首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
ABSTRACT

Recently identified Early Jurassic, Early Cretaceous, and Late Cretaceous granites of the Tengchong terrane, SW China, help to refine our understanding of the Mesozoic tectonic-magmatic evolutionary history of the region. We present new zircon U–Pb geochronological, Lu–Hf isotopic and geochemical data on these rocks. The zircon LA-ICP-MS U–Pb ages of the Mangzhangxiang, Laochangpo, and Guyong granites, and Guyong granodioritic microgranular enclaves are 185.6, 120.7, 72.9, and 72.7 Ma, respectively. Geochemical and Hf isotopic characteristics suggest the Mangzhangxiang and Laochangpo S-type granites were derived from partial melting of felsic crust and that the Guyong I-type granite and associated MMEs were generated through magma mixing/mingling. Mesozoic magmatism in the Tengchong terrane can be divided into three episodes: (1) the Triassic syn- and post-collisional magmatic event was related to the closure of the Palaeo-Tethyan Ocean, as represented by the Changning-Menglian suture zone; (2) the Jurassic to Early Cretaceous magmatism was related to the subduction of the Meso-Tethyan oceanic crust, as represented by the Myitkyina ophiolite belt; and (3) the Late Cretaceous magmatism was related to the subduction of the Neo-Tethyan oceanic crust, as represented by the Kalaymyo ophiolite belt.  相似文献   

2.
西藏中部拉萨地块大规模早白垩世花岗岩类的岩浆源区和岩石成因迄今尚未得到很好约束,对这些问题的深入理解将有助于揭示拉萨地块白垩纪时期的岩浆作用过程及成矿背景。本文报道了中部拉萨地块代表性花岗岩基——措勤麦嘎岩基的锆石U-Pb年代学、全岩元素地球化学、Sr-Nd同位素和锆石Hf同位素数据。本文锆石U-Pb定年结果表明,麦嘎岩基花岗质岩主要侵位于122±1Ma和113±2Ma,闪长质包体与后者同期(113±2Ma)。122±1Ma花岗质岩属I型弱过铝质高钾钙碱性系列,(87Sr/86Sr)i值高(0.7147),全岩εNd(t)(-12.0)和锆石εHf(t)(-15.7~-11.1)为较大的负值,表明其很可能来源于古老下地壳物质的重熔。113±2Ma寄主花岗质岩为I型偏铝质-弱过铝质高钾钙碱性系列,相对于122±1Ma花岗质岩石,其(87Sr/86Sr)i比值偏低(0.7094~0.7156)、全岩εNd(t)值(-12.1~-7.3)和锆石εHf(t)值(-11.1~0.1)较高,很可能来源于古老下地壳物质的部分熔融,并含有更多幔源物质。闪长质包体(113±2Ma)为偏铝质中-高钾钙碱性系列,以变化范围大的(87Sr/86Sr)i(0.7058~0.7105)、负的全岩εNd(t)值(-10.7~-9.8)及负的锆石εHf(t)值(-14.0~-5.6)为特征,可能是古老富集岩石圈地幔物质部分熔融的产物或亏损地幔物质经历强烈地壳混染作用的结果。在目前已有资料条件下(缺乏同期基性岩石的相关数据),本文暂将麦嘎岩基113±2Ma寄主花岗质岩及同期闪长质包体解释为镁铁质岩浆与长英质岩浆发生不同程度岩浆混合作用的产物,这一解释可能对中部拉萨地块同期花岗类的岩石成因具普遍意义。麦嘎岩基及中部拉萨地块同期岩浆岩约113Ma幔源物质增加现象,可能是南向俯冲的班公湖-怒江洋壳岩石圈板片断离的结果。  相似文献   

