首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The northern fold belt away from the Singhbhum Shear Zone displays a set of folds on bedding. The folds are sub-horizontal with E-W to ESE striking steep axial surfaces. In contrast, the folds in the Singhbhum Shear Zone developed on a mylonitic foliation and have a reclined geometry with northerly trending axes. There is a transitional zone between the two, where the bedding and the cleavage have become parallel by isoclinal folding and two sets of reclined folds have developed by deforming the bedding—parallel cleavage. Southward from the northern fold belt the intensity of deformation increases, the folds become tightened and overturned towards the south while the fold hinges are rotated from the sub-horizontal position to a down-dip attitude. Recognition of the transitional zone and the identification of the overlapping character of deformation in the shear zone and the northern belt enable the formulation of a bulk kinematic model for the area as a whole.  相似文献   

2.
In the Singhbhum Shear Zone of eastern India successive generations of folds grew in response to a progressive ductile shearing. During this deformation a mylonitic foliation was initiated and was repeatedly transposed. The majority of fold hinges were formed in an arcuate manner at low angles to the Y-axis in an E-W trending subhorizontal position and major segments of the fold hinges were then rotated towards the down-dip northerly plunging X-axis. The striping and intersection lineations were rotated in the same manner. The down-dip mylonitic lineation is a composite structure represented by rotated early lineations and newly superimposed stretching lineations. The consistent asymmetry of the folds, the angular relations between C and S surfaces and the evidence of two-dimensional boudinage indicate that the deformation was non-coaxial, but with a flattening type of strain with λ1λ2. The degree of non-coaxiality varied both in space and time. From the progressive development of mesoscopic structures it is concluded that the 2–3 km wide belt of ductile shear gave rise to successive anastomosing shear zones of mesoscopic scale. When a new set of shear lenses was superimposed on already sheared rocks, the preexisting foliation generally lay at a low angle to the lenses. No new folds developed where the acute angle was sympathetic to the sense of shear displacements. Where the acute angle was counter to the sense of shear, the pre-existing foliation, lying in the instantaneous shortening field, was deformed into a set of asymmetric folds.  相似文献   

3.
Shear zones are areas of intense deformation in localized zones which can be used as natural laboratories for studying deformation characteristics. Metre to-micro scale structures that develop in response to a progressive simple shear in a shear zone are characterized by a protracted history of deformation and are immensely useful in delineating the history of progressive deformation. To decipher these localized zones of deformation and to establish the continuous non-coaxial character of deformation, detail microstructural studies are very useful. Singhbhum shear zone (SSZ), a regional Precambrian tectonic dislocation zone in eastern India, depicting a top-to-south thrust movement of the hanging wall provides a scope for studying microstructural characteristics developed in response to a progressive shear at mid-crustal level. SSZ is characterized by intense stretching lineation, isoclinal folds, shear planes, superposed schistosity and deformed quartz veins. Quasi-plastic (QP) deformation mechanisms were predominantly active in the SSZ. The overprinting relationship between the earlier and later schistosity with a consistent sense of shear indicates that earlier schistosity is transposed to later schistosity through the intermediate stages of crenulation cleavage during a progressive non-coaxial deformation. The recrystallization of quartz in mylonitic quartzite suggests protracted history of deformation. The analysis of the character of quartz grains of both the porphyroclasts and recrystallized grains suggests that strain was partitioned between the most intensely deformed central part of the shear zone and the shear-related deformation zone outside the central part of the shear zone.  相似文献   

4.
The progressive deformation of the Singhbhum Shear Zone (SSZ) involved the initiation of a mylonitic foliation, its deformation by three generations of reclined folds and superposition of two later groups of folds, i.e., a group of asymmetric folds with subhorizontal or gently plunging axes and a group of gentle and open, transverse and more or less upright folds. The occurrence of sheath folds and U-shaped deformed lineations indicate that the reclined folds were produced by rotation of fold hinges through large angles. The total displacement along the SSZ was compounded of displacements along numerous mesoscopic shear zones. The cleavages in the shear lenses and the mesoscopic shear zones cannot be distinguished as C and S surfaces. They have the same kinematic significance and were produced by ductile deformation, although there were localized discontinuous displacements along both sets,-of cleavages. A mylonitic foliation had formed before the development of the earliest recognizable folds. Its time of formation and folding could be synchronous, diachronous or partly overlapping in time in the different domains of the SSZ.  相似文献   

