首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The Gushan deposit is one of the typical magnetite–apatite deposits associated with dioritic porphyries in the Lower Yangtze River Valley belt of the eastern Yangtze craton. The origin of this deposit is still uncertain and remains a controversial issue. Divergent opinions are centered on whether the iron deposits are magmatic or hydrothermal in origin. However, our field observations and mineralogical studies, combined with previous published petrological and geochemical features strongly suggest that the main ore bodies in the Gushan magnetite–apatite deposit are magmatic. Specific evidence includes the existence of gas bubbles, tubes, and miarolitic and amygdaloidal structures, melt flow banding structure and the presence of “ore breccia”. New electron microprobe analyses of the pyroxene phenocrysts of the dioritic porphyry genetically associated with the Gushan magnetite–apatite deposit show that the Fe contents in the evolving magma dramatically decrease, and then gradually increase. Because there is no evidence of mafic magma recharge, this scenario (decreasing Fe) could be plausibly interpreted by Fe-rich melts separated from Fe-poor silicate melts, i.e., liquid immiscibility was triggered by minor addition of phosphorus by crustal contamination. The occurrence of massive iron ore bodies can be satisfactorily explained by the immiscible Fe-rich melt with enormous volatile contents was driven to the top of the magma chamber due to the low density. The hot and volatile-rich iron ore magma was injected along fractures and spaces between the dioritic intrusions and wall-rocks, and led to an explosion near the surface, resulting in the immediate fragmentation of the roof of the intrusion and wall-rocks, forming brecciated ores. Moreover, other types of ores can be considered as a result of post-magmatic hydrothermal activities. Our proposed metallogenic model involving the Kiruna-type mineralization is consistent with the observed phenomenon in the Gushan deposit.  相似文献   

2.
Crystalline and melt inclusions were studied in garnet,diopside,potassium feldspar,and sphene from the garnet syenite porphyry of the carbonatite-bearing complex Mushugai-Khuduk,southern Mongolia.Phlogopite,clinopyroxene,albite,potassium feldspar,spheric,wollastonite,magnetite,Ca and Sr sulfates,fluorite,and apatite were identified among the crystalline inclusions. The melt inclusions were homogenized at 1010~1080℃and analyzed on an electron microprobe.Silicate,salt,and combined silicate- salt melt inclusions were found.Silicate melts show considerable variations in SiO_2 concentration(56 to 66wt% ),high Na_2O K_2O (up to 17wt% ),and elevated Zr,F,and C1 contents.In terms of bulk rock chemistry,the silicate melts are alkali syenites.During thermometric experiments,salt melt inclusions quenched into homogeneous glasses of predominantly sulfate compositions containing no more than 1.3wt% SiO_2.These melts are enriched in alkalis,Ba,Sr,P,F,and C1.The investigation of the silicate and salt melt inclusions in minerals of the garnet syenite porphyries indicate that these rocks were formed under influence of the processes of crystallization differentiation and magma separation into immiscible silicate and salt(sulfate)liquids.  相似文献   

3.
斜长岩体中Fe-Ti-P矿床的特征与成因   总被引:3,自引:0,他引:3       下载免费PDF全文
岩体型斜长岩为由90%以上斜长石组成的岩浆岩,具变压结晶的特点,仅形成于元古宙(2.1~0.9Ga),常赋存有Fe-Ti-P矿床。Fe-Ti-P矿体既呈整合层状也呈透镜状和席状等不规则形式产出;矿石类型有块状和侵染状,前者矿石矿物含量>70%,后者矿石矿物含量为20%~70%;矿物组成上,不同矿床稍有差别:部分矿床的Fe-Ti氧化物以钛磁铁矿为主、钛铁矿次之,而其他矿床则以赤钛铁矿为主、磁铁矿次之。一些矿床磷灰石含量较高,出现仅由Fe-Ti氧化物和磷灰石组成的铁钛磷灰岩。研究表明,Fe-Ti-P矿床由富Fe、Ti的岩浆演化形成,其母岩浆是在深部岩浆房中大量结晶斜长石后的残余岩浆。部分学者认为不同矿石经正常的结晶分异作用并堆晶形成,但该机制很难解释呈不规则状产出的矿石;其他学者则认为不混熔作用对矿石的富集(尤其是脉状、席状的铁钛磷灰岩)有重要作用,但该机制缺乏岩相学和地球化学方面的证据。河北大庙Fe-Ti-P矿体呈透镜状、席状等不连续地分布于斜长岩中,矿体不发育明显岩浆分层,但仍出现不同矿石的相带。依据详细的岩相学、矿体中矿物含量和成分的变化规律以及全岩地球化学特征,我们判断大庙矿床中不同矿石为堆晶矿物和晶隙流体的混合产物,它们由铁闪长质岩浆经结晶分异和堆晶作用形成,与不混熔作用关系不大。矿体不规则状产出的特点可能与岩浆动力分异作用有关,并伴随有小范围的亚固相迁移。  相似文献   

