首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study is to determine the hydrological properties, groundwater potential, and water quality of the Çürüksu basin, western Turkey, and to contribute to the efforts of providing an adequate water supply for the city of Denizli. To achieve these objectives, the study consisted of mapping the geology and hydrogeology, determining the water balance, and defining the water quality. The basement rock units in the study area include several impervious metamorphic rock types and Mesozoic karstic limestone, which are overlain by Oligocene fluvial and lacustrine strata, Pliocene travertine and limestone, and Quaternary alluvium. The karstic limestone and the travertine and limestone strata constitute potential aquifers in the Çürüksu basin. The discharge regimes of the 22 springs in the two basins show little change through the year. The flow systems of the springs also have a large storage capacity and drainage occurs very slowly. The discharge of the springs does not appear to be affected immediately by monthly variations in precipitation. According to the water balance, the precipitation in the Çürüksu basin cannot provide all of the measured surface runoff. Excess runoff is 2?m3?s–1 in the Çürüksu basin, and in the adjacent Gökp?nar basin the deficit in surface runoff is also 2?m3?s–1. Thus, the underground catchment area of the springs extends beyond the surface drainage area of the Çürüksu basin. Although the P?narba??, Kazanp?nar, and Böceli springs emerge from the karstic limestone aquifer in the Çürüksu basin, these springs are fed from the adjacent Gökp?nar basin. The spring waters emerging from karstic limestone are fresh, of the calcium bicarbonate type, soft, and potable. The spring waters emerging from the travertine and limestone aquifer are low-temperature, brackish, of the calcium sulfate type, very hard, and not potable but useful for the irrigation. The occurrences of coal strata and hydrothermal activity have caused some deterioration of groundwater quality.  相似文献   

2.
Southwestern Turkey experienced a transition from crustal shortening to extension during Late Cenozoic, and evidence of this was recorded in four distinct basin types in the Mu?la–Gökova Gulf region. During the Oligocene–Early Miocene, the upper slices of the southerly moving Lycian Nappes turned into north-dipping normal faults due to the acceleration of gravity. The Kale–Tavas Basin developed as a piggyback basin along the fault plane on hanging wall blocks of these normal faults. During Middle Miocene, a shift had occurred from local extension to N–S compression/transpression, during which sediments in the Eskihisar–T?naz Basins were deposited in pull-apart regions of the Menderes Massif cover units, where nappe slices were already eroded. During the Late Miocene–Pliocene, a hiatus occurred from previous compressional/transpressional tectonism along intermountain basins and Yata?an Basin fills were deposited on Menderes Massif, Lycian Nappes, and on top of Oligo–Miocene sediments. Plio-Quaternary marked the activation of N–S extension and the development of the E–W-trending Mu?la–Gökova Grabens, co-genetic equivalents of which are common throughout western Anatolia. Thus, the tectonic evolution of the western Anotolia during late Cenozoic was shifting from compressional to extensional with a relaxation period, suggesting a non-uniform evolution.  相似文献   

3.
Reconnaissance observations are presented on the building damage caused by the May 19, 2011, Kütahya–Simav earthquake in Western Turkey as well as an overview of strong ground motion data recorded during the earthquake is given. According to Disaster and Emergency Management Presidency of Turkey, the magnitude of the earthquake is 5.7 in local magnitude scale. Although the earthquake can be regarded as a moderate event when considering its magnitude and strong motion recordings, it caused excessive structural damage to buildings in Simav district and several villages in the near vicinity. During the field investigation, different types of structural damage were observed mainly in the reinforced concrete frame buildings with infill walls and masonry buildings with various types of construction materials. Observed damage resulted from several deficiencies in structural and non-structural components of the buildings. Poor construction materials and workmanship, non-conforming earthquake-resistant design and construction techniques and non-ductile detailing are the main reasons for such an extensive damage, as observed in many past earthquakes in Turkey.  相似文献   