5.
The rocks within the Singhbhum shear zone in the North Singhbhum fold belt, eastern India, form a tectonic melange comprising granitic mylonite, quartz-mica phyllonite, quartz-tourmaline rock and deformed volcanic and volcaniclastic rocks. The granitic rocks show a textural gradation from the least-deformed variety having coarse-to medium-grained granitoid texture through augen-bearing protomylonite and mylonite to ultramylonite. Both type I and type II S-C mylonites are present. The most intensely deformed varieties include ultramylonite. The phyllosilicate-bearing supracrustal rocks are converted to phyllonites. The different minerals exhibit a variety of crystal plastic deformation features. Generation of successive sets of mylonitic foliation, folding of the earlier sets and their truncation by the later ones results from the progressive shearing movement. The shear sense indicators suggest a thrust-type deformation. The microstructural and textural evolution of the rocks took place in an environment of relatively low temperature, dislocation creep accompanied by dynamic recovery and dynamic recrystallization being the principal deformation mechanisms. Palaeostress estimation suggests a flow stress within the range of 50–190 MPa during mylonitization.  相似文献   

6.
Deformation adjacent to faults and shear zones is traditionally thought to correlate with slip. Inherited structures may control damage geometry, localizing fluid flow and deformation in a damage aureole around structures, even after displacement has ceased. In this paper we document a post-shearing anastomosing foliation and fracture network that developed to one side of the Mesoarchean Marmion Shear Zone. This fracture network hosts the low-grade, disseminated Hammond Reef gold deposit. The shear zone juxtaposed a greenstone belt against tonalite gneiss and was locked by an intrusion that was emplaced during the final stages of suturing. After cessation of activity, fluids channeled along fault- and intrusion-related fractures led to the pervasive sericitization of feldspars. Foliated zones resulted from flattening in the weaker sericite-rich tonalite during progressive alteration without any change in the regional NW-SE shortening direction. The anastomosing pattern may have been inherited from an earlier ductile fabric, but sericite alteration and flattening fabrics all formed post-shearing. Thus, the apparent foliated fracture network adjacent to the Marmion Shear Zone is a second-order effect of shear-related damage, distinct in time from shear activity, adjacent to an effectively dormant shear zone. This phenomenon has implications for understanding the relative timing of fault zone activity, alteration and (in this case) gold mineralization related to long-term fault zone permeability.  相似文献   

7.
Neoproterozoic rocks, Oligocene to Neogene sediments and Tertiary Red Sea rift-related volcanics (Harrat) are three dominant major groups exposed in the Jeddah tectonic terrane in Western Arabia. The basement complex comprises amphibolites, schists, and older and younger granites unconformably overlain by a post-amalgamation volcanosedimentary sequence (Fatima Group) exhibiting post-accretionary thrusting and thrust-related structures. The older granites and/or the amphibolites and schists display mylonitization and shearing in some outcrops, and the observed kinematic indicators indicate dextral monoclinic symmetry along the impressive Wadi Fatima Shear Zone. Finite strain analysis of the mylonitized lithologies is used to interpret the deformation history of the Wadi Fatima Shear Zone. The measured finite strain data demonstrate that the amphibolites, schists, and older granites are mildly to moderately deformed, where XZ (axial ratios in XZ direction) vary from 2.76 to 4.22 and from 2.04 to 3.90 for the Rf/φ and Fry method respectively. The shortening axes (Z) have subvertical attitude and are associated with subhorizontal foliation. The data show oblate strain ellipsoids in the different rocks in the studied area and indication bulk flattening strain. We assume that the different rock types have similar deformation behavior. In the deformed granite, the strain data are identical in magnitude with those obtained in the Fatima Group volcanosedimentary sequence. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It is concluded that a simple-shear deformation with constant-volume plane strain exists, where displacement is strictly parallel to the shear plane. Furthermore, the contacts between various lithological units in the Wadi Fatima Shear Zone were formed under brittle to semi-ductile deformation conditions.  相似文献   

