首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to constrain the detrital provenance of the siliciclastic rocks, palaeogeographic variations, and crustal growth history of central China, we carried out simultaneously in situ U–Pb dating and trace element and Hf isotope analyses on 368 detrital zircons obtained from upper Permian–Triassic sandstones of the Songpan terrane, eastern Tibetan Plateau. Two groups of detrital zircons, i.e. magmatic and metamorphic in origin, have been identified based on cathodoluminescence images, zircon Ti-temperatures, and Th/U ratios. Our data suggest that the derivation of siliciclastic rocks in the Songpan terrane was mainly from the Qinling, Qilian, and Kunlun orogens, whereas the Yangtze and North China Cratons served as minor source areas during late Permian–Triassic times. The detrital zircons from Middle–Late Triassic siliciclastic rocks exhibit wide age spectra with two dominant populations of 230–600 Ma and >1600 Ma, peaking at ~1.8–1.9 Ga and ~2.4–2.5 Ga, suggestive of a derivation from the Qinling, Qilian, and Kunlun orogens and the Yangtze Craton being the minor source area. The proportions of detrital zircon populations from the northern Qinling, Qilian, and Kunlun orogens distinctly decreased during Middle–Late Triassic time, demonstrating that the initial uplift of the western Qinling occurred then and it could have blocked most of the detritus from the Qilian–northern Qinling orogens and North China Cratons into the main Songpan–Ganzi depositional basin. The relatively detrital zircon proportions of the Yangtze Craton source decreased during Early-Middle Late Triassic time, indicating that the Longmenshan orogen was probably being elevated, since the early Late Triassic and gradually formed a barrier between the Yangtze Craton and the Songpan terrane. In addition, our Lu–Hf isotopic results also reveal that the Phanerozoic magmatic rocks in central China had been the primary products of crustal reworking with insignificant formation of a juvenile crust.  相似文献   

2.
《International Geology Review》2012,54(16):2008-2015
Growing geologic evidence documents incremental Mesozoic and early Cenozoic shortening and thickening of the Tibetan crust prior to the onset of the main Cenozoic orogenic event. The Tibetan crust shows spatial and temporal variability in thickness, style, and timing of thickening, and in plateau-forming processes. The Songpan–Ganzi area of northeastern Tibet provides evidence for shortening and thickening of the crust in Late Triassic time. An oil exploratory well (HC-1) of 7012.4 m located in the area shows at least six tectonic repetitions, resulting in more than ~46% thickening of the Triassic sequence. It indicates that the true thickness of the Songpan–Ganzi Triassic flysch is not 10–15 km as previously assumed, but not more than 3–5 km. Based on this evidence, combined with prior tectonostratigraphic studies, we propose that substantial crustal shortening and thickening, leading to initial plateau formation in the northeastern Tibetan Plateau, had already occurred during the Late Triassic.  相似文献   

3.
In situ U–Pb dating and Hf isotopic of detrital zircons from beach sediments of Yalong Bay were analyzed to trace sedimentary provenance and reveal the crustal evolution of Hainan Island in South China. The grain size distribution of the sediments displays a clear single-peak feature, indicating the sediments were formed under the same condition of hydrodynamic force. The detrital zircons had Th/U ratios of greater than 0.1, and REE pattern displayed a positive Ce anomaly and a negative Eu anomaly, indicating that these zircons are predominantly of magmatic origin. The U–Pb spectrum of detrital zircons mainly peaked at the Yanshanian (96–185 Ma), Hercynian–Indosinian (222–345 Ma) and Caledonian (421–477 Ma). A portion of the detrital zircons were of Neoproterozoic origin (728–1,003 Ma), which revealed that the basement in the eastern region of Hainan Island was mainly of Neoproterozoic, with rare Archean materials. The positive ε Hf(t) values (0 to +10.1) of the Neoproterozoic detrital zircons indicated that the juvenile crust grew in the southeastern Hainan Island mainly during the Neoproterozoic period. The Neoproterozoic orogeny in the southeastern part of the island (0.7–1.0 Ga) occurred later than in the northwestern region of the island (1.0–1.4 Ga). Importantly, the Grenvillian orogeny in the southeastern area of Hainan Island shared the same timing with that of the western Cathaysia Block; i.e., both areas concurrently underwent this orogenic event, thereby forming a part of the Rodinia supercontinent. Afterwards, the crust experienced remelting and reworking during the Caledonian Hercynian–Indosinianand Yanshanian accompanied by the growth of a small amount of juvenile crust.  相似文献   