4.
《International Geology Review》2012,54(11):1332-1352
The Early Cretaceous Washan dioritic porphyry is spatially and temporally associated with Kiruna-type iron oxide deposits in the Ningwu basin, Middle-Lower Yangtze River Valley (MLYRV). We present new LA-ICP-MS U–Pb dating + zircon Lu–Hf isotopic studies, as well as bulk-rock major + trace element and Sr + Nd isotopic compositions of the porphyry. LA-ICP-MS U–Pb zircon analyses suggest that the pluton formed at 130.8?±?0.9 Ma. Analysed zircon ?Hf(t) values range from –7.0 to –4.1. The dioritic rocks are significantly enriched in Pb and light rare earth elements, relative to high-field strength elements (Nb + Ti), coupled in the absence of significant Eu anomalies. They exhibit age-corrected ?Nd(t) (t?=?130 million years) values of??3.5 to??3.9 and initial 87Sr/86Sr ratios of 0.70553–0.70653. The ore-bearing dioritic porphyry was derived from a parental basaltic liquid that was produced by partial melting of an enriched spinel-facies lherzolite in the Yangtze lithospheric mantle. This basaltic melt underwent a fractionation of plagioclase and clinopyroxene during ascent towards the surface, which led to the relative enrichment of iron in the residual melt. This type of magma was widespread in the MLYRV area but did not generate widespread Fe mineralization. In the Ningwu area, the dioritic magma was modified by minor assimilation of phosphorus-bearing rocks in the Yangtze upper crust. The special crustal characteristics of the Ningwu basin, i.e. phosphorus-rich strata, were likely a crucial factor controlling the formation of Kiruna-type iron oxide deposits.  相似文献   

5.
Kerimasi calciocarbonatite consists principally of calcite together with lesser apatite, magnetite, and monticellite. Calcite hosts fluid and S-bearing Na–K–Ca-carbonate inclusions. Carbonatite melt and fluid inclusions occur in apatite and magnetite, and silicate melt inclusions in magnetite. This study presents statistically significant compositional data for quenched S- and P-bearing, Ca-alkali-rich carbonatite melt inclusions in magnetite and apatite. Magnetite-hosted silicate melts are peralkaline with normative sodium-metasilicate. On the basis of our microthermometric results on apatite-hosted melt inclusions and forsterite–monticellite phase relationships, temperatures of the early stage of magma evolution are estimated to be 900–1,000°C. At this time three immiscible liquid phases coexisted: (1) a Ca-rich, P-, S- and alkali-bearing carbonatite melt, (2) a Mg- and Fe-rich, peralkaline silicate melt, and (3) a C–O–H–S-alkali fluid. During the development of coexisting carbonatite and silicate melts, the Si/Al and Mg/Fe ratio of the silicate melt decreased with contemporaneous increase in alkalis due to olivine fractionation, whereas the alkali content of the carbonatite melt increased with concomitant decrease in CaO resulting from calcite fractionation. Overall the peralkalinity of the bulk composition of the immiscible melts increased, resulting in a decrease in the size of the miscibility gap in the pseudoquaternary system studied. Inclusion data indicate the formation of a carbonatite magma that is extremely enriched in alkalis with a composition similar to that of Oldoinyo Lengai natrocarbonatite. In contrast to the bulk compositions of calciocarbonatite rocks, the melt inclusions investigated contain significant amount of alkalis (Na2O + K2O) that is at least 5–10 wt%. The compositions of carbonatite melt inclusions are considered as being better representatives of parental magma composition than those of any bulk rock.  相似文献   

