首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
The Guerrero terrane comprises Middle Jurassic–Early Cretaceous arc successions that were accreted to the North American craton in the late Early Cretaceous, producing closure of the Arperos oceanic basin and the formation of an approximately 100 km-wide fold–thrust belt. Such a suture is key to investigating the structural evolution related to Guerrero terrane accretion and, in general, to arc–continent collisional zones. The Sierra de Guanajuato is an exposure of the Guerrero terrane suture belt and consists of a complex tectonic pile that formed through at least three major shortening phases: D1SG, D2SG, and D3SG (SG, Sierra de Guanajuato). During the D1SG and D2SG phases, the Upper Jurassic–Lower Cretaceous successions of the Arperos Basin piled up, forming a doubly vergent imbricate fan of thrust sheets that accommodated substantial NE–SW shortening. Mylonite microtextures, as well as syntectonic minerals, indicate that the D1SG and D2SG deformation events took place under low greenschist-facies metamorphic conditions. We relate these deformation phases to the progressive NE migration of the Guerrero terrane, which triggered the collapse and closure of the Arperos Basin. During D3SG, the El Paxtle arc assemblage of the Guerrero terrane was tectonically emplaced onto the previously deformed successions of the Arperos Basin. However, D3SG structures indicate that during this deformational stage, the main shortening direction was oriented NW–SE and that contraction was accommodated mostly by SE-vergent ductile thrusts formed under low greenschist-facies metamorphic conditions. We suggest that the top-to-the-SE emplacement of the El Paxtle assemblage may be a result of the tectonic escape of the arc produced by the continuous NE impingement of the Guerrero terrane during its collisional addition to the Mexican mainland.  相似文献   

2.
We suggest a more rigorous approach to paleogeodynamic reconstructions of the Sayan-Baikal folded area proceeding from update views of the origin and evolution of island arcs and back-arc basins. Modern island arcs and attendant back-arc basins form mainly by trench rollback caused by progressive subduction of negatively buoyant thick and cold oceanic slabs. Slab stagnation upsets the dynamic equilibrium in the subduction system, which accelerates the rollback. As a result, a continental volcanic arc transforms into an island arc, with oceanic crust production in the back-arc basin behind it. As subduction progresses, the island arc and the back-arc basin may deform, and fold-thrust structures, with the involved back-arc basin and island arc complexes, may accrete to the continent (accretion and collision) without participation of large colliding blocks. When applied to the Sayan–Baikal area, the model predicts that the Riphean and Vendian–Early Paleozoic back-arc basins were more active agents in the regional geologic history than it was thought before. They were deposition areas of sedimentary and volcanosedimentary complexes and then became the scene of collision and accretion events, including folding, metamorphism, and plutonism.  相似文献   

3.
New stratigraphic and petrographic data and zircon U–Pb geochronology from sandstones and volcanic rocks in the states of Queretaro and Guanajuato in central Mexico indicate an important provenance change between Late Triassic and latest Jurassic–Early Cretaceous time. The Upper Triassic El Chilar Complex consists of pervasively deformed, deep-marine olistostromes, and debris-flow deposits of arkosic and subarkosic composition. Detrital-zircon populations range from latest Palaeoproterozoic (1.65 Ga) to Middle Triassic (240 Ma), all predating the depositional age of the strata. The detrital-zircon populations are similar to those previously reported from turbidites of the Potosi fan complex of north-central Mexico and interpreted as derived from Grenville and Pan-African (Maya block) basement and Permo-Triassic arc of continental Mexico directly to the east of the basin. A single sample with a dominant Proterozoic population at ~1.65–1.30 Ga was likely derived either from the Rio Negro-Juruena province of the Amazonian craton or from a local source in the Huiznopala Gneiss, and indicates that El Chilar strata were likely deposited in the proximal part of a submarine-fan system separate from the Potosi fan.

Uppermost Jurassic–Lower Cretaceous strata of the San Juan de la Rosa Formation unconformably overlie the El Chilar Complex and likewise consist of deep-marine olistostromes, slump deposits, debris-flow deposits, and proximal fan-channel fills, but are volcanogenic litharenites with abundant felsic and vitric volcanic lithic fragments. Detrital-zircon populations are dominated by Early Cretaceous grains (150–132 Ma) with no known sources in eastern Mexico. Abundant young grains indicate a maximum depositional age of ~134 Ma (Valanginian–Hauterivian). The San Juan de la Rosa Formation is overlain by deepwater carbonates with interbedded siliciclastic beds of the Peña Azul Formation, which contains detrital-zircon ages as young as ~130 Ma, indicating possible equivalence with similar strata of the Las Trancas Formation, with a maximum depositional age of ~127 Ma and lying to the east in the Zimapan Basin, now part of the Sierra Madre Oriental fold and thrust belt. Decreasing content of volcaniclastic strata eastward indicates a volcanic source to the west. Upper Cretaceous marine strata in the Mineral de Pozos area to the northwest in the state of Guanajuato contain litharenites with a maximum depositional age near 92 Ma, and are thus part of a younger depositional system.