8.
This study highlights the usefulness of anisotropy of magnetic susceptibility data from a deformed granitoid in deciphering its kinematic evolution vis-à-vis shear zone. Data are presented from the Chakradharpur Granitoid (CKPG) that lies to the north of the northerly dipping, ENE–WSW striking Singhbhum Shear Zone (SSZ; eastern India). Whilst the foliation recorded in the field in some parts of the granitoid is parallel to the SSZ, the magnetic foliation is N54°E/90° (mean orientation). It is suggested that the magnetic fabric provides a window into an evolutionary stage prior to the final shearing/thrusting event, the evidence of which is preserved on the mesoscopic scale. It is envisaged that during the initial stages of deformation there was simple shear along the evolving SSZ that resulted in sinistral strike-slip movement; the vorticity axis at this stage was steeply plunging and sense of rotation was anticlockwise. Space was generated in a direction ∼N25°E (perpendicular to maximum-Instantaneous Stretching Axis) into which CKPG emplaced synchronously with regional deformation and evolving SSZ. With continued deformation, there was thrusting along the SSZ. The vorticity axis flipped to a sub-horizontal orientation, thus leading to the development of down-dip stretching lineations and sheath folds within the SSZ. However, at the same time, the vorticity axis responsible for fabric evolution within the syntectonically crystallizing/cooling CKPG was steeply plunging with clockwise rotation. The magnetic foliation (mean orientation N54°E/90°) developed during the final stage of syntectonic crystallization. However, deformation in the region and thrusting along the SSZ continued even after the CKPG had fully crystallized and solidified, which led to the development of the ENE–WSW striking mesoscopic foliation that is parallel with the SSZ. We propose that the angle between the magnetic foliation and the SSZ/foliation recorded in the field, enables to decipher the kinematic vorticity number of flow responsible for fabric evolution of the CKPG. It is concluded that transpression was an important mechanism, and during regional deformation, whilst the SSZ developed structures by dominantly simple shear, the CKPG underwent dominantly pure shear.  相似文献   

9.
The crustal scale Shear Zone that can be traced from Gadag in the north to Mandya in the south in Dharwar Craton of southern India is considered as the boundary between two subcratonic blocks namely the Eastern Dharwar Craton (EDC) and the Western Dharwar Craton (WDC) in published literature. The present study on the Gadag-Mandya Shear Zone (GMSZ) in the Javanahalli-Hagalvadi sector has brought out a detailed account on the disposition, geometry and kinematics of the shear zone, and also the distinctive structural patterns of the two adjacent supracrustal belts, namely the Chitradurga schist belt (CSB) in the west and Javanahalli schist belt (JSB) in the east. The JSB has an overall N-S striking and gentle easterly dipping geometry, the structural features of which are indicative of a predominant noncoaxial deformation and westward transportation of the supracrustal assemblage. In contrast, deformation in the CSB, which is defined mainly by a flattening type of strain, has produced an overall verticality of the structures (dominant foliation, axial planes of regional folds).  相似文献   

10.
The Canisp Shear Zone transects layered Lewisian gneisses near Lochinver, NW Scotland. It is a vertical ductile shear zone with a dextral shear sense, formed during Laxfordian amphibolite facies metamorphism, transposing the layering to new foliation and linear structures. Minerals in the layered gneisses show little or no shape fabric, while a strong shape fabric defines the foliation. For quartz, this shape fabric is accompanied by development of a preferred crystal orientation with fabric patterns reflecting the geometry of the shear deformation. The quartz fabric shows a pole-free area around the lineation with the c-axes concentrated in an asymmetric cross-girdle or a point maximum perpendicular to the shear plane, and a monoclinic symmetry consistent with the shear sense.  相似文献   