6.
产于层状镁铁质-超镁铁质岩体中的太和岩浆型Fe-Ti氧化物矿床是峨眉山大火成岩省内带几个超大型Fe-Ti氧化物矿床之一。太和岩体长超过3km,宽2km,厚约1.2km。根据矿物含量和结构等特征,整个岩体从下向上可划分为下部岩相带、中部岩相带、上部岩相带。下部岩相带主要以(橄榄)辉长岩和厚层不含磷灰石的块状Fe-Ti氧化物矿层组成。中部岩相带韵律旋回发育,(磷灰石)磁铁辉石岩主要位于旋回的底部,旋回上部为(磷灰石)辉长岩。上部岩相带主要是贫Fe-Ti氧化物的磷灰石辉长岩。太和中部岩相带磷灰石磁铁辉石岩含有5%~12%磷灰石、20%~35%Fe-Ti氧化物、50%~60%硅酸盐矿物,且硅酸盐矿物与磷灰石呈堆积结构。磷灰石磁铁辉石岩中磁铁矿显示高TiO2、FeO、MnO、MgO,且变化范围与趋势接近于攀枝花岩体。钛铁矿FeO分别与TiO2、MgO显示负相关,而FeO分别与Fe2O3、MnO显示正的相关,且TiO2、FeO、MnO、MgO含量变化较大,这些特征都暗示磁铁矿和钛铁矿是从富Fe-Ti-P岩浆中分离结晶。因此,可以推断太和磷灰石磁铁矿辉石岩形成于矿物重力分选和堆积。太和下部岩相带包裹在橄榄石中磁铁矿含有相对较高Cr2O3(0.07%~0.21%),而中部岩相带包裹在橄榄石中磁铁矿Cr2O3(0.00%~0.03%)显著降低,且这些磁铁矿Cr2O3含量变化与单斜辉石Cr含量和斜长石An牌号呈正相关。这些特征印证了形成中部岩相带的相对演化的富Fe-Ti-P母岩浆可能是源自中部岩浆房的混合岩浆。上部岩相带磁铁矿和中部岩相带顶部少量磁铁矿显示较低Ti+V可能是由于岩浆房中累积的岩浆热液对磁铁矿成分进行了改造。  相似文献   

7.
Long-standing controversy persists over the presence and role of iron–rich melts in the formation of volcanic rock-hosted iron deposits. Conjugate iron–rich and silica–rich melt inclusions observed in thin-sections are considered as direct evidence for the presence of iron-rich melt, yet unequivocal outcrop-scale evidence of iron-rich melts are still lacking in volcanic rock-hosted iron deposits. Submarine volcanic rock-hosted iron deposits, which are mainly distributed in the western and eastern Tianshan Mountains in Xinjiang, are important resources of iron ores in China, but it remains unclear whether iron-rich melts have played a role in the mineralization of such iron ores. In this study, we observed abundant iron-rich agglomerates in the brecciated andesite lava of the Heijianshan submarine volcanic rock–hosted iron deposit, Eastern Tianshan, China. The iron-rich agglomerates occur as irregular and angular masses filling fractures of the host brecciated andesite lava. They show concentric potassic alteration with silicification or epidotization rims, indicative of their formation after the wall rocks. The iron-rich agglomerates have porphyritic and hyalopilitic textures, and locally display chilled margins in the contact zone with the host rocks. These features cannot be explained by hydrothermal replacement of wall rocks(brecciated andesite lava) which is free of vesicle and amygdale, rather they indicate direct crystallization of the iron-rich agglomerates from iron-rich melts. We propose that the iron-rich agglomerates were formed by open-space filling of volatile-rich iron-rich melt in fractures of the brecciated andesite lava. The iron-rich agglomerates are compositionally similar to the wall-rock brecciated andesite lava, but have much larger variation. Based on mineral assemblages, the iron-rich agglomerates are subdivided into five types, i.e., albite-magnetite type, albite-K-feldsparmagnetite type, K-feldspar–magnetite type, epidote-magnetite type and quartz-magnetite type, representing that products formed at different stages during the evolution of a magmatic-hydrothermal system. The albite-magnetite type represents the earliest crystallization product from a residual ironrich melt; the albite-K-feldspar-magnetite and K-feldspar-magnetite types show features of magmatichydrothermal transition, whereas the epidote-magnetite and quartz-magnetite types represent products of hydrothermal alteration. The occurrence of iron-rich agglomerates provides macroscopic evidence for the presence of iron-rich melts in the mineralization of the Heijianshan iron deposit. It also indicates that iron mineralization of submarine volcanic rock-hosted iron deposits is genetically related to hydrothermal fluids derived from iron-rich melts.  相似文献   

8.
The Samchampi-Samteran alkaline igneous complex (SAC) is a near circular, plug-like body approximately 12 km2 area and is emplaced into the Precambrian gneissic terrain of the Karbi Anglong district of Assam. The host rocks, which are exposed in immediate vicinity of the intrusion, comprise granite gneiss, migmatite, granodiorite, amphibolite, pegmatite and quartz veins. The SAC is composed of a wide variety of lithologies identified as syenitic fenite, magnetite ± perovskite ± apatite rock, alkali pyroxenite, ijolite-melteigite, carbonatite, nepheline syenite with leucocratic and mesocratic variants, phonolite, volcanic tuff, phosphatic rock and chert breccia. The magnetite ± perovskite ± apatite rock was generated as a cumulus phase owing to the partitioning of Ti, Fe at a shallow level magma chamber (not evolved DI = O1). The highly alkaline hydrous fluid activity indicated by the presence of strongly alkalic minerals in carbonatites and associated alkaline rocks suggests that the composition of original melt was more alkalic than those now found and represent a silica undersaturated ultramafic rock of carbonated olivine-poor nephelinite which splits with falling temperature into two immiscible fractions—one ultimately crystallises as alkali pyroxenite/ijolite and the other as carbonatite. The spatial distribution of varied lithotypes of SAC and their genetic relationships suggests that the silicate and carbonate melts, produced through liquid immiscibility, during ascent generated into an array of lithotypes and also reaction with the country rocks by alkali emanations produced fenitic aureoles (nephelinisation process). Isotopic studies (δ18O and δ13C) on carbonatites of Samchampi have indicated that the δ13C of the source magma is related to contamination from recycled carbon.  相似文献   