4.
5.
The Mesozoic to Cenozoic mountain uplift, exhumation, and deformation of the SW Tianshan Mountains (Kyrgyzstan and Northwest China) offer an important window to understand the intra-continental rejuvenation mechanism of the Central Asian Orogenic Belt (CAOB), as response to the far-field effects of the India-Asia collision. This article presents new observation and data for the planation surface and sedimentation and deformation features of the regional intermountain basins to rebuild the orogenic history in Mesozoic to Cenozoic. Three planation surfaces were recognized by field observation, showing that the mountain may have experienced lengthy erosion since the end Cretaceous, and a continuous planation surface may have formed at the Eocene to Oligocene. The filling sequences and deformation character revealed that the orogenic disintegrate and intermountain basin formation likely began in the end of Oligocene. Subsequently, the uniform planation surface in Western Tianshan may have begun to disintegrate, leading to the basin-and-range landform formation. Folds and nappes in the Cenozoic basins, large-scale thrusting of Palaeozoic rocks over Cenozoic sediments at the basin margin associated with the rapid mountain uplift may have occurred at the end of Early Pleistocene, suggesting a tectonic inversion. The Mesozoic–Cenozoic Tianshan uplift and deformation were likely induced by the collision/accretion along the southern margin of Eurasia. Both the northward propagation of the Parmir syntaxis to the SW Tianshan and the oblique dextral faulting of the Talas–Fergana fault have likely played an important role on the formation and deformation of the Cenozoic basins in the SW Tianshan.  相似文献   

6.
《Geodinamica Acta》2001,14(1-3):57-69
There is a N–S lying narrow strip of Neogene outcrop between the towns of Kuşadası and Söke in western Anatolia. It contains remnants of successive Neogene graben basins. The first graben began to form under the control of a N40–70°E-trending oblique fault system during the Early Miocene. At the initial phase of the opening coarse clastic rocks were deposited in front of the fault-elevated blocks as scree deposits and fanglomerates. Later the graben advanced into a large lake basin. Towards the end of the Middle Miocene the lacustrine sediments of the Early–Middle Miocene age underwent an approximately N–S compressional deformation and elevated above the lake level, and were partly eroded. During the Late Miocene a new graben basin began to form as a consequence of the development of E–W-trending normal faults, formed under the N–S extensional regime. This graben also turned later into a lake environment. The lake extended far beyond the limits of the fault zones, and covered the entire regions stretching from the south of Bafa Lake in the south to Kuşadası and beyond in the north. Micritic clayey limestones were predominantly deposited in the lake. A severe erosional phase followed the termination of the lake basin. This corresponds to the cessation of the N–S extension. When the N–S extension regenerated during the Pliocene(?)–Pleistocene, the Büyük Menderes graben system began to form. In the western part of the graben, a conjugated pair of oblique faults, the Priene–Sazlı fault and the Kuşadası fault, have formed. The faults having important strike-slip components, bounded a tectonic wedge, which began to move westward into the Aegean Sea region. Major morphological features of the region were formed under the effective control of these fault zones.  相似文献   

7.
8.
The AMS study has been performed on various types of the basement – Variscan granitic and surrounding – Mesozoic sedimentary rocks in the Velká Fatra Mountains, Tatric Superunit of the Central Western Carpathians. The Velká Fatra Mts. provides good opportunity for AMS study because of composite S-type and I-type granite character of pluton and clear relations to Mesozoic sedimentary rocks in the cover and nappe positions. The granitic massif consists of the three types of weakly magnetic peraluminous granites (350 – 340 Ma in age), ranging from two-mica granites to biotite granodiorites in composition and carrying accessory monazite and ilmenite; whereby they resemble common S-type and/or Ilmenite Series granite. This pre-existing granitic body was intruded by relatively young (304 Ma old) metaluminous to subaluminous, strongly magnetic (due to magnetite) tonalitic intrusion of the I-type and/or Magnetite Series granite. In all S-types investigated as well as in the I-type tonalite body, the magnetic fabrics are not uniform, but slightly variable within a body and differing from body to body. The magnetic fabrics in all granitic rocks can be classified as mostly magmatic in origin, only subordinately affected by ductile deformation. The Alpine overprint of the magnetic fabric of the Variscan granite frequent in the central areas of the Central Western Carpathians was only weak in the Velká Fatra Mts. and the magnetic fabrics of these granites thus mostly comprise the original Variscan magmatic fabrics. On the other hand, in the marginal parts of the Velká Fatra Mts. the magnetic fabrics in granites are locally conformable to the deformational magnetic fabrics in surrounding sedimentary rocks (Mesozoic in age) thus indicating at least local effects of the Alpine deformation. The magnetic fabrics in Mesozoic sedimentary rocks covering the crystalline basement are partially (Cover Formation) to entirely (Nappe Units) deformational in origin.  相似文献   