3.
对乌奴耳地区花岗闪长岩进行的LA-ICP-MS锆石U-Pb测年和岩石地球化学测试结果表明:花岗闪长岩的锆石U-Pb加权平均年龄为332.6±6.9Ma(MSWD=3.1),时代为早石炭世. 岩石地球化学数据显示,花岗闪长岩属准铝质低钾(拉斑)系列.花岗闪长岩总体富集大离子亲石元素,亏损高场强元素. Th、U表现,为明显正异常,Nb、Ta、Zr、Ti表现明显负异常,La、Hf、Lu等富集,δEu值为0.61~0.69,具有负铕异常,与I型花岗岩相似,具有火山弧花岗岩的特征,表明该侵入岩的形成与俯冲作用有关. 综合区域地质特征及本研究认为,花岗闪长岩为早石炭世古亚洲洋俯冲时的产物,可为古亚洲洋及东北地块构造演化研究提供新的约束和佐证实例.  相似文献   

4.
ABSTRACT

This article presents new zircon U–Pb geochronology, Hf isotopic, and whole-rock major- and trace-element geochemical data that provide insights into the petrogenesis and tectonic history of the Riwanchaka granodiorite porphyries of Central Qiangtang, Tibet. Zircon U–Pb ages of 236–230 Ma indicate an early Late Triassic age of emplacement of the porphyries, and zircon Hf isotopic data yield εHf(t) values of – 7.0 to – 1.5 and ancient zircon Hf crustal model ages (TDMC) of 1524–1220 Ma. The granodiorite porphyries are characterized by low K2O contents, high Mg# values, and relatively high Cr and Ni contents. They are classified as I-type calc-alkaline granite and are considered to have formed through the anatexis of ancient mafic crustal rocks with contributions from mantle-derived components. The geochemistry and isotopic compositions of all samples are similar to those of magmatic rocks that originated in the South Qiangtang crust. However, field observations indicate that the pluton intrudes the North Qiangtang crust, and we propose that the granodiorite porphyries were derived by partial melting of subducted continental crust of the South Qiangtang terrane. These new data have been integrated with data from previous studies to construct a new model of slab rollback during northward subduction of the Southern Qiangtang continental crust at ca. 245–226 Ma, thereby improving our understanding of magmatic processes involved in continental subduction in collision settings.  相似文献   

5.
6.
西藏拉萨地块阿翁错—盐湖岩浆弧的成因是解决班公湖—怒江特提斯洋俯冲极性和时限的关键。本文选取阿翁错北岩体中的二长花岗岩进行岩相学、锆石U-Pb年代学、岩石地球化学与Hf同位素研究。结果表明:阿翁错北二长花岗岩的锆石206Pb/238U加权平均年龄为(107.0±0.5) Ma,MSWD=2.6,属早白垩世晚期。样品表现为高硅、富钾的高钾钙碱性岩石系列,A/CNK值介于1.006~1.019之间,属弱过铝质;微量元素富集大离子亲石元素Rb、K、U、Th及轻稀土元素(LREE),亏损Nb、Ta、P、Ti等高场强元素,具中等至弱的负Eu异常(δEu=0.55~0.78),属弱过铝质未分异的I型花岗岩。二长花岗岩样品锆石初始Hf同位素εHf(t)值除1颗锆石达11.1外,其他17颗锆石介于3.7~6.3之间,平均值5.0,Hf同位素二阶段模式年龄变化于928~765 Ma之间。基于同位素以及岩石地球化学数据,阿翁错北岩体很可能是新生地壳熔融产生的长英质岩浆与镁铁质岩浆发生不均一混合作用形成,并有少量幔源物质的参与。结合拉萨地块中北部岩浆岩Hf同位素研究分析,阿翁错—盐湖岩浆弧形成于班公湖—怒江特提斯洋后退式俯冲的构造体制下,阿翁错北岩体的形成时代(107~104 Ma)代表了由断离板片俯冲末期向碰撞环境转化的时限。  相似文献   