4.
The western Qinling region of central China is situated centrally in the Kunlun, Qilian, Qinling, Longmenshan, and Songpan–Ganzi orogens. Late Palaeozoic and Early Mesozoic sediments deposited here may provide keys to understanding the tectonic evolution of the Palaeo-Tethys and collision of the North China and Yangtze Cratons. We conducted in situ U–Pb and Lu–Hf isotope analyses of 568 detrital zircons collected from Upper Palaeozoic to Mesozoic sandstones in the central Qinling block, Taohe depression, and Bailongjiang block in western Qinling to constrain the sources of these sandstones. Our results reveal that the Bailongjiang block has affinities with the Yangtze Craton, from which it may have been rifted. Therefore, the Palaeo-Tethyan Animaqen suture between the two cratons lies north of the Bailongjiang block. We identified the North China Craton as the main source for Triassic flysch in central China. It is possible that the Bailongjiang block could have blocked detritus shed from the North China Craton into the main depositional basins in the SongpanGanzi area. The dominance of 300–200 Ma detrital zircons of metamorphic origin in Lower Jurassic sandstones indicates that the Dabie–Qinling orogen was elevated during Early Jurassic time. In addition, our Lu–Hf isotopic results also reveal that Phanerozoic igneous rocks in central China were mostly products of crustal reworking with insignificant formation of juvenile crust.  相似文献   

5.
U–Pb–Hf of detrital zircons from diverse Cambrian units in Morocco and Sardinia were investigated in order to clarify the sandstone provenance and how it evolved with time, to assess whether the detrital spectra mirror basement crustal composition and whether they are a reliable pointer on the ancestry of peri-Gondwanan terranes. Coupled with Hf isotopes, the detrital age spectra allow a unique perspective on crustal growth and recycling in North Africa, much of which is concealed below Phanerozoic sediments.In Morocco, the detrital signal of Lower Cambrian arkose records local crustal evolution dominated by Ediacaran (0.54–0.63 Ga) and Late-Paleoproterozoic (1.9–2.2 Ga; Eburnian) igneous activity. A preponderance of the Neoproterozoic detrital zircons possess positive εHf(t) values and their respective Hf model ages (TDM) concentrate at 1.15 Ga. In contrast, rather than by Ediacaran, the Neoproterozoic detrital signal from the Moroccan Middle Cambrian quartz-rich sandstone is dominated by Cryogenian-aged detrital zircons peaking at 0.65 Ga alongside a noteworthy early Tonian (0.95 Ga) peak; a few Stenian-age (1.0–1.1 Ga) detrital zircons are also distinguished. The majority of the Neoproterozoic zircons displays negative εHf(t), indicating the provenance migrated onto distal Pan-African terranes dominated by crustal reworking. Terranes such as the Tuareg Shield were a likely provenance. The detrital signal of quartz–arenites from the Lower and Middle Cambrian of SW Sardinia resembles the Moroccan Middle Cambrian, but 1.0–1.1 Ga as well as ~ 2.5 Ga detrital zircons are more common. Therefore, Cambrian Sardinia may have been fed from different sources possibly located farther to the east along the north Gondwana margin. 1.0–1.1 Ga detrital zircons abundant in Sardinia generally display negative εHf(t) values while 0.99–0.95 Ga detrital zircons (abundant in Morocco) possess positive εHf(t), attesting for two petrologically-different Grenvillian sources. A paucity of detrital zircons younger than 0.6 Ga is a remarkable feature of the detrital spectra of the Moroccan and Sardinian quartz-rich sandstones. It indicates that late Cadomian orogens fringing the northern margin of North Africa were low-lying by the time the Cambrian platform was deposited. About a quarter of the Neoproterozoic-aged detrital zircons in the quartz-rich sandstones of Morocco (and a double proportion in Sardinia) display positive εHf(t) values indicating considerable juvenile crust addition in North Africa, likely via island arc magmatism. A substantial fraction of the remaining Neoproterozoic zircons which possess negative εHf(t) values bears evidence for mixing of old crust with juvenile magmas, implying crustal growth in an Andean-type setting was also significant in this region.  相似文献   

