated Bayburt-Garabagh Unit. The PTCAS could be separated from the Anatolian Iranian Platform by the North Anatolian-Lesser Caucasus Suture (NALCS) zone. The initial collision was developed in this suture zone during Senonian-early Eocene and final collision before middle Eocene or Oligocene-Miocene. The Anatolian-lranian Platform (AIP) is made up of the Tauride Platform and its metamorphic equivalents together with Iranian Platform. It could be separated from the Arabian Platform by the Southeastern Anatolian Suture (SEAS) zone. The collision ended before late Miocene along this suture zone. The southernmost continental block of the geotraverse is the Arabian Platform, which constitutes the northern part of the Arabian-African Plate. This platform includes a sequence from the Precambrian felsic volcanic and clastic rocks to the Campanian-early Maastrichtian fiyschoidal clastics. All the suture zones include MORB and SSZ-types ophiolites in different ages. However, the ages of the suture  相似文献   

9.
The Paleozoic sequence recovered during the prospecting for oil and gas in different areas of the Scythian Plate is composed of terrigenous rocks (sandstones, siltstones, silty pelites, mudstones, shales, and phyllites) of different stages of alteration varying from late catagenesis to initial metamorphism. Their investigation allowed us to refine the sedimentation environment during different Carboniferous and Permian epochs at the southern margin of the East European Craton.  相似文献   

10.
阿尔泰成矿区大型、超大型矿床成矿规律综合信息研究   总被引:6,自引:1,他引:6  
在综合信息矿产预测理论与方法指导下,通过地质、物探、化探资料综合信息解译工作,对阿尔泰成矿区大型、超大型矿床成矿规律进行了综合研究。绝大多数金、铜、铅(锌)矿床具有相同或相似的控矿因素,矿床我有共生或伴生的特点。它们处于:大地构造相对抬升的单元背景;不同大地构造单元相结合的部位;前寒武系变质岩系出露基底和隐伏基底及其边缘;泥盆纪火山岩或沉积岩组成的盆地边缘;中酸性继承性岩体及其接触带附近;重力场梯度带附近与重、磁资料推断相吻合的断裂构造及交汇处,以晚期重、磁构造为主;高、中、低温元素组合异常汇水盆地密集区。  相似文献   

11.
安徽省重力异常特征分区与地质构造单元划分   总被引:3,自引:0,他引:3  
本文从安徽省区域重力异常入手,依据大地构造分区的地质矿产要素进行对应分析,建立了不同级别大地构造分区的重磁异常标志及其边界特征,最后对各重力异常分区的地质解释进行了总体归纳。  相似文献   

12.
New methods are presented for processing and interpretation of shallow marine differential magnetic data,including constructing maps of offshore total magnetic anomalies with an extremely high resolution of up to 1-2 nT,mapping weak anomalies of 5-10 nT caused by mineralization effects at the contacts of hydrocarbons with host rocks,estimating depths to upper and lower boundaries of anomalous magnetic sources,and estimating thickness of magnetic layers and boundaries of tectonic blocks. Horizontal dimensions of tectonic blocks in the so-called "seismic gap" region in the central Kuril Arc vary from 10 to 100 km,with typical dimensions of 25-30 km.The area of the "seismic gap" is a zone of intense tectonic activity and recent volcanism.Deep sources causing magnetic anomalies in the area are similar to the "magnetic belt" near Hokkaido. In the southern and central parts of Barents Sea,tectonic blocks with widths of 30-100 km,and upper and lower boundaries of magnetic layers ranging from depths of 10 to 5 km and 18 to 30 km are calculated.Models of the magnetic layer underlying the Mezen Basin in an inland part of the White Sea-Barents Sea paleorift indicate depths to the lower boundary of the layer of 12-30 km.Weak local magnetic anomalies of 2-5 nT in the northern and central Caspian Sea were identified using the new methods,and drilling confirms that the anomalies are related to concentrations of hydrocarbon.Two layers causing magnetic anomalies are identified in the northern Caspian Sea from magnetic anomaly spectra.The upper layer lies immediately beneath the sea bottom and the lower layer occurs at depths between 30-40 m and 150-200 m.  相似文献   

13.
在河北省铁矿资源潜力评价及成矿预测中,对重力场、磁场特征进行了总结和归纳,认为规模较大的航磁正异常主要是出露或隐伏侵入岩基的反映;大面积分布的低缓正磁异常区则主要反映了太古宙变质岩系或基底隆起的边缘,沉积变质型铁矿主要密集分布在此区域;负磁场区主要出现在中上元古界、古生界碳酸盐岩和中生界酸性火山—沉积岩系;强度高、梯度大、或有明显负值伴生的局部磁异常则可能是磁性铁矿的反映。从重力场特征看,磁性铁矿主要分布在布格重力异常的梯级带或异常扭曲处,以及正、负异常的交界处,这些地方多与地质构造强烈变形密切相关。只有对重磁场进行深入地质剖析,结合典型矿床上建立的识别标志进行对比分析,才能得出一个符合客观实际的地质解释。  相似文献   