7.
This paper presents new SHRIMP zircon U–Pb chronology, major and trace element, and Sr–Nd–Hf isotopic data of two Early Paleozoic granitic plutons (Yierba and North Kudi) from the western Kunlun orogen, in attempt to further constrain the Proto-Tethys evolution. SHRIMP zircon U–Pb dating shows that the Yierba pluton was emplaced in the Middle Cambrian (513?±?7 Ma) and the North Kudi pluton was emplaced in the Late Silurian (420.6?±?6.3 Ma). The Yierba pluton consists of quartz monzodiorite, quartz monzonite and granodiorite. These granitoids are metaluminous and potassic, with initial 87Sr/86Sr ratios of 0.7072–0.7096, εNd (T) of ?0.2 to ?1.6 and εHf (T) (in-situ zircon) of ?1.2. Elemental and isotopic data suggest that they were formed by partial melting of subducted sediments, with subsequent melts interacting with the overlying mantle wedge in an oceanic island arc setting in response to the intra-oceanic subduction of Proto-Tethys. The North Kudi pluton consists of syenogranite and alkali-feldspar granite. These granites are metaluminous to weakly peraluminous and potassic. They show an affinity of A1 subtype granite, with initial 87Sr/86Sr ratios of 0.7077–0.7101, εNd (T) of ?3.5 to ?4.0 and εHf (T) (in-situ zircon) of ?3.9. Elemental and isotopic data suggest that they were formed by partial melting of the Precambrian metamorphic basement at a shallow depth (<30 km) during the post-orogenic regime caused by Proto-Tethyan oceanic slab break-off. Our new data suggest that the subduction of the Proto-Tethyan oceanic crust was as early as Middle Cambrian (~513 Ma) and the final closure of Proto-Tethys was not later than Late Silurian (~421 Ma), most probably in Middle Silurian.  相似文献   

8.
ABSTRACT

The magmatic generation for the Late Triassic–Early Jurassic (~215–200 Ma) and Early Cretaceous–Late Cretaceous (~108–79 Ma) post-collisional granites in the Sanjiang Tethys orogeny remain enigmatic. The Xiuwacu complex, located in the southern Yidun Terrane, consists of biotite granite with a weight mean 206Pb/238U age of 199.8 ± 2.5 Ma, aplite granite of 108.2 ± 2.3 Ma, monzogranite porphyry of 80.8 ± 1.0 Ma, and diorite enclaves of 79.2 ± 0.9 Ma and 77.9 ± 0.8 Ma. The Late Triassic biotite granites show I-type granite affinities, with high SiO2 contents, high Mg# values, high zircon δ18O values, and negative whole-rock ?Nd(t) values, indicating a predominant ancient crustal source with the input of juvenile materials. Their fractionated REE patterns and concave-upward middle-to-heavy REE patterns require garnet-bearing amphibolite as the melt source. The Cretaceous highly fractionated aplite granites and monzogranite porphyries have relatively high SiO2 contents, high (Na2O + K2O)/CaO ratios, high zircon δ18O values, and enriched whole-rock Sr–Nd isotopic signatures, suggesting that their parent magmas were likely originated from the ancient middle- to lower crust. Their significant negative Eu anomalies and obvious depletions in Nb, Sr, and Ti demonstrate that the Cretaceous granitic magmas had experienced more fractionation than the Late Triassic felsic magmas. The Late Cretaceous diorite enclaves show low SiO2 contents, high Mg# values, and high zircon δ18O values, suggesting that they were probably derived from the partial melting of subcontinental lithospheric mantle enriched by the Late Triassic subduction. The Late Triassic–Early Jurassic and Early Cretaceous–Late Cretaceous magmatism witnessed the post-collisional setting and intraplate extensional setting in response to the slab break-off and lithospheric-scale transtensional faulting, respectively. The partial melting of subduction-modified lithospheric mantle or/and residual sulphide cumulates within the lower crust during the origination of Late Cretaceous magmas could have provided metals for the formation of Xiuwacu deposit.  相似文献   