9.
We document the staircase of terraces of the River Tigris in the Diyarbakır area of SE Turkey, in the northern Arabian Platform, and improve control on the ages of these terrace deposits by dating of overlying basalt flows using the unspiked K–Ar technique. These fluvial terraces are formed of polymict gravel, including clasts derived from the Anatolian metamorphic terrane farther north as well as of local basalt. At least 9 Tigris terraces have been recognised so far, the highest of which, ∼200 m above present river level, marks the local transition from stacked deposition to fluvial incision, the timing of which is bounded between the mid Late Miocene and the Middle Pliocene. Our K–Ar dating indicates a hiatus in fluvial incision in the late Early Pleistocene, as basalts dated to 1.22 ± 0.02 and 1.07 ± 0.03 Ma overlie Tigris gravels at very similar levels, ∼60–70 m above the present river. The lower terraces record the subsequent entrenchment of the modern Tigris valley following an increase in incision rates in the early Middle Pleistocene, evident from the disposition of younger basalt, dated to 0.43 ± 0.02 Ma, capping fluvial gravel only ∼21–22 m above the present river level. Numerical modelling can account for the observed uplift history, as the response to coupling between surface processes and induced flow in the lower crust, with the mobile lower-crust thin (∼5–7 km thick), consistent with the known presence of a thick layer of mafic underplating at the base of the crust beneath the Arabian Platform. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
《Quaternary Science Reviews》1999,18(4-5):549-554
The Gediz and the Büyük Menderes Graben basins, two of the most important structural elements of western Anatolia, markedly differ in their palaeogeographic evolution during the Holocene. On the basis of the study of the facies and the geomorphological characteristics of the youngest sedimentary fills it is suggested that the evolution of the Büyük Menderes basin has a simple progradational history while the Gediz River basin has shown a complex evolution mainly controlled by intense tectonic periods. Comparison between the palaeogeographic evolution of these basins points to the fact that tectonism has been more effective in the Gediz basin during the Holocene.  相似文献   

11.
Arsenic is a natural component of the earth’s crust, and it is transported into surface water and groundwater through the dissolution of rocks, minerals and ores. In addition, arsenic leaching processes contaminate water sources and this geogenic arsenic contamination causes significant water quality problems in many parts of the world. In this study, water quality, arsenic contamination and human health risks of drinking water resources in the Tav?anl? District were determined and the origins were discussed. For this purpose, geological and hydrogeological properties were investigated. In situ measurements and chemical analyses were carried out on water samples taken from drinking water sources such as wells, springs and surface waters for hydrogeochemical studies. According to the obtained results, water resources are Ca–Mg–HCO3, Mg–HCO3 and Na–HCO3 type. Total As (AsT) concentration of the water samples sometimes exceeds the permissible limit given by the TSI-266 (Standards for drinking waters, Turkish Standards Institution, Ankara, 2005) and WHO (Guidelines for drinking-water quality, World Health Organization, Geneva, 2008) for drinking water. H3AsO 3 0 and HAsO4 2? are dominant arsenic species in groundwater and surface water, respectively. Typically high total arsenic concentrations can be found in regions characterized by magmatic rocks. In addition, As concentrations in surface waters were found to be higher than in groundwater in the region, due to the anthropogenic influence of mining activities in the region.  相似文献   

12.
We give spatial patterns of distribution of the principal groups of lithologic associations (sedimentary and volcanogenicl and a quantitative estimate of their volumes and distribution for each of the three series of the Cambrian system on the present continents. In conclusion, we make some suggestions as to changes in tectonic regime, features of sedimentation, and paleogeographic conditions during the Cambrian period.—Authors.  相似文献   