6.
7.
A geochronology and Hf isotope study, using laser ablation-ICP-MS analysis of zircon grains, has been conducted to date felsic volcanic rocks from the Portuguese sector of the Iberian Pyrite Belt and to establish possible sources for these rocks. The ages obtained range from the Famennian to the Tournaisian, with the oldest ages reported in the Belt so far being identified in its southwestern part (Cercal area). Results also indicate that within each area, volcanism may have extended for significant periods of time. This suggests that caution is needed in interpreting possible migration trends for the volcanism, as the exact stratigraphic position of the sampled rocks is not always clear. Despite of this, the new data, coupled with previously reported information, suggests that volcanism migrated within the basin from the southwest to the northeast (present day coordinates). Projection from initial zircon ?Hf values towards the depleted mantle evolution curve, via an intermediate reservoir, allows the calculation of Hf protolith model ages that are predominantly Meso-Proterozoic. This is compatible with acid magmas resulting from the fusion of Phyllite–Quartzite (PQ) Formation metasedimentary rocks, which are beneath the volcanic rocks. This is because zircon grains from one PQ Formation sample provided Late Neo-Proterozoic ages and Paleo-Proterozoic to Late Archean U–Pb ages, and the Hf isotope signatures of these zircons can be expected to mix during fusion and result in protolith model ages that would be intermediate between the two U–Pb age populations, as recorded. Further supporting this source for the magmas, the distribution of U–Pb ages of (pre-Variscan) inherited zircon grains in the volcanic rocks is very similar to that shown by the detrital zircon grains from a PQ sample.  相似文献   

8.
Detrital zircons from a Palaeoproterozoic quartzite, deposited between 1.85 and 1.82 Ga in the northern Aravalli orogen of NW India, show a distinctive age peak of ca. 1.85 Ga and variable, but largely subchondritic εHf1.85 Ga between ? 1.3 and ? 21.0 corresponding to hafnium model ages of 2.5 to 3.6 Ga. These data indicate an important period of reworking of ancient (Eo- to Neoarchaean), strongly heterogeneous continental crust at this time. Prevalence of ca. 1.85 Ga subduction-related granitoids, almost identical U–Pb age spectra and εHft of detrital zircons in ca. 1.85 Ga metasedimentary rocks in the Aravalli orogen and the inner Lesser Himalaya indicate similar sediment provenances and thus a geological connection between these two terranes during late Palaeoproterozoic. All together, the data constrain a rapid succession of sedimentation, metamorphism and subduction-related magmatic activity and support the interpretation of an active geodynamic realm along the entire north Indian margin at ca. 1.85 Ga. Comparison of detrital zircon data in conjunction with published paleomagnetic data from north India and other crustal blocks of the Columbia supercontinent, additionally, suggest a close affinity of north India with Madagascar, the Cathaysia block of South China and South Korea during Columbia times.  相似文献   

9.
We present results of study of the trace-element and Lu–Hf isotope compositions of zircons from Paleoproterozoic high-grade metasedimentary rocks (paragneisses) of the southwestern margin of the Siberian craton (Irkut terrane of the Sharyzhalgai uplift). Metamorphic zircons are represented by rims and multifaceted crystals dated at ~ 1.85 Ga. They are depleted in either LREE or HREE as a result of subsolidus recrystallization and/or synchronous formation with REE-concentrating garnet or monazite. In contrast to the metamorphic zircons, the detrital cores are enriched in HREE and have high (Lu/Gd)n ratios, which is typical of igneous zircon. The weak positive correlation between 176Lu/177Hf and 176Hf/177Hf in the zircon cores evidences that their Hf isotope composition evolved through radioactive decay in Hf = the closed system. Therefore, the isotope parameters of these zircons can give an insight into the provenance of metasedimentary rocks. The Paleoproterozoic detrital zircon cores from paragneisses, dated at ~ 2.3–2.4 and 2.0–1.95 Ga, are characterized by a wide range of εHf values (from + 9.8 to –3.3) and model age T C 2.8–2.0 Ga. The provenance of these detrital zircons included both rocks with juvenile isotope Hf parameters and rocks resulted from the recycling of the Archean crust with a varying contribution of juvenile material. Zircons with high positive εHf values were derived from the juvenile Paleoproterozoic crustal sources, whereas the lower εHf and higher T C values for zircons suggest the contribution of the Archean crustal source to the formation of their magmatic precursors. Thus, at the Paleoproterozoic stage of evolution of the southwestern margin of the Siberian craton, both crustal recycling and crustal growth through the contribution of juvenile material took place. On the southwestern margin of the Siberian craton, detrital zircons with ages of ~ 2.3–2.4 and 1.95–2.0 Ga are widespread in Paleoproterozoic paragneisses of the Irkut and Angara–Kan terranes and in terrigenous rocks of the Urik–Iya graben, which argues for their common and, most likely, proximal provenances. In the time of metamorphism (1.88–1.85 Ga), the age of Paleoproterozoic detrital zircons (2.4–2.0 Ga), and their Lu–Hf isotope composition (εHf values ranging from positive to negative values) the paragneisses of the southwestern margin of the Siberian craton are similar to the metasedimentary rocks of the Paleoproterozoic orogenic belts of the North China Craton. In the above two regions, the sources of detrital zircons formed by both the reworking of the Archean crust and the contribution of juvenile material, which is evidence for the crustal growth in the period 2.4–2.0 Ga.  相似文献   