9.
There is ongoing debate as to the subduction direction of the Bangong–Nujiang Ocean during the Mesozoic (northward, southward or bidirectional subduction). Arc-related intermediate to felsic intrusions could mark the location of the subduction zone and, more importantly, elucidate the dominant geodynamic processes. We report whole rock geochemical and zircon U–Pb and Hf isotopic data for granitoids from the west central Lhasa subterrane (E80° to E86°). All rocks show metaluminous to peraluminous, calc-alkaline signatures, with strong depletion of Nb, Ta and Ti, enrichment of large ion lithophile elements (e.g., Cs, Rb, K), a negative correlation between SiO2 and P2O5, and a positive correlation between Rb and Th. All these features are indicative of I-type arc magmatism. New zircon U–Pb results, together with data from the literature, indicate continuous magmatism from the Late Jurassic to the Early Cretaceous (160 to 130 Ma). Zircon U–Pb ages for samples from the northern part of the west central Lhasa subterrane (E80° to E82°30′) yielded formation ages of 165 to 150 Ma, whereas ages of 142 to 130 Ma were obtained on samples from the south. This suggests flat or low-angle subduction of the Bangong–Nujiang Ocean, consistent with a slight southward decrease in zircon εHf(t) values for Late Jurassic rocks. Considering the crustal shortening, the distance from the Bangong–Nujiang suture zone, and a typical subduction zone melting depth of ~ 100 km, the subduction angle was less than 14° for Late Jurassic magmatism in the central Lhasa interior, consistent with flat or low-angle subduction. Compared with Late Jurassic rocks (main εHf(t) values of − 16 to − 7), Early Cretaceous rocks (145 to 130 Ma) show markedly higher εHf(t) values (mainly − 8 to 0), possibly indicating slab roll-back, likely caused by slab foundering or break-off. Combined with previously published works on arc magmatism in the central Lhasa and west part of the southern Qiangtang subterranes, our results support the bidirectional subduction of the Bangong–Nujiang Ocean along the Bangong–Nujiang Suture Zone, and indicates flat or low-angle southward subduction (165 to 145 Ma) followed by slab roll-back (145 to 130 Ma).  相似文献   

10.
Early Palaeozoic granitoids in the South Qilian Belt, central China, record details of the tectonic evolution and crustal growth of the Qilian orogenic belt. Five representative granitoids from the western South Qilian Belt were sampled for zircon LA-ICPMS U–Pb dating, Lu–Hf isotopes, and whole-rock geochemical analyses. Zircon U–Pb dating of two porphyritic granodiorites and a porphyritic monzogranite yielded ages of 442.7 ± 3.5, 441.8 ± 4.3, and 435.4 ± 3.5 Ma, respectively. These granitoids exhibit a geochemical affinity to I-type granite, are metaluminous with a low aluminium saturation index (A/CNK = 0.75–1.15), have moderate Al2O3 and low MgO contents, high La/Yb and low Sr/Y ratios, and are depleted in Nb, Ta, P, and Ti, which suggests a subduction zone magmatic arc affinity, with mixing between a primary mantle-derived magma with lesser continental crustal material. The syenogranite and monzogranite from the South Qilian Belt, which yield U–Pb zircon ages of 440.4 ± 9.0 and 442.3 ± 1.2 Ma, respectively, have pronounced S-type geochemical affinities, are peraluminous with A/CNK values of 1.07–1.16, have relatively high SiO2, Al2O3, K2O, and Rb contents, low Y and Yb, low Sr/Y and La/Yb ratios, positive Th, U, and light Rare Earth Element (REE) anomalies, and depletions in Nb, Ta, Sr, and Ti. Their geochemical signature suggests derivation from partial melting of continental crust in a syn-collisional setting. The Hf isotopic data of zircons from the granitoids show a significant input of Paleoproterozoic crust in the crustal formation of the western South Qilian Belt in Palaeozoic. Compare the εHf(t) value of S-type granite with that of I-type granite, the former may have a comparatively homogeneous source. Together with regional evidence, it is proposed that a collisional event occurred between the South Qilian Belt and the Central Qilian Belt at ca. 442–435 Ma.  相似文献   