14.
The Central Pamirs trough, trending E - W, lies between the North Pamir uplift and the Pamir- Hindukush uplift. The North Pamir uplift Was a positive Area during the Mesozoic, while continuous deposition took place in the trough. Within the trough the structures are Alpine. The North Pamir uplift is divisible into three zones. Adjacent to the trough and separated from it by a major northdipping thrust is a zone of highly contorted Ordovician strata. To the north, the central zone, also bounded by thrusts, has gently folded Paleozoic strata in the west, passing eastward into complex structures where the zone is narrowest. The Paleozoics of the northernmost zone lie in broad open folds, thrust southward over the central zone and northward over Permian volcanics and sediments. The northern part of the Central Pamirs trough is an area of broad open folds in Mesozoic and Paleozoic sediments, bounded on the north by a belt of generally north-dipping thrust slices of Paleozoic rocks, paralleling the fold trends. Thrust synclines have been thrust both northward and southward over the intervening anticlines, in some cases with superposition of younger beds over older. The structures described can only be the result' of tangential compression. They do not support the current (Russian) theory that the tectonics Of the area are due to gravitational movement of rock masses from uplifts to troughs. -- P. B. Jones.  相似文献   

15.
The Zeya-Bureya plain and its mountain fringe are components of the Mongolo-Okhotsk folded belt, a northern segment of the East Asia Hercynian structure located between the ancient Siberian and Chinese platforms. The basement is a complex combination of Proterozoic, Sinian-lower Paleozoic and middle Paleozoic folded structures. In the Tomesk synclinorial zone, what appear to be parageosynclinal middle to upper Paleozoic structures, rest directly on Proterozoic crystalline foundation, and are correlative with similar formations in the western slope of the ancient Bureya-Girin massif. Structural trends in the southern half are north-northeasterly and north of latitude 52°; the trend is sublatitudinal. Deep rifts have been particularly important in the tectonics of the region. Regional Mesozoic structure shows inherent features from earlier stages, expressed in Paleozoic structural trends and faults. The largest and deepest of the Mesozoic troughs are associated with Paleozoic synclinoria and uplifts; swells are associated with pre-Sinian basement highs and Paleozoic anticlinoria. Maps showing geophysical anomalies and fields and tectonic features are included.—C. E. Sears.  相似文献   

16.
The Jiangshan-Shaoxing tectonic zone was the northeastern boundary between the Yangtze Block and the Cathaysia Block during the Neoproterozoic and was an intracontinental orogenic belt during late of the early Paleozoic. In this tectonic zone, there develops a lot of mylonite underwent strong ductile deformation and schist, gneiss, and amphibolite with medium and high grade metamorphism which was formed during the late of early Paleozoic. The research of geometry and kinematic of ductile deformation in Jiangshan-Shaoxing tectonic zone is very important to reveal the tectonic process of intracontinental orogeny. This paper uses the anisotropy of magnetic susceptibility (AMS) to determine the ductile deformation geometry and kinematic of Jiangshan-Shaoxing tectonic zone combing with the field survey. In this study, 190 specimens of 19 locations and 221 specimens of 23 locations from Wangjiazhai section and Lipu-Sizhai section were analyzed. The magnetic foliation over magnetic lineation in both Wangjiazhai and Lipu-Sizhai sections together with the field observations indicated a compressional deformation pattern. 3 and 4 strong ductile deformation zones can be established in the Wangjiazhai section and the Lipu-Sizhai section, respectively. According to the magnetic fabric and petro-fabric studies, the Northeastern Jiangshan-Shaoxing tectonic zone suffered two kinds of deformation patterns during the late early Paleozoic, i.e., the thrusting deformation followed by sinistral shear deformation.  相似文献   