9.
Four types of apatite have been identified in the Ningwu region.The first type of apatite is widely distributed in the middle dark colored zones(i.e.iron ores) of individual deposits.The assemblage includes magnetite,apatite and actinolite(or diopside).The second type occurs within magnetite-apatite veins in the iron ores.The third type is seen in magnetite-apatite veins and (or) nodules in host rocks(i.e.gabbro-diorite porphyry or gabbro-diorite or pyroxene diorite).The fourth type occurs within apatite-pyrite-quartz veins filling fractures in the Xiangshan Group.Rare earth elements (REE) geochemistry of apatite of the four occurrences in porphyry iron deposits is presented.The REE distribution patterns of apatite are generally similar to those of apatites in the Kiruna-type iron ores,nelsonites.They are enriched in light REE,with pronounced negative Eu anomalies.The similarity of REE distribution patterns in apatites from various deposits in different locations in the world indicates a common process of formation for various ore types,e.g. immiscibility.Early magmatic apatites contain 3031.48-12080×10~(-6) REE.Later hydrothermal apatite contains 1958×10~(-6) REE,indicating that the later hydrothermal ore-forming solution contains lower REE.Although gabbro-diorite porphyry and apatite show similar REE patterns,gabbro-diorite porphyries have no europium anomalies or feeble positive or feeble negative europium anomalies, caused both by reduction environment of mantle source region and by fractionation and crystallization(immiscibility) under a high oxygen fugacity condition.Negative Eu anomalies of apatites were formed possibly due to acquisition of Eu~(2+) by earlier diopsite during ore magma cooling. The apatites in the Aoshan and Taishan iron deposits yield a narrow variation range of ~(87)Sr/~(86)Sr values from 0.7071 to 0.7073,similar to those of the volcanic and subvolcanic rocks,indicating that apatites were formed by liquid immiscibility and differentiation of intermediate and basic magmas.  相似文献   

10.
The Hongge magmatic Fe-Ti-V oxide deposit in the Panxi region, SW China, is hosted in a layered mafic–ultramafic intrusion. This 2.7-km-thick, lopolith-like intrusion consists of the lower, middle, and upper zones, which are composed of olivine clinopyroxenite, clinopyroxenite, and gabbro, respectively. Abundant Fe-Ti oxide layers mainly occur in the middle zone and the lower part of the upper zone. Fe-Ti oxides include Cr-rich and Cr-poor titanomagnetite and granular ilmenite. Cr-rich titanomagnetite is commonly disseminated in the olivine clinopyroxenite of the lower parts of the lower and middle zones and contains 1.89 to 14.9 wt% Cr2O3 and 3.20 to 16.2 wt% TiO2, whereas Cr-poor titanomagnetite typically occurs as net-textured and massive ores in the upper middle and upper zones and contains much lower Cr2O3 (<0.4 wt%) but more variable TiO2 (0.11 to 18.2 wt%). Disseminated Cr-rich titanomagnetite in the ultramafic rocks is commonly enclosed in either olivine or clinopyroxene, whereas Cr-poor titanomangetite of the net-textured and massive ores is mainly interstitial to clinopyroxene and plagioclase. The lithology of the Hongge intrusion is consistent with multiple injections of magmas, the lower zone being derived from a single pulse of less differentiated ferrobasaltic magma and the middle and upper zones from multiple pulses of more differentiated magmas. Cr-rich titanomagnetite in the disseminated ores of the lower and middle zones is interpreted to represent an early crystallization phase whereas clusters of Cr-poor titanomagnetite, granular ilmenite, and apatite in the net-textured ores of the middle and upper zones are thought to have formed from an Fe-Ti-(P)-rich melt segregated from a differentiated ferrobasaltic magma as a result of liquid immiscibility. The dense Fe-Ti-(P)-rich melt percolated downward through the underlying silicate crystal mush to form net-textured and massive Fe-Ti oxide ores, whereas the coexisting Si-rich melt formed the overlying plagioclase-rich rocks in the intrusion.  相似文献   