11.
The western part of the North Anatolian Shear Zone at the southern boundary of the Central Pontides in Turkey, was investigated in the Kurşunlu-Araç area by means of a geological-structural field study. In this area the North Anatolian Shear Zone results in a transpressional deformation zone that extends between two master faults striking parallel to the main shear direction. The main systems of structures identified in the deformation zone appear to be oriented parallel to the directions predicted by Riedel theoretical model. Nevertheless, the strain partitioning is more complicated than predicted by theory. The structural analysis suggests a polyphase deformation characterized by a steady component of transcurrence associated with alternance of compression and extension. Along each of theoretical directions the combination of double verging structures can be observed, with folds and thrust surfaces root into high-angle shear zones, according to flower-type geometries. The discrepancies of directions, kinematics and geometries from theoretical models are due to transpressive and/or transtensive nature of the deformation. According to the observed outcropping structures, we propose a conceptual model for the North Anatolian Shear Zone, interpreting it as a crustal-scale positive flower structure.  相似文献   

12.
Phulad Shear Zone (PSZ) of Delhi Fold Belt in Rajasthan is a northeasterly striking ductile shear zone with a well developed mylonitic foliation (035/70E) and a downdip stretching lineation. The deformation in the PSZ has developed in a transpressional regime with thrusting sense of movement. The northeastern unit, i.e., the hanging wall contains a variety of rocks namely calc-silicates, pelites and amphibolites and the southwestern unit, i.e., the footwall unit contains only granitic rocks. Systematic investigation of the granites of the southwestern unit indicate a gradual change in the intensity of deformation from a distance of about 1 km west of the shear zone to the shear zone proper. The granite changes from weakly deformed granite to a mylonite/ultramylonite as we proceed towards the PSZ. The weakly deformed granite shows a crude foliation with the same attitude of mylonitic foliation of the PSZ. Microscopic study reveals the incipient development of C and S fabric with angle between C and S varying from 15 ° to 24 °. The small angle between the C and S fabric in the least deformed granite variety indicates that the deformation has strong pure shear component. At a distance of about 1 m away from the PSZ, there is abrupt change in the intensity of deformation. The granite becomes intensely foliated with a strong downdip lineation and the rock becomes a true mylonite. In mesoscopic scale, the granite shows stretched porphyroclasts in both XZ and YZ sections indicating a flattening type of deformation. The angle between the C and S fabric is further reduced and finally becomes nearly parallel. In most places, S fabric is gradually replaced by C fabric. Calculation of sectional kinematic vorticity number ( Wn) from the protomylonitic and mylonite/ultramylonite granites varies from 0.3 ± 0.03 to 0.55 ± 0.04 indicating a strong component of pure shear. The similarity of the geometry of structures in the PSZ and the granites demonstrates that the deformation of the two units is broadly synchronous and the deformation in both the units is transpressional.  相似文献   

13.
This paper discusses the possible role of vorticity axis flip in controlling fluid flow and consequent development of hydrothermal deposits. Structural, kinematic and vorticity data from the vicinity of the Singhbhum Shear Zone (SSZ) are used to propose a two stage model to explain hydrothermal mineralization. It is suggested that in the initial stage, fractures, weak planes, foliations and/or shear zones develop. Fracture permeability is weak at this stage, as a consequence of which fluid pressure builds up. Variation in stress orientation during a later stage of deformation results in enhancement of fracture network, fracture permeability and its anisotropy. If a significant vorticity axis flip accompanies this variation in stress orientation, then it pumps the fluids into the fracture network, thus yielding hydrothermal mineral deposits. In the case of SSZ, the vorticity axis flip is envisaged to have taken place from steeply plunging (anticlockwise) during the early stage, to sub-horizontal during the late stage. The SSZ became a northerly dipping thrust at this late stage and the rotation around the sub-horizontal vorticity axis was such that the rocks comprising the northern block were thrust over southern block (Singhbhum granitoid). According to the author, this vorticity axis flip must have been critical in pumping up the fluids along the SSZ to form quartz veins that host mineral deposits.  相似文献   