11.
浙东地区岩浆岩广泛分布,受区域构造控制较明显,总体沿北东向余姚-丽水断裂带分布。本文对东园花岗岩体开展了详细的年代学和岩石地球化学研究。东园岩体主要由二长花岗岩、石英二长岩和少量花岗岩组成,主岩体二长花岗岩的LA-ICP-MS锆石U-Pb年龄为235.6±0.7 Ma(MSWD=0.97,2σ),花岗岩为238.1±0.8 Ma(MSWD=1.3,2σ),均属中三叠世产物。二长花岗岩和石英二长岩为准铝质-弱过铝质的钙碱性花岗岩,具高硅(62.94%~75.29%)、富碱(Na_2O+K_2O=8.17%~9.34%)且富钾(K_2O=4.54%~5.63%)的特征,轻重稀土分馏明显,具有较强的Eu正异常(δEu=0.94~2.43),明显亏损高场强元素(HFSE)Nb、P、Ti,而相对富集Th、Hf,富集轻稀土元素(LREE)和大离子亲石元素(LILE)Rb,相对贫Ba。岩体属高(-中等)分异I型花岗岩,岩浆来源于具弧属性的加厚地壳部分熔融,形成于同碰撞向后碰撞阶段转变的大地构造环境,可能与太平洋板块向华南板块俯冲作用事件有关。  相似文献   

12.
This paper reports geochronological, geochemical, zircon U–Pb and Hf–O isotopic data of the Late Triassic and Early Jurassic intrusive rocks in the northeastern North China Craton (NCC), with the aim of reconstructing the tectonic evolution and constraining the spatial–temporal extent of multiple tectonic regimes during the early Mesozoic. Zircon U–Pb ages indicate that the early Mesozoic magmatism in the northeastern NCC can be subdivided into two stages: Late Triassic (221–219 Ma) and Early Jurassic (180–177 Ma). Late Triassic magmatism produced mainly granodiorite and monzogranite, which occur as a NE–SW-trending belt parallel to the Sulu–Jingji Belt. Geochemically, they are classified as high-K calc-alkaline and metaluminous to weakly peraluminous granitoids, and are enriched in large-ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depleted in high-field-strength elements (HFSEs; e.g., Nb, Ta, Ti, and P) and heavy rare earth elements (HREEs), indicating an affinity to adakite. Combined with their εHf(t) values (−17.9 to −3.2) and two-stage model ages (2387–1459 Ma), we conclude that the Late Triassic granitoid magma in the northeastern NCC was derived from partial melting of the thickened lower crust of the NCC and was related to deep subduction and collision between the NCC and the Yangtze Craton (YC). The Early Jurassic magmatism is composed mainly of monzogranites, which are classified as metaluminous, high-K calc-alkaline, and I-type granite. Their εHf(t) values and two-stage model ages are −16.7 to −4.2 and 2282–1491 Ma, respectively. Compared with the Late Triassic granitoids, the Early Jurassic granitoids have relatively high HREE contents, similar to calc-alkaline igneous rocks in an active continental margin setting. These Early Jurassic granitoids, together with the coeval calc-alkaline volcanic rocks and gabbro–diorite–granodiorite association in the northeastern (NE) Asian continental margin, comprise a NNE–SSW-trending belt parallel to the NE Asian continental margin, indicative of the onset of Paleo-Pacific Plate subduction beneath Eurasia.  相似文献   

13.
中冈底斯带在早白垩世发生的大规模岩浆爆发事件的成因模式仍然存在争议。对中冈底斯带扎布耶茶卡北部区域岩浆岩的野外特征、锆石U-Pb年龄、全岩地球化学特征进行研究,结果表明,扎布耶茶卡北部岩体主要侵位于142Ma和100Ma,2期岩浆作用均包含中酸性岩体和辉长岩脉体。第一期(约142Ma)岩体属I型偏铝质高钾钙碱性系列花岗质岩体,第二期(约100Ma)岩体为偏铝质高钾钙碱性系列闪长质岩体。2期中酸性岩体均富集Rb、Ba、Th、U等大离子亲石元素,相对亏损Nb、Ta等高场强元素,并显示强烈的壳-幔岩浆混合特征。结合前人研究资料,扎布耶茶卡北部第一期花岗质岩体及辉长岩脉为南向俯冲的班公湖-怒江洋壳板片回转引起的岩浆作用;第二期闪长质岩体及辉长岩脉为班公湖-怒江洋壳板片断离的岩浆作用的响应。该研究成果为班公湖-怒江洋的南向俯冲、板片回转和板片断离演化模式提供了岩浆作用证据。  相似文献   