11.
The Chandmani Uul deposit is located in Dornogovi province, Southeastern Mongolia. Iron oxide ores are hosted in the andesitic rocks of the Shar Zeeg Formation of Neoproterozoic to Lower‐Cambrian age. Middle‐ to Upper‐Cambrian bodies of granitic rocks have intruded into the host rocks in the western and southern regions of the deposit. The wall rocks around the iron oxide ore bodies were hydrothermally altered to form potassic, epidote, and sericite–chlorite alteration zones, and calcite and quartz veinlets are ubiquitous in the late stage. Since granitic rocks also underwent potassic alteration, the activity of the granitic rocks must have a genetic relation to the ore deposit. The ore mineral assemblage is dominated by iron oxides such as mushketovite, euhedral magnetite with concentric and/or oscillatory zoning textures, and cauliflower magnetite. Lesser amounts of chalcopyrite and pyrite accompany the iron oxides. Among all these products, mushketovite is dominant and is distributed throughout the deposit. Meanwhile, euhedral magnetite appears in limited amounts at relatively shallow levels in the deposit. By contrast, cauliflower magnetite appears locally in the deeper parts of the deposit, and is associated with green‐colored garnet and calcite. Sulfide minerals are ubiquitously associated with these iron oxides. The oxygen isotope (δ18O) values of all types of magnetite, quartz, and epidote were found to be ?5.9 to ?2.8‰, 10.5 to 14.9‰, and 3.6 to 6.6‰, respectively. The δ18O values of quartz–magnetite pairs suggest an equilibrium isotopic temperature near 300°C. The calculated values of δ18O for the water responsible for magnetite ranged from 2 to 10‰. All the data obtained in this study suggest that the iron oxide deposit at the Chandmani Uul is a typical iron oxide–copper–gold deposit, and that this deposit was formed at an intermediate depth with potassic and sericite–chlorite alteration zones under the oxidized conditions of a hematite‐stable environment. The δ18O range estimated implies that the ore‐forming fluid was supplied by a crystallizing granodioritic magma exsolving fluids at depth with a significant contribution of meteoric water.  相似文献   

12.
Based on petrological studies of the wall rocks, mineralizing rocks, ores and veins from the Laowangzhai gold deposit, it is discovered that along with the development of silication, carbonation and sulfidation, a kind of black opaque ultra-microlite material runs through the spaces between grains, fissures and cleavages. Under observations of the electron microprobe, scanning electronic microscopy and energy spectrum, this kind of ultra-microlite material is confirmed to consist of ultra microcrystalline quartz, silicate, sulfides and carbonates, as well as rutile, scheelite and specularite (magnetite), showing characters of liquation by the analyses of SEM and energy spectrum. The coexistence of immiscibility and precipitating co-crystallization strongly suggests that the mineralizing fluid changed from the melt to the hydrothermal fluid. Combined with the element geochemical researches, it is realized that the ultra-microlite aggregate is the direct relics of the mantle fluid behaving like a melt and supercritical fluid, which goes along with the mantle-derived magma and will escape from the magma body at a proper time. During the alteration process, the nature of the mantle fluid changed and it is mixed with the crustal fluid, which are favorable for mineralization in the Loawangzhai gold deposit.  相似文献   

13.
Two types of mafic rocks from the central Sanin district, and their mafic minerals, were studied chemically and microscopically. They are classified into pyroxene‐containing gabbroid and hornblende–biotite quartz diorite. The gabbroid had higher color index but lower magnetite content; while the quartz diorite had lower color index, but higher magnetite content. The magnetite contents are also related to the amounts of hydrous mafic silicates. The gabbroic magma having pyroxene–amphibole assemblage, originated in the upper mantle, was considered essentially anhydrous, but became partly hydrous on the way to the site of solidification in the continental crust, and crystallized some magnetites with hypersthene and amphibole. The quartz dioritic magma was formed by partial melting of possibly subducting ocean‐floor basalts, once exposed to the sea‐floor then altered; thus the magmas became hydrous and oxidized originally, and precipitated abundant magnetite and hydrous mafic silicates from the early crystallization stage onward. Their weathered parts provided the most placer magnetite ores in the history.  相似文献   