14.
The Paleo-Tethys suture zone in northern Iran was formed when the Paleo-Tethys Ocean, (between Gonwana-derived Alborz Microcontinent and the Turan Plate), closed during the Eocimmerian orogeny and after they collided together in the Mid-Late Triassic. The NW-striking Boghrov-Dagh basement Fault Zone that lies in the vicinity of Masuleh village and the southern boundary of Gasht Metamorphic Complex is a part of the Eocimmerian suture zone in the Western Alborz. Along this part of the suture zone, tourmaline leucogranites intruded in metamorphic rocks. We recognize three distinct deformation stages (D1 to D3) in the study area especially in the Masuleh Shear Zone. D1 which was synchronous with formation of the main metamorphic minerals, such as sillimanite and staurolite under medium- to high-grade metamorphic conditions probably during the Hercynian event and a NE-directed shortening. The slaty cleavage in metamorphosed Upper Paleozoic rocks and crenulation cleavage and folds in the older rocks were produced due to D2 deformation during the Eocimmerian event under greenschist facies conditions. The Masuleh Shear Zone formed as a result of a ductile strike-slip shear during the Early-Middle Jurassic Mid-Cimmerian D3 event with a pure dextral to transtension shear sense at low to locally medium-grade conditions. All of the D3 structural features agree with a NNW-directed compression and an ENE-directed extension caused by overall dextral shear parallel to the Masuleh shear zone and the Boghrov-Dagh Fault Zone. Based on the available evidence, especially cross-cutting relationships between structural fabrics and rock units, emplacement of the Gasht-Masuleh leucogranites occurred after the D2 collisional event coeval to the possible slab break-off and before the D3 event, between Eocimmerian and Mid-Cimmerian movements.  相似文献   

15.
北京云蒙山地区花岗岩穹隆及伸展构造的探讨   总被引:9,自引:0,他引:9  
张建新  曾令森 《地质论评》1997,43(3):232-240
北京云蒙山花岗岩为一中生代侵入的花岗岩穹隆,花岗岩穹隆的叶理普遍发育,叶理轨迹基本平行于穹隆的外部边界,并显示出从核部到边部逐渐增强,东南侧明显强于西北侧的特点。变形构造研究显示,花岗岩穹隆的边部及围岩中普遍存在不同层次及不同运动方向的伸展构造。东南侧以具河防口-水峪伸展型韧性剪切带为特征,剪切运动标志显示为从NW-SE的正剪切运动,有限应变分析估算其剪切位移量在10km以上,剪切带上部被河防口正  相似文献   

16.
http://www.sciencedirect.com/science/article/pii/S1674987112000618   总被引:1,自引:0,他引:1  
The Moyar Shear Zone(MSZ) of the South Indian granulite terrain hosts a prominent syenite pluton (~560 Ma) and associated NW-SE to NE-SW trending mafic dyke swarm(~65 Ma and 95 Ma). Preliminary magnetic fabric studies in the mafic dykes,using Anisotropy of Magnetic Susceptibly(AMS) studies at low-field,indicate successive emplacement and variable magma flow direction.Magnetic lineation and foliation in these dykes are identical to the mesoscopic fabrics in MSZ mylonites,indicating shear zone guided emplacement.Spatial distribution of magnetic lineation in the dykes suggests a common conduit from which the source magma has been migrated.The magnetic foliation trajectories have a sigmoidal shape to the north of the pluton and curve into the MSZ suggesting dextral sense of shear.Identical fabric conditions for magnetic fabrics in the syenite pluton and measured field fabrics in mylonite indicate syntectonic emplacement along the Proterozoic crustal scale dextral shear zone with repeated reactivation history.  相似文献   

17.
This paper analyses a major shear zone from the Iberian Hercynian belt which forms the basal thrust of the Mondoñedo Nappe. The shear zone developed by ductile deformation under amphibolite facies metamorphic conditions and later by brittle-ductile deformation in greenschists facies. Folds in the shear zone are asymmetric, very tight, 1C or similar class and frequently developing sheath geometries. The sheath folds originated by non-coaxial flow superimposed on earlier irregularities. The fabric of quartzitic rocks in the shear zone changes from bottom to top from ultramylonites through blastomylonitic rocks to non-mylonitic tectonites. c-axis fabrics vary across the shear zone, but show a dominant monoclinic symmetry. The blastomylonitic rocks include the fabrics representing the highest temperatures. The main foliation of the schists results from flattening of an earlier foliation, recording occasional microfolds. The use of different kinematic criteria has allowed an analysis of their validity as well as an assessment of movement direction towards the foreland of the orogen.  相似文献   