17.
A number of en échelon-arranged, southwest-facing arc fragments of Palaeozoic to Jurassic ages, sandwiched between two fairly straight east-northeast trending boundaries, constitute the basement of the Scythian and the Turan platforms located between the Laurasian and Tethyside units. They have until now largely escaped detection owing to extensive Jurassic and younger cover and the inaccessibility of the subsurface data to the international geological community. These units are separated from one another by linear/gently-curved faults of great length and steep dip. Those that are exposed show evidence of strike-slip motion. The arc units originally constituted parts of a single “Silk Road Arc” located somewhere south of the present-day central Asia for much of the Palaeozoic, although by the late Carboniferous they had been united into a continental margin arc south of the Tarim basin and equivalent units to the west and east. They were stacked into their present places in northern Afghanistan, Turkmenistan, Caucasus and the northern Black Sea by large-scale, right-lateral strike-slip coastwise transport along arc-slicing and arc-shaving strike-slip faults in the Triassic and medial Jurassic simultaneously with the subductive elimination of Palaeo-Tethys. This gigantic dextral zone (“the Silk Road transpression”) was a trans-Eurasian structure and was active simultaneously with another, similar system, the Gornostaev keirogen and greatly distorted Eurasia. The late Palaeozoic to Jurassic internal deformation of the Dniepr–Donets aulacogen was also a part of the dextral strain in southern Europe. When the emplacement of the Scythian and Turan units was completed, the elimination of Palaeo-Tethys had also ended and Neo-Tethyan arcs were constructed atop their ruins, mostly across their southern parts. The western end of the great dextral zone that emplaced the Turan and Scythian units horsetails just east of north Dobrudja and a small component goes along the Tornquist–Teisseyre lineament.  相似文献   

18.
中亚造山带的斑岩铜矿主要成矿作用与古亚洲洋的发展演化、消亡及新陆壳固结期构造-岩浆作用有密切成因联系.可划分出1个早古生代,3个晚古生代斑岩铜矿带,含14个矿化密集区.在此基础上,指出晚古生代中-晚期是中亚斑岩铜矿的主成矿期.  相似文献   

19.
Carboniferous and Lower Permian Carbonate and terrigenous rocks with the total thickness of >4000 m serve as the productive units in the Paleozoic subsalt complex at the eastern flank of the basin surrounding the northern area of the present-day Caspian Sea (hereafter, Caspian Basin in the broad sense). In recent years, several large oil and gas-condensate fields were discovered in these rocks. The complexity of geological evolution of this region, which is situated at the junction between the East European Platform and the Ural orogen, as well as multiple changes of sedimentation conditions during the Middle and Late Paleozoic, are reflected in the diversity of types of terrigenous and carbonate sediments and their facies alterations. Reconstruction of these environments makes it possible to elucidate specific features of the location of reservoir rocks in vertical and horizontal sections, as well as regularities of variations in their filtration-capacitive properties.  相似文献   

20.
J. Golonka   《Tectonophysics》2004,381(1-4):235
Thirteen time interval maps were constructed, which depict the Triassic to Neogene plate tectonic configuration, paleogeography and general lithofacies of the southern margin of Eurasia. The aim of this paper is to provide an outline of the geodynamic evolution and position of the major tectonic elements of the area within a global framework. The Hercynian Orogeny was completed by the collision of Gondwana and Laurussia, whereas the Tethys Ocean formed the embayment between the Eurasian and Gondwanian branches of Pangea. During Late Triassic–Early Jurassic times, several microplates were sutured to the Eurasian margin, closing the Paleotethys Ocean. A Jurassic–Cretaceous north-dipping subduction boundary was developed along this new continental margin south of the Pontides, Transcaucasus and Iranian plates. The subduction zone trench-pulling effect caused rifting, creating the back-arc basin of the Greater Caucasus–proto South Caspian Sea, which achieved its maximum width during the Late Cretaceous. In the western Tethys, separation of Eurasia from Gondwana resulted in the formation of the Ligurian–Penninic–Pieniny–Magura Ocean (Alpine Tethys) as an extension of Middle Atlantic system and a part of the Pangean breakup tectonic system. During Late Jurassic–Early Cretaceous times, the Outer Carpathian rift developed. The opening of the western Black Sea occurred by rifting and drifting of the western–central Pontides away from the Moesian and Scythian platforms of Eurasia during the Early Cretaceous–Cenomanian. The latest Cretaceous–Paleogene was the time of the closure of the Ligurian–Pieniny Ocean. Adria–Alcapa terranes continued their northward movement during Eocene–Early Miocene times. Their oblique collision with the North European plate led to the development of the accretionary wedge of the Outer Carpathians and its foreland basin. The formation of the West Carpathian thrusts was completed by the Miocene. The thrust front was still propagating eastwards in the eastern Carpathians.During the Late Cretaceous, the Lesser Caucasus, Sanandaj–Sirjan and Makran plates were sutured to the Iranian–Afghanistan plates in the Caucasus–Caspian Sea area. A north-dipping subduction zone jumped during Paleogene to the Scythian–Turan Platform. The Shatski terrane moved northward, closing the Greater Caucasus Basin and opening the eastern Black Sea. The South Caspian underwent reorganization during Oligocene–Neogene times. The southwestern part of the South Caspian Basin was reopened, while the northwestern part was gradually reduced in size. The collision of India and the Lut plate with Eurasia caused the deformation of Central Asia and created a system of NW–SE wrench faults. The remnants of Jurassic–Cretaceous back-arc systems, oceanic and attenuated crust, as well as Tertiary oceanic and attenuated crust were locked between adjacent continental plates and orogenic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号