14.
The Chadormalu is one of the largest known iron deposits in the Bafq metallogenic province in the Kashmar-Kerman belt, Central Iran. The deposit is hosted in Precambrian-Cambrian igneous rocks, represented by rhyolite, rhyodacite, granite, diorite, and diabasic dikes, as well as metamorphic rocks consisting of various schists. The host rocks experienced Na (albite), calcic (actinolite), and potassic (K-feldspar and biotite) hydrothermal alteration associated with the formation of magnetite–(apatite) bodies, which are characteristic of iron oxide copper-gold (IOCG) and iron oxide-apatite (IOA) systems. Iron ores, occurring as massive-type and vein-type bodies, consist of three main generations of magnetite, including primary, secondary, and recrystallized, which are chemically different. Apatite occurs as scattered irregular veinlets in various parts of the main massive ore-body, as well as apatite-magnetite veins and disseminated apatite grains in marginal parts of the deposit and in the immediate wall rocks. Minor pyrite occurs as a late phase in the iron ores. Chemical composition of magnetite is representative of an IOA or Kiruna-type deposit, which is consistent with other evidence.Whole rock geochemical data from various host rocks confirm the occurrence of Na, Ca, and K alteration consistent with the formation of albite, actinolite, and K-feldspar, respectively. The geochemical investigation also includes the nature of calc-alkaline igneous rocks, and helps elaborating on the spatial and temporal association, and possible contribution of mafic to felsic magmas to the evolution of ore-bearing hydrothermal fluids.Fluid inclusion studies on apatites from massive- and vein-type ores show a range of homogenization temperatures from 266 to 580 °C and 208–406 °C, and salinities from 0.5 to 10.7 wt.% and 0.3–24.4 wt.% NaCl equiv., respectively. The fluid inclusion data suggest the involvement of evolving fluids, from low salinity-high temperature, to high salinity-low temperature, in the formation of the massive- and vein-type ores, respectively. The δ34S values obtained for pyrite from various parts of the deposit range between +8.9 and +14.4‰ for massive ore and +18.7 to +21.5‰ for vein-type ore. A possible source of sulfur for the 34S-enriched pyrite would be originated from late Precambrian-early Cambrian marine sulfate, or fluids equilibrated with evaporitic sulfates.Field observations, ore mineral and alteration assemblages, coupled with lithogeochemical, fluid inclusion, and sulfur isotopic data suggest that an evolving fluid from magmatic dominated to surficial brine-rich fluid has contributed to the formation of the Chadormalu deposit. In the first stages of mineralization, magmatic derived fluids had a dominant role in the formation of the massive-type ores, whereas a later brine with higher δ34S contributed to the formation of the vein-type ores.  相似文献   

15.
Iron oxide–apatite deposits are present in Upper Eocene pyroxene-quartz monzonitic rocks of the Zanjan district, northwestern Iran. Mineralization occurred in five stages: (1) deposition of disseminated magnetite and apatite in the host rock; (2) mineralization of massive and banded magnetite ores in veins and stockwork associated with minor brecciation and calcic alteration of host rocks; (3) deposition of sulfide ores together with potassic alteration; (4) formation of quartz and carbonate veins and sericite, chlorite, epidote, silica, carbonate, and tourmaline alteration; and (5) supergene alteration and weathering. U–Pb dating of monazite inclusions in the apatite indicates an age of 39.99?±?0.24 Ma, which is nearly coeval with the time of emplacement of the host quartz monzonite, supporting the genetic connection. Fluid inclusions in the apatite have homogenization temperatures of about 300 °C and oxygen isotopic compositions of the magnetite support precipitation from magmatic fluids. Late-stage quartz resulted from the introduction of a cooler, less saline, and isotopically depleted fluid. The iron oxide–apatite deposits in the Tarom area of the Zanjan district are typical of a magmatic–hydrothermal origin and are similar to the Kiruna-type deposits with respect to mineral assemblages, fabric and structure of the iron ores, occurrence of the ore bodies, and wall rock alteration.  相似文献   

16.
岩浆-热液系统中铁的富集机制探讨   总被引:8,自引:17,他引:8  
与岩浆-热液系统有关的铁矿类型有岩浆型钒钛磁铁矿床、玢岩铁矿、矽卡岩型铁矿和海相火山岩型铁矿,与这些铁矿有关的岩浆岩从基性-超基性、中性到中酸性岩均有,其中岩浆型钒钛磁铁矿床与基性-超基性深成侵入岩有关,形成于岩浆阶段,主要与分离结晶作用有关,但是厚大的富铁矿石的形成则可归结于原始的富铁钛苦橄质岩浆、分离结晶作用、多期次的岩浆补充以及流动分异等联合过程。钒钛磁铁矿石产于岩体下部还是上部与母岩浆的氧逸度有关:高的氧逸度导致磁铁矿早期结晶而使得其堆积于岩体的下部,相反,低氧逸度则导致低品位的浸染状矿石产于岩体的上部。虽然野外一些证据表明,元古宙斜长岩中的磷铁矿石可能是不混溶作用形成的,但是目前尚无实验证据。某些玢岩铁矿的一些磷灰石-磁铁矿石可能与闪长质岩浆同化混染了地壳中的磷导致的不混溶作用有关。除此之外,其他各类与岩浆作用有关的铁矿床均与岩浆后期的岩浆-热液作用有关。这些不同类型铁矿床的蚀变和矿化过程具有相似性,反映了它们形成过程具有相似的物理化学条件。成矿实验以及流体包裹体研究表明,岩浆-流体转换过程中出溶流体的数量以及成分受多种因素控制,其中岩浆分离结晶作用以及碳酸盐地层和膏盐层的混染可导致出溶的流体中Cl浓度的升高。早期高氧逸度环境可以使得硫以SO42-形式存在,抑制硫与铁的结合形成黄铁矿,有利于铁在早期以Cl的络合物发生迁移。大型富铁矿的形成需要一个长期稳定的流体对流循环系统,而岩浆的多期侵位或岩浆房以及在相对封闭的环境中(需要一个不透水层)一个有利于流体循环的断裂/裂隙系统是形成一个长期稳定的流体对流循环系统的必要条件。但是由于不同地质环境,流体中铁的卸载方式和位置会有明显差别,由此导致不同的矿石结构构造和不同的矿体产状。  相似文献   