13.
The Late Permian–early Middle Triassic strata of the northern West Qinling area, northeastern Tibetan Plateau, are composed of sediment gravity flow deposits. Detailed sedimentary facies analysis indicates these strata were deposited in three successive deep-marine environments. The Late Permian–early Early Triassic strata of the Maomaolong Formation and the lowest part of the Longwuhe Formation define a NW–SE trending proximal slope environment. Facies of the Early Triassic strata composing the middle and upper Longwuhe Formation are consistent with deposition in a base-of-slope apron environment, whereas facies of the Middle Triassic Anisian age Gulangdi Formation are more closely associated with a base-of-slope fan depositional environment. The lithofacies and the spatial–temporal changes in paleocurrent data from these strata suggest the opening of a continental margin back-arc basin system during Late Permian to early Middle Triassic time in the northern West Qinling. U–Pb zircon ages for geochemically varied igneous rocks with diabasic through granitic compositions intruded into these deep-marine strata range from 250 to 234 Ma. These observations are consistent with extensional back-arc basin development and rifting between the Permian–Triassic Eastern Kunlun arc and North China block during the continent–continent collision and underthrusting of the South China block northward beneath the Qinling terrane of the North China block. Deep-marine sedimentation ended in the northern West Qinling by the Middle Triassic Ladinian age, but started in the southern West Qinling and Songpan-Ganzi to the south. We attribute these observations to southward directed rollback of Paleo-Tethys oceanic lithosphere, continued attenuation of the West Qinling on the upper plate, local post-rift isostatic compensation in the northern West Qinling area, and continued opening of a back-arc basin in the southern West Qinling and Songpan-Ganzi. Rollback and back-arc basin development during Late Permian to early Middle Triassic time in the West Qinling area explains: the truncated map pattern of the Eastern Kunlun arc, the age difference of deep-marine sediment gravity flow deposits between the Late Permian–early Middle Triassic northern West Qinling and the late Middle Triassic–Late Triassic southern West Qinling and Songpan-Ganzi, and the discontinuous trace of ophiolitic rocks associated with the Anyemaqen-Kunlun suture.  相似文献   

14.
Natural Hazards - The high seismicity and tectonic activity of the study area located in a near-fault region in Gölyaka, Düzce, results in a bedrock geometry highly complex in the sense...  相似文献   

15.
Lake Seyfe is located in a closed basin near K?r?ehir in the central Anatolian region, Turkey. The aim of this study is to evaluate the groundwater quality and effects of lithogenic contamination carried out in the Lake Seyfe basin, which is represented by various lithologies and groundwater types. Seyfe, Horla and Akp?nar springs are recharged through marbles at the western and southwestern of the basin are ultimately and discharged into the K?z?l?rmak Formation and Lake Seyfe. The waters of deep wells drilled into the marbles are of bicarbonate type (type I) in the Ca2+–Mg2+–HCO3 ? and Ca2+–HCO3 ? facies. Özlühüyük spring and waters from most of trenches and shallow wells, which are fed by the K?z?l?rmak Formation, have a mixed (type II) composition in the Ca2+–Mg2+–HCO3 ?–Cl? facies. Groundwater in the alluvium and K?z?l?rmak Formation along Lake Seyfe has a salty (type III) character in the Na+–Cl? facies. The main reasons of formation and change of the groundwater salinity and hydrochemical facies in the Seyfe basin are causing the various (a) lithogenic pollution and heterogeneity of the K?z?l?rmak Formation, (b) salinity of the upper soil zones, and (c) evaporation of the trench and channel waters open to the atmosphere. Considering parameters such as sodium hazard, specific conductivity, bicarbonate and carbonate hazards, waters in the study area are generally suitable for agricultural usage.  相似文献   

16.
In this study, natural and artificial radionuclide activity concentrations in surface soils of Kücük Menderes Basin have been measured using gamma spectroscopy. The soil samples were collected from agricultural lands in the Kücük Menderes Basin in Turkey. The activity concentrations of 226Ra, 232Th, 40K and 137Cs in the soils were found to be range of 12.63 ± 2.28–72.51 ± 11.23, 11.45 ± 2.4–58.12 ± 4.76, 234.8 ± 14.85–1058.52 ± 24 Bq kg?1 dw and 2.31 ± 0.18–7.75 ± 1.14 Bq kg?1, respectively. The natural gamma radioactivity of the terrestrial radionuclides in soil samples and the gamma absorbed dose rate, the annual effective dose equivalent, the radium equivalent activity, the external hazard index, were calculated and compared with the international recommended values.  相似文献   