14.
ABSTRACT

The Armantai and Kalamaili oceans were both important branches of the Palaeo-Asian Ocean between the Altai microcontinent and the Junggar juvenile crust; however, their geological evolution is not completely clear. This paper reports detailed petrological, zircon geochronological, whole-rock elemental and Sr-Nd-Pb isotopic data for a newly discovered gabbro-diorite suite (Akputo pluton) in East Junggar to constrain this issue. Quartz diorite and hornblende gabbro yield intrusion 206Pb/238U ages of ca. 444–440 Ma, which indicates that mafic-intermediate magmatism occurred in the earliest Silurian. The gabbroic-dioritic rocks have tholeiite to calc-alkaline affinities and are characterised by moderately fractionated rare earth element patterns with flat heavy rare earth elements, enrichment in Rb, Ba, K, Sr, and depletion in Nb, Ta, Ti. Low initial Sr and Pb isotopic compositions and positive εNd(t) indicate a derivation from the isotopically depleted mantle sources. The geochemical compositions and melting calculations suggest that the gabbro-diorite suite originated from partial melting of spinel-bearing mantle sources that had been metasomatised by subduction-derived fluids and sediments. The Akputo intrusions formed in an arc setting related to the southward subduction of the Armantai Ocean. Taking the regional angular unconformity between the Ordovician sediments and Silurian volcanics into account, we further suggest that the Early to Middle Silurian was a transition period of the closure of Armantai Ocean and the initial spreading of Kalamaili Ocean.  相似文献   

15.
Major and trace element, zircon U–Pb and Hf-isotope data are reported for mafic intrusions and host granite from the Kachang pluton (North Yingjiang of SW Yunnan) in the Tengchong Terrane, in order to investigate their sources, petrogenesis and tectonic implications. The zircon U–Pb age of the mafic rocks (~55 Ma) is identical to that of the host granite (56.7 ± 0.6 Ma). The mafic rocks have high MgO concentrations (up to 13.43 wt.%) at low SiO2 contents (low to 42.73 wt.%) and slight negative to positive εHf(t) values (?2.26 to +0.59). They are enriched in LILE and LREEs and depleted in HFSEs, which can be explained as melts derived from a enriched mantle, with some crustal contamination. The host granite have high SiO2 contents (69.18–72.65 wt.%), highly negative εHf(t) values (?9.08 to ?5.14), suggesting mainly derived from an ancient crustal source. Field observations, geochronology, geochemistry and zircon Hf isotopic compositions point to a complex petrogenesis, where enriched mantle- and crust-derived magma mixing was coupled with crystal fractionation, thus explaining the genetic link between mafic and felsic magmas, result of mafic magma upwelling triggered by the subduction rollback of the Neotethyan slab. Our new data, along with the data reported (especially zircon U–Pb dating and Lu–Hf isotope data) in the Tengchong Terrane, indicate that the spatial and temporal variations and changing magmatic compositions over time in the Tengchong Terrane closely resemble those of the Lhasa Terrane in southern and central Tibet.  相似文献   

16.
改则地区的嘎布扎花岗闪长岩侵入于南羌塘地体南缘的侏罗系色哇组,为研究班公湖—怒江缝合带的演化提供新的约束。岩浆锆石的LA-ICP-MS U-Pb年龄为(143.8±0.5)Ma,显示花岗闪长岩的侵位时代为晚侏罗世—早白垩世之交。花岗闪长岩具有准铝质I型花岗岩的特点,属于高钾钙碱性岩石系列;稀土元素为轻稀土富集型,存在弱的Eu负异常;明显富集Rb、Ba、K、Th、U等大离子亲石元素,而亏损Nb、Ta、P、Ti等高场强元素。研究表明花岗闪长岩的岩浆源区可能经历了陆壳物质、俯冲沉积物与幔源楔等不同性质的岩浆混合,并经历一定程度的分离结晶作用形成。改则嘎布扎花岗闪长岩形成于班公湖—怒江中特提斯洋晚侏罗世—早白垩世向北俯冲的岛弧环境。  相似文献   