Composition and detrital-zircon content of the Upper Triassic and Lower Cretaceous successions in central Mexico indicates an important shift from Gondwanan continental sediment sources in the Triassic to western volcanic sources, probably on the edge of the newly opened Arperos basin, by the end of the Jurassic. This important sediment-dispersal change records the break-up of Pangea and concomitant development of arc-related sedimentary basins on the western edge of Mexico.  相似文献   

4.
Evidence of rifting and continental break-up to form the S Neotethys is found within the volcanic-sedimentary Koçali Complex. This is a folded, thrust-imbricated succession that includes lavas, volcaniclastic sediments, pelagic carbonates, radiolarites and manganiferous deposits. Interbedded ribbon cherts contain radiolarians of Late Triassic to Late Jurassic age. The lower part of the succession of Mid?-Late Triassic age (Tarasa Formation) is dominated by enriched mid-ocean ridge basalt (E-MORB). The overlying Late Triassic to Mid-Jurassic interval (Konak Formation) is characterised by intercalations of ocean island basalt and E-MORB. Taking account of structural position, the basalts erupted within the outer part of a continent–ocean transition zone. Continental break-up probably occurred during the Late Triassic (Carnian–Norian). Early to Mid-Jurassic lavas and volcaniclastic sediments record volcanism probably after continental break-up. In addition, the Karadut Complex is a broken formation that is located at a relatively low structural position just above the Arabian foreland. Pelagic carbonates, redeposited carbonates and radiolarites predominate. Radiolarians are dated as Early to Mid-Jurassic and Late Cretaceous in age. The pelagic carbonates include planktic foraminifera of Late Cretaceous age. The Karadut Complex resulted from the accumulation of calcareous gravity flows, pelagic carbonate and radiolarites in a relatively proximal, base-of-slope setting. After continental break-up, MORB and ophiolitic rocks formed within the S Neotethys further north. Tectonic emplacement onto the Arabian platform took place by earliest Maastrichtian time. Regional interpretation is facilitated by comparisons with examples of Triassic rifting and continental break-up in the eastern Mediterranean region and elsewhere.  相似文献   

5.
《International Geology Review》2012,54(15):1842-1863
ABSTRACT

The late Mesozoic magmatic record within the Erguna Block is critical to evaluate the tectonic history and geodynamic evolution of the Great Xing’an Range, NE China. Here, we provide geochronological and geochemical data on Late Jurassic–Early Cretaceous plutonic-volcanic rocks in the northern Erguna Block and discuss their origin within a regional tectonic framework. Late Mesozoic magmatism in the Erguna Block can be divided into two major periods: Late Jurassic (162–150 Ma) and Early Cretaceous (140–125 Ma). Late Jurassic quartz monzonite and dacite show adakite characteristics such as high Al2O3, high Sr, and steeply fractionated REE patterns. Contemporary granitoids and rhyolites are also characterized by strong enrichment of light rare earth elements (LREE) and significant depletion in heavy rare earth elements (HREE), but with more pronounced negative Eu anomalies. Early Cretaceous trachytes and monzoporphyries exhibit moderate LREE enrichment and relatively flat HREE distributions. Coeval granites and rhyolites have transitional signatures between A-type and fractionated I-type felsic rocks. Both Late Jurassic and Early Cretaceous rocks have distinctive negative Nb, Ta, and Ti anomalies, and positive zircon εHf(t) values, suggesting that these magmas were derived from partial melting of Meso-Neoproterozoic accreted lower crust, although melting occurred at a variety of crustal levels. The transition from adakite to non-adakite magmatism reflects continued crustal thinning from Late Jurassic to Early Cretaceous. Our data, together with recently reported isotopic data for plutonic and volcanic rocks, as well as geochemical data, in NE China, suggest that Late Jurassic–Early Cretaceous magmatism in the Erguna Block was possibly induced by post-collisional extension after closure of the Mongol-Okhotsk Ocean.  相似文献   

6.
The Jurassic–Early Cretaceous Yilashan mafic–ultramafic complex is located in the middle part of the Bangong–Nujiang suture zone, central Tibet. It features a mantle sequence composed of peridotites and a crustal sequence composed of cumulate peridotites and gabbros that are intruded by diabases with some basalts. This article presents new whole-rock geochemical and geochronological data for peridotites, gabbros, diabases and basalts to revisit the petrogenesis and tectonic setting of the Yilashan mafic–ultramafic complex. Zircon laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) U–Pb ages of three diabase samples are 169.6 ± 3.3 Ma, 132.5 ± 2.5 Ma, and 133.6 ± 4.9 Ma, respectively. These ages together with previous studies indicate that the Yilashan mafic–ultramafic complex probably formed during the Jurassic–Early Cretaceous. The peridotites exhibit nearly U-shaped REE patterns and are distinct from abyssal peridotites. The diabase and basalt samples show arc features with selective enrichment in light rare earth elements (LREE) and large ion lithophile elements (LILEs; e.g. Rb, U, and Sr) and depletion in high field strength elements (HFSEs; e.g. Nb, Ta, and Ti). The gabbro samples display cumulate features with selective enrichment in LILEs (e.g. Rb, Ba, and Sr) but depletion in LREEs and HFSEs (e.g. Nb, Zr, and Ti). Combing the positive εNd(t) values (+6.1 to +10.0) and negative zircon εHf(t) values (–16.5 to –11.7 and –13.6 to –0.4) with older Hf model ages for the mafic rocks, these signatures suggest that the Yilashan mafic and ultramafic rocks likely originated from an ancient lithospheric mantle source with the addition of asthenospheric mantle materials and subducted fluids coupled with limited crustal contamination in a continental arc setting as a result of the southward subduction of the Bangong–Nujiang Tethys Ocean beneath the Lhasa terrane during the Jurassic–Early Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号