17.
The Middle to lower Upper Devonian succession of the Rügen Depression in NE Germany consists of largely clastic sediments, whereas the Upper Devonian deposits are mixed carbonate and clastic. Petrographic and geochemical data suggest that the sediments were deposited in a cratonic or recycled setting. Deposition was largely confined to a fault-bounded basin, located between two structural highs. During the Devonian, the Rügen area underwent evolution from a continental and marginal marine area during the Eifelian-early Frasnian to a deeper marine environment during the late Frasnian-early Famennian. By the latest Famennian, an open-shelf carbonate-facies environment was established.  相似文献   

18.
《Geodinamica Acta》2013,26(3-4):317-331
The Küçük Menderes Graben (KMG) is part of the horst-graben system of southwestern Anatolia (Turkey), bounded by the Bozda? horst in the north and the Ayd?n horst in the south. The Plio-Quaternary evolution of the KMG has been evaluated using the nature of the Miocene-Quaternary fill sediments and palaeostress analysis of slip data measured in different parts of the graben.

The graben is composed of five subbasins—the Kiraz, Ödemi?, Bay?nd?r, Da?k?z?lca-Torbal? and Selçuk—that are connected to each other through narrow Quaternary troughs. The Da?k?z?lca, Kiraz and Selçuk basins bear Miocene and younger sequences whereas the other subbasins are largely filled by Quaternary sediments. The maximum thickness of the Quaternary fill reaches about 270 m in the Ödemi? and Bay?nd?r subbasins.

The calculated slip results indicate multidirectional extension, three successive deformational periods, and possible counterclockwise rotation in the KMG during the post-Miocene period. The first phase was a strike-slip regime under N-S compression, followed by a second phase of deformation which resulted in ENE-WSW extension with strike-slip components. The final phase of deformation was NE-SW extension which constituted the final evolution of the KMG.

The graben gained its present morphological configuration via the onset of E-W-trending, high-angle normal faulting imposed on the regionwide synformal structure during the Plio-Quaternary. The KMG evolved as a result of rifting during the Plio-Quaternary which followed Late Miocene unroofing of the Menderes Massif and the evolution of the Büyük Menderes and Gediz grabens.  相似文献   

19.
20.
The series of two papers presents a comprehensive isotope-geochronological and petrologicalgeochemical study of the Late Quaternary Tendürek Volcano (Eastern Turkey), one of the greatest volcanoes within the Caucasian–Eastern Anatolian segment of the Alpine foldbelt. The second article discusses the results of petrogenetic modeling, role of AFC-processes in the petrogenesis of magmas and the nature of mantle source of the Tendürek Volcano. Based on geochronological data, geochemical and isotopegeochemical (Sr-Nd-Pb) characteristics of the studied rocks we suggest the petrological model which well describe the evolution of magmatic system of the Tendürek Volcano during the whole period of its activity. The data obtained indicate that the igneous rocks of the Tendürek Volcano belong to the same homodromous volcanic series (trachybasalt–tephrite–phonotephrite–tephriphonolite–trachyandesite–trachyte–phonolite), which are dominated by the intermediate and moderately-acid varieties of the eruption products. The leading role in the petrogenesis of the lavas was played by the fractional crystallization processes, which, according to isotope-geochemical data, were sometimes complicated by the assimilation of upper crustal material. The mantle reservoir responsible for the magmatic activity within the major part of the Eastern Anatolia in the Late Quaternary time was represented by the OIB-type mantle. It was subject to slight metasomatic changes as a result of earlier deepening and remelting of the Arabian Plate slab, which was subducted under the region through the end of the Miocene. The depth of the magma-generating source is estimated at around 80 km, which corresponds to the upper part of the asthenospheric wedge under the region, based on geophysical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号