10.
The Qinling Orogen, central China, was constructed during the Mesozoic collision between the North China and Yangtze continental plates. The orogen includes four tectonic units, from north to south, the Huaxiong Block (reactivated southern margin of the North China Craton), North Qinling Accretion Belt, South Qinling Fold Belt (or block) and Songpan Fold Belt, evolved from the northernmost Paleo-Tethys Ocean separating the Gondwana and Laurentia supercontinents. Here we employ detrital zircons from the Early Cretaceous alluvial sediments within the Qinling Orogen to trace the tectonic evolution of the orogen. The U–Pb ages of the detrital zircon grains from the Early Cretaceous Donghe Group sediments in the South Qinling Fold Belt cluster around 2600–2300 Ma, 2050–1800 Ma, 1200–700 Ma, 650–400 Ma and 350–200 Ma, corresponding to the global Kenorland, Columbia, Rodinia, Gondwana and Pangaea supercontinent events, respectively. The distributions of ages and εHf(t) values of zircon grains show that the Donghe Group sediments have a complex source comprising components mainly recycled from the North Qinling Accretion Belt and the North China Craton, suggesting that the South Qinling Fold Belt was a part of the united Qinling–North China continental plate, rather than an isolated microcontinent, during the Devonian–Triassic. The youngest age peak of 350–200 Ma reflects the magmatic event related to subduction and termination of the Mian-Lue oceanic plate, followed by the collision between the Yangtze Craton and the united Qinling–North China continent that came into existence at the Triassic–Jurassic transition. The interval of 208–145 Ma between the sedimentation of the Early Cretaceous Donghe Group and the youngest age of detrital zircons was coeval with the post-subduction collision between the Yangtze and the North China continental plates in Jurassic.  相似文献   

11.
The South Tian Shan, which is located along the southwestern margin of the Central Asian Orogenic Belt, is widely accepted as a collisional orogen between the Kazakhstan-Yili Block in the north and the Tarim Craton in the south, and the collision is thought to have occurred in either Late Paleozoic or Triassic. Regardless of the timing of the collision, the major magmatic events in the South Tian Shan Orogen should be related to subduction, collision and post-collision. We investigate this problem through U–Pb age of detrital zircons from the eastward-flowing Tekes River and its southern branches flowing through the northern slope of the Chinese South Tian Shan. A total of 500 analyses on 494 zircon grains from five sand samples yield an age range of 2590 to 268 Ma, but they are dominated by Paleozoic magmatic zircon grains, with some Precambrian population, but no Mesozoic and Cenozoic grains were detected. One of the samples from the Tekes River contains zircon grains from the Chinese South Tian Shan and other areas because the river receives its discharge from multiple sources. The other four samples were collected from four branches originating from the Chinese South Tian Shan only. From west to east, the sample from the Kayintemuzhate River shows two peak ages of 475 and 345 Ma, sample from the Muzhaerte (also called Xiate) River has peak ages of 422 and 290 Ma, sample from the Akeyazi River is characterized by a single peak age of 421 Ma, and sample from the Kekesu River shows a more complicated spectra with peak ages of 426, 398, 362, 327, and 285 Ma. When pooled together, the four samples yield four distinct age populations of 500–460, 450–390, 360–320, and 300–270 Ma, indicating the major magmatic events in the Chinese South Tian Shan. These results, combined with regional data, show an absence of Mesozoic magmatic events in the drainage areas of the Tekes River, and thus the South Tian Shan does not seem to be a Triassic orogen because of the lack of syn-collisional and post-collisional magmatism. The 300–270 magmatic event is thought to post-date the closure of the South Tian Shan Ocean, while the 360–320 and 450–390 Ma events were closely related to the northward subduction of the South Tian Shan Ocean. Our results strongly suggest a Late Carboniferous (320–300 Ma) collision between the Kazakhstan-Yili Block and the Tarim Craton. Possibly, the 500–460 Ma magmatism was related to subduction and closure of the Early Paleozoic Terskey Ocean.  相似文献   