17.
永福岩体位于永梅晚古生代拗陷带中部。利用LA-ICP-MS锆石U-Pb定年法测得永福岩体中YF-1样品的年龄为133±1 Ma(MSWD=0.50)、YF-2样品的年龄为143±1 Ma(MSWD=0.59),说明其形成于早白垩世,与燕山期岩浆活动有关。该岩体富硅、碱,里特曼指数σ=0.96~2.43,铝饱和指数(A/CNK)=0.98~1.66,属高钾钙碱性系列,准铝质到过铝质范围。稀土元素总量较高,LREE相对富集,HREE相对亏损;具中-弱Eu负异常,弱Ce负异常到无异常,轻重稀土的分馏较微弱;微量元素表现为亏损元素Ba、Sr、K、P和Ti,富集Th、U、Zr、Hf等元素。样品YF-2~YF-7具有S型花岗岩特征,为永福岩体主体,源岩可能来自古-中元古代下地壳沉积岩;而样品YF-1具有Ⅰ型花岗岩特征,源岩可能来自古-中元古代下地壳火成岩。锆石的εHf(t)值除一颗来自残留基底为正值外,其他锆石全部为负值(-4.30~-11.82),Hf同为素二阶段模式年龄tDM2为1.45~1.92 Ga,表明永福岩体可能形成于古老地壳物质的重融。岩体形成于燕山期地壳的伸展背景下,在岩石圈伸展作用下幔源岩浆底侵促使古-中元古代下地壳沉积岩先发生部分熔融,形成永福岩体早期的S型花岗岩,岩浆作用后期,古-中元古代下地壳火成岩部分熔融,形成永福岩体晚期的I型花岗岩。  相似文献   

18.
刘博  王一丁  文韵琪  韩宝福 《地球科学》2022,47(9):3316-3333
额尔古纳地块东缘韩家园子?富林地区紧邻蒙古?鄂霍茨克缝合带,其广泛出露的早侏罗世?早白垩世火成岩对于完善蒙古?鄂霍茨克洋俯冲?闭合历史具有重要意义.本文对韩家园子?富林地区的中生代火成岩进行岩相学、锆石U-Pb年代学、全岩主?微量元素地球化学研究.LA-ICP-MS锆石U-Pb结果显示韩家园子钾长花岗岩锆石U-Pb年龄为196±2 Ma,代表其侵位时代为早侏罗世;富林地区光华组粗安岩锆石U-Pb年龄为122±2 Ma,暗示其结晶时代为早白垩世.早侏罗世钾长花岗岩为准铝质的Ⅰ型花岗岩,Mg#值较低(36),Nb/Ta比值(16.55~17.05)接近于原始地幔,暗示岩浆应来源于新生下地壳的部分熔融.同时,钾长花岗岩富集大离子亲石元素Rb、Ba、K,亏损高场强元素Nb、Ta、Ti,与典型弧型火成岩的地球化学特征相一致,结合区域上发育同时代准铝质或弱过铝质Ⅰ型花岗岩的事实,表明其可能与蒙古?鄂霍茨克洋南向俯冲至额尔古纳地块有关.相比较下,早白垩世粗安岩具有较低的SiO2含量(59.67%~59.93%)和较高的Mg#值(42~43),同时富集大离子亲石元素Rb、Ba、K,亏损高场强元素Nb、Ta、Ti,富集Sr,亏损Th,暗示其可能是富集岩石圈地幔重熔的产物.鉴于区域上其他来源于富集岩石圈地幔的早白垩世钙碱性火山岩呈面状分布的特征,以及早白垩世A型花岗岩和变质核杂岩的存在,暗示粗安岩为蒙古?鄂霍茨克洋闭合后伸展环境下的产物.结合区域最新火成岩和沉积岩资料,认为蒙古?鄂霍茨克洋在早侏罗世?早白垩世发生俯冲?碰撞?后碰撞作用,其在大兴安岭北部闭合时间应介于晚侏罗世末期和早白垩世早期(约150~140 Ma).   相似文献   