17.
陈伟  赵太平  魏庆国  徐勇航 《岩石学报》2008,24(10):2301-2312
铁钛磷灰岩仅由磷灰石和铁钛氧化物组成,常赋存于岩体型斜长岩中,成因上有不混溶和分异堆晶两种不同的认识。本文从磷灰石角度讨论河北大庙铁钛磷灰岩的形成机制。大庙铁钛磷灰岩常产出于浸染状Fe—P矿体内部,有时与块状铁矿石交互出现形成韵律条带状矿石,为岩浆结晶分异的产物。铁钛磷灰岩中磷灰石呈浑圆状,含量变化于15%-34%。铁钛磷灰岩的全岩和磷灰石微量元素分析显示,磷灰石比全岩相对富集稀土元素达2.96—6.93倍,但两者的配分型式基本平行。质量平衡计算(Rocl/F)的结果表明,铁钛磷灰岩中几乎100%的稀土元素赋存于磷灰石中。综合上述特征,反映磷灰石为结晶分离的堆晶矿物,铁钛磷灰岩应为堆晶成因。因为如果磷灰石结晶于铁钛磷灰岩不混溶熔体,它的稀土元素分配系数也不会变化达2.3倍(变化于2.96—6.93)。计算出该磷灰石的母岩浆稀土元素组成,与浸染状Fe.P矿石最为相似,结合它与铁钛磷灰岩之间紧密共生的野外特征以及相似的全岩及磷灰石稀土元素配分型式,认为磷灰石最可能是在浸染状Fe.P矿浆中,经结晶分离作用形成铁钛磷灰岩。  相似文献   

18.
The Benjamin River apatite prospect in northern New Brunswick, Canada, is hosted by the Late Silurian Dickie Brook plutonic complex, which is made up of intrusive units represented by monzogranite, diorite and gabbro. The IOA ores, composed mainly of apatite, augite, and magnetite at Benjamin River form pegmatitic pods and lenses in the host igneous rocks, the largest of which is 100 m long and 10–20 m wide in the diorite and gabbro units. In this study, 28 IOA ore and rock samples were collected from the diorite and gabbro units. Mineralogical observations show that the apatite–augite–magnetite ores are variable in the amounts of apatite, augite, and magnetite and are associated with minor amounts of epidote‐group minerals (allanite, REE‐rich epidote and epidte) and trace amounts of albite, titanite, ilmenite, titanomagnetite, pyrite, chlorite, calcite, and quartz. Apatite and augite grains contain small anhydrite inclusions. This suggests that the magma that crystallized apatite and augite had high oxygen fugacity. In back scattered electron (BSE) images, apatite grains in the ores have two zones of different appearance: (i) primary REE‐rich zone; and (ii) porous REE‐poor zone. The porous REE‐poor zones mainly appear in rims and/or inside of the apatite grains, in addition to the presence of apatite grains which totally consist of a porous REE‐poor apatite. This porous REE‐poor apatite is characterized by low REE (<0.84 wt%), Si (<0.28 wt%), and Cl (<0.17 wt%) contents. Epidote‐group minerals mainly occur in grain boundary between the porous REE‐poor apatite and augite. These indicate that REE leached from primary REE‐rich apatite crystallized as allanite and REE‐rich epidote. Magnetite in the ores often occurs as veinlets that cut apatite grains or as anhedral grains that replace a part of augite. These textures suggest that magnetite crystallized in the late stage. Pyrite veins occur in the ores, including a large amount of quartz and calcite veins. Pyrite veins mainly occur with quartz veins in augite. These textures indicate pyrite veins are the latest phase. Apatite–augite–magnetite ore, gabbro–quartz diorite and feldspar dike collected from the Benjamin River prospect contain dirty pure albite (Ab98Or2–Ab100) under the microscope. The feldspar dikes mainly consist of dirty pure albite. Occurrences of the dirty pure albite suggest remarkable albitization (sodic alteration) of original plagioclase (An25.3–An60 in Pilote et al., 2012) associating with intrusion of monzogranite into gabbro and diorite. SO42? bearing magma crystallized primary REE‐rich apatite, augite and anhydrite reacted with Fe in the sodic fluids, which result in oxidation of Fe2+ and release of S2? into the sodic fluids. REE, Ca and Fe from primary REE‐rich apatite, augite and plagioclase altered by the sodic fluids were released into the fluids. Then Fe3+ in the sodic fluids precipitated as Fe oxides and epidote‐group minerals in apatite–augite–magnetite ores. Finally, residual S2? in sodic fluids crystallized as latest pyrite veins. In conclusion, mineralization in Benjamin River IOA prospect are divided into four stages: (1) oxidized magmatic stage that crystallized apatite, augite and anhydrite; (2) sodic metasomatic stage accompanying alteration of magmatic minerals; (3) oxidized fluid stage (magnetite–epidote group minerals mineralization); and (4) reduced fluid stage (pyrite mineralization).  相似文献   