18.
In the Central Rhodopes of southern Bulgaria, an eclogite-bearing rock sheet belonging to the Middle Allochthon (Starcevo Unit) is over- and underlain by eclogite-free, amphibolite-facies rock units along low-angle shear zones, the Borovica Shear Zone at the top and the Starcevo-Ardino Shear Zone at the base. The age of these shear zones is determined by U–Pb zircon dating of pre-, syn- and posttectonic magmatic rocks, mostly pegmatite veins, using LA–SF–ICP–MS. Zircons from pre- to syntectonic pegmatites within the Borovica Shear Zone yielded ages of ca. 45–43?Ma, indicating that the shear zone was active at that time, and zircons from a pretectonic pegmatite and a posttectonic granitoid body within the Starcevo-Ardino Shear Zone yielded ages of ca. 45 and ca. 36?Ma, respectively, giving a time frame for the activity of that shear zone which probably rather postdated the activity of the Borovica Shear Zone. By combining the ages with the kinematics of the shear zones and the metamorphic history of the rock units, the following scenario is sketched: Soon after the Starcevo Unit reached peak pressure (eclogite facies), it was exhumed to a mid-crustal level by top-to-the-north-west, extensional unroofing along the Borovica Shear Zone, in a kinematic framework of orogen-parallel extension. Beginning at ca. 40?Ma, the partly exhumed Starcevo Unit was underthrust from the south-west by continental crust of the foreland (Apulia), forming the Lower Allochthon of the Rhodopes, along the Starcevo-Ardino Shear Zone. These results underline the significance of orogen-parallel extension for the exhumation of high-pressure rocks. With respect to regional geology of the Hellenides and the Aegean, it is found that the tectonic architecture of the Rhodopes is essentially of Tertiary age. Cretaceous syn-metamorphic shear zones do exist but are largely restricted to higher levels of the nappe stack (Upper Allochthon). The Rhodopes do not represent an older essentially Mesozoic core of the Hellenides but are formed by the internal, higher-metamorphic portions of the same major nappe systems as occur in the Hellenides.  相似文献   

19.
辽西兴城—台里地区发育系列花岗质岩石,强烈构造变形特征均显示其具有韧性剪切带的特点。对剪切带北段进行详细宏微观构造解析,结合岩石变形强度差异性分析、有限应变测量、石英C轴EBSD测试以及古差异应力值估算等研究,结果表明剪切带内花岗质片麻岩和眼球状花岗质片麻岩具有NEE向左行剪切变形特征,变形岩石为S-L构造岩,应变类型属于平面应变,古差异应力值介于30~40 MPa之间。长石-石英矿物温度计以及石英C轴EBSD组构指示剪切带以中低温变形为主,温度在400℃~500℃,属绿片岩相变质,具中-低温韧性剪切带特征。韧性剪切带内普遍存在变形分解现象,弱变形带内岩石残斑含量较高,眼球状构造和S-C组构较为发育;强变形带岩石残斑含量较低,剪切面理较为发育,糜棱面理发育较弱或者不发育。  相似文献   

20.
Takashi Sawaguchi   《Tectonophysics》2004,379(1-4):109-126
The Horoman Peridotite Complex is an Alpine-type orogenic peridotite massif in the Hidaka metamorphic belt, Hokkaido, Northern Japan. Because of wide exposure and extremely limited serpentinization, the complex provides important information on uplift and emplacement processes of an Alpine-type peridotite massif into the crust. Based on microstructures, the massif can be divided into five structural units parallel to the lithological layering as follows; (1) Equigranular Zone, (2) Internal Shear Zone (ISZ), (3) Transition Zone, (4) Porphyroclastic Zone and (5) Basal Shear Zone (BSZ). A top-to-the-north sense of shear deformation in the Porphyroclastic Zone and the Basal Shear Zone implies that the Horoman Peridotite Complex had uplifted from the upper mantle to the lower crust along a northward dipping extensional shear-zone systems. After incorporation of the mantle peridotite with lower crustal rocks, the upper part of the massif (i.e. the Equigranular Zone and the Internal Shear Zone) was overprinted by a top-to-the-south sense of shear deformation that was comparable with the sub-horizontal displacement of the crustal granulite sequences in the Hidaka metamorphic belt under transpressive tectonic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号