19.
《International Geology Review》2012,54(11):1359-1383
The Jiangnan Orogen is located at a key tectonic position along the junction between the Yangtze and Cathaysia blocks. We obtained detailed major and trace elements, whole-rock Nd + zircon Hf isotope data, and U–Pb age data from several Mesozoic granites, including the Fuling (FL), Taiping–Huangshan (TH), Lingshan (LS), Sanqingshan (SQS), and Baijuhuajian intrusions in order to investigate their sources and petrogeneses related to extension in South China. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analyses of zircon from the FL, TH, SQS, and LS bodies yield Early Cretaceous ages of 124–135 Ma. These plutons are alkali-feldspar granites to syenogranites–monzogranites, and show A-type affinities. They have high K2O and total alkali contents, and are enriched in rare earth elements (except for Eu), Zr, and other high-field-strength elements as well as high Ga/Al ratios, and are depleted in Ba and Sr. These granites are metaluminous to weakly peraluminous (ACNK from 0.81 to 1.27). The whole-rock ?Nd(T) values of??5.34 to??0.96 are coupled with zircon ?Hf(T) values (from??5.3 to +4.24), and all samples plot along the mantle array. Field observations, geochronology, geochemistry, Nd isotopic, and zircon Hf isotopic compositions suggest that they formed by the partial melting of Mesoproterozoic metamorphic basement, with input from juvenile, mantle-derived materials in the shallow (<30 km) crust at high temperatures (756–965°C). These melts underwent crystal fractionation of biotite, plagioclase, and K-feldspar. The upwelling of asthenosphere triggered partial melting of the metamorphic protolith in a back-arc or intra-arc rift setting, reflecting rollback of the Pacific plate. Our research adds new geochronologic constraints on Cretaceous (135–120 Ma) A-type granites from the NE sector of the Jiangnan Orogen. Combined with previous research, we suggest that three main episodes of late Mesozoic extensional tectonism took place in South China: (1) 190–170 Ma (mainly inland), (2) 165–120 Ma (including 165–150 Ma in SE Shi-Hang, 135–120 Ma in NE Shi-Hang, and ~125 Ma in the Lower Yangtze River Belt), and (3) 100–90 Ma (coastal area), showing an oceanwards younging trend due to the subduction of the Palaeo-Pacific plate.  相似文献   

20.
《International Geology Review》2012,54(10):1294-1310
ABSTRACT

Palaeozoic intrusions in Eastern Tianshan are important for understanding the evolution of the Central Asian Orogenic Belt (CAOB). The Sanchakou intrusions situated in Eastern Tianshan (southern CAOB), are mainly quartz diorite and granodiorite. A comprehensive study of zircon U–Pb ages, zircon trace elements, whole-rock geochemistry, and Lu–Hf isotopes were carried out for the Sanchakou intrusive rocks. LA-ICP-MS zircon U–Pb dating yielded crystallization ages of 439.7 ± 2.5 Ma (MSWD = 0.63, n = 21) for the quartz diorite, and 430.9 ± 2.5 Ma (MSWD = 0.21, n = 21) and 425.5 ± 2.7 Ma (MSWD = 0.04; n = 20) for the granodiorites. These data, in combination with other Silurian ages reported for the intrusive suites from Eastern Tianshan, indicate an early Palaeozoic magmatic event in the orogen. In situ zircon Hf isotope data for the Sanchakou quartz diorite shows εHf(t) values of +11.2 to +19.6, and the two granodioritic samples exhibit similar εHf(t) values from +13.0 to +19.5. The Sanchakou plutons show metaluminous to weakly peraluminous, arc-type geochemical and low-K tholeiite affinities, and display trace element patterns characterized by enrichment in K, Ba, Sr, and Sm, and depletion in Nb, Ta, Pb, and Ti. The geochemical and isotopic signatures indicate that the Sanchakou dioritic and granodioritic magmas were sourced from a subducted oceanic slab, and subsequently underwent some interaction with peridotite in the mantle wedge. Combined with the regional geological history, we suggest the Sanchakou intrusions formed due to the northward subduction of the Palaeo-Tianshan Ocean beneath the Dananhu–Tousuquan arc during early Silurian time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号