19.
The uncommon Mg-rich and Ti-poor Zhaoanzhuang serpentine-magnetite ores within Taihua Group of the North China Craton(NCC) remain unclear whether the protolith was sourced from ultramafic rocks or chemical sedimentary sequences. Here we present integrated petrographic and geochemical studies to characterize the protoliths and to gain insights on the ore-forming processes. Iron ores mainly contain low-Ti magnetite(TiO_2 ~0.1 wt%) and serpentine(Mg#=92.42–96.55), as well as residual olivine(Fo=89–90), orthopyroxene(En=89–90) and hornblende. Magnetite in the iron ores shows lower Al, Sc, Ti, Cr, Zn relative to that from ultramafic Fe-Ti-V iron ores, but similar to that from metamorphic chemical sedimentary iron deposit. In addition, interstitial minerals of dolomite, calcite, apatite and anhydrite are intergrown with magnetite and serpentine, revealing they were metamorphic, but not magmatic or late hydrothermal minerals. Wall rocks principally contain magnesian silicates of olivine(Fo=83–87), orthopyroxene(En=82–86), humite(Mg#=82–84) and hornblende [XMg=0.87–0.96]. Dolomite, apatite and anhydrite together with minor magnetite, thorianite(Th-rich oxide) and monazite(LREE-rich phosphate) are often seen as relicts or inclusions within magnesian silicates in the wall rocks, revealing that they were primary or earlier metamorphic minerals than magnesian silicates. And olivine exists as subhedral interstitial texture between hornblende, which shows later formation of olivine than hornblende and does not conform with sequence of magmatic crystallization. All these mineralogical features thus bias towards their metamorphic, rather than magmatic origin. The dominant chemical components of the iron ores are SiO_2(4.77–25.23 wt%), Fe_2O_3 T(32.9–80.39 wt%) and MgO(5.72–27.17 wt%) and uniformly, those of the wall rocks are also SiO_2(16.34–48.72 wt%), Mg O(16.71–33.97 wt%) and Fe_2O_3 T(6.98–30.92 wt%). The striking high Fe-Mg-Si contents reveal that protolith of the Zhaoanzhuang iron deposit was more likely to be chemical sedimentary rocks. The distinct high-Mg feature and presence of abundant anhydrite possibly indicate it primarily precipitated in a confined seawater basin under an evaporitic environment. Besides, higher contents of Al, Ti, P, Th, U, Pb, REE relative to other Precambrian iron-rich chemical precipitates(BIF) suggest some clastic terrestrial materials were probably input. As a result, we think the Zhaoanzhuang iron deposit had experienced the initial Fe-Mg-Si marine precipitation, followed by further Mg enrichment through marine evaporated process, subsequent high-grade metamorphism and late-stage hydrothermal fluid modification.  相似文献   

20.
宁芜玢岩铁矿磷灰石的稀土元素特征   总被引:12,自引:2,他引:12  
文章分析了宁芜玢岩铁矿 4种产状磷灰石的稀土元素组成 ,并与Kiruna型铁矿和斜长岩、苏长岩及钛铁霞辉岩中磷灰石的稀土元素组成进行了对比。结果表明产地和母岩不同的矿床中 ,它们的磷灰石稀土元素分布型式一致 ,以轻稀土富集和Eu负异常明显为特征 ,属陆相岩浆成因。前 3种产状磷灰石的ΣREE变化于 30 31.48×10 -6~ 12 0 80× 10 -6,第 4种产状磷灰石的ΣREE仅为 195 8× 10 -6,反映岩浆演化到热液的晚期阶段成矿溶液稀土元素含量较低。尽管辉长闪长玢岩与磷灰石的稀土元素分布型式一致 ,但辉长闪长玢岩无Eu异常或有弱Eu正异常 ,代表它们的地幔源区低氧逸度的还原环境 ,或反映氧逸度较高情况下的分离结晶作用。不混溶作用形成的矿浆在冷凝过程中 ,Eu2 + 优先被透辉石捕获 ,使得稍晚结晶的磷灰石产生负Eu异常  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号