12.
Combined U–Pb and Lu–Hf isotope analyses of detrital zircon grains from the auriferous Eldorado Reef conglomerate, upper Central Rand Group, reveal new insights into the provenance of the sediments and thus, by implication, possibly also into that of the gold. Most of the detrital zircon grains, which are of magmatic origin, yielded Mesoarchaean ages clustering around 2.94 and 3.06 Ga. A subordinate zircon population gave ages with maxima at 3.28 and 3.44 Ga. The Mesoarchaean zircon grains mostly show super-chondritic ?Hft of up to +5.2, whereas the Palaeoarchaean zircon grains have nearly chondritic composition with ?Hft between −1.3 and +2.0. The new dataset of the Mesoarchaean zircon populations provides the first unambiguous evidence of the formation of juvenile crust not only at 3.06 but also at 2.94 Ga. As the analysed zircon grains are from the ruditic fraction, they must be derived from a comparatively proximal source in close vicinity to the Central Rand Basin. Based on currently available data, this source was most likely a magmatic arc that existed at the northern edge of the Witwatersrand Block at 3.06 Ga. An additional source might be the 2.94 Ga magmatic rocks of the Kraaipan Greenstone Belt that occurs to the west of the Witwatersrand Block. The minor fraction of Palaeoarchaean zircon grains in the Eldorado Reef perhaps stem from sources that are isotopically similar to the Barberton Greenstone Belt and the Limpopo Belt but were more proximal to the Central Rand Basin.  相似文献   

13.
The North China Craton (NCC) represents one of only a few cratonic nuclei on the globe with a geological history extending back to the Eoarchean. However, extensive ca. 2.5 Ga crustal reworking has destroyed a considerable portion of the pre-existing crustal record, hindering the investigation of tectonothermal evolution prior to 2.5 Ga. The Huoqiu Complex (HQC), located at the southeastern margin of the NCC, preserves the vestiges of crustal components that survived the ca. 2.5 Ga tectonothermal events, which provide the opportunity to investigate the Meso- to Neoarchean episodic crustal evolution of the NCC. Here we present results from in-situ detrital zircon U–Pb dating and Hf isotope analyses on zircons from three paragneisses in three drill cores that cut through the basement of the HQC. In combination with published data, the concordant age spectra of the detrital zircons in the paragneisses yield 207Pb/206Pb ages of 2343–3997 Ma that cluster into two principal age populations with peaks at 3015 and 2755 Ma. One zircon grain dated at 3997 ± 8 Ma with 98% concordance provides new evidence for 4.0 Ga components in the NCC. The εHf(t) values of all zircons range from − 5.2 to + 6.5, with most of the spots (n = 31 of 47) showing positive values, indicating at least two episodes of juvenile continental crustal growth at 3.01 Ga and 2.75 Ga. The older episode is recorded only in few ancient cratons, suggesting limited crustal accretion occurred globally at a time of subdued mantle-derived magmatism. In contrast, the younger episode is coincident with a global rise in magmatic activity in the early Neoarchean. The geochemical and geochronological data suggest that the 3.01 Ga juvenile crust was likely generated in an island-arc subduction system, whereas the 2.75 Ga crustal rocks were probably formed during magmatic underplating and subsequent partial melting of lower crustal mafic rocks. Consequently, a tectonic transition is suggested from a compressive to an extensional setting along the southeastern margin of the NCC between 3.01 and 2.75 Ga. This sequence of events heralds a shift, from a mixture of net crustal growth and crustal reworking during multiple short-lived magmatic pulses, to fragmentation and dispersal of the early continental nucleus within 260 Ma.  相似文献   

14.
《Gondwana Research》2013,24(4):1261-1272
A combined study of Lu–Hf isotopes and U–Pb ages for detrital zircons from sedimentary rocks can provide information on the crustal evolution of sedimentary provenances, and comparisons with potential source regions can constrain interpretations of paleogeographic settings. Detailed isotopic data on detrital zircons from Neoproterozoic sedimentary rocks in the northern part of the Yangtze Block suggest that these rocks have the maximum depositional ages of ~ 750 Ma, and share a similar provenance. In their source area, units of late Archean (2.45 to 2.55 Ga) to Paleoproterozoic (1.9 to 2.0 Ga) U–Pb ages made up the basement, and were overlain or intruded by magmatic rocks of Neoproterozoic U–Pb ages (740 to 900 Ma). Hf isotopic signatures of the detrital zircons indicate that a little juvenile crust formed in the Neoarchean; reworking of old crust dominates the magmatic activity during the Archean to Paleoproterozoic, while the most significant juvenile addition to the crust occurred in the Neoproterozoic. Only the Neoproterozoic zircon U–Pb ages can be matched with known magmatism in the northern Yangtze Block, while other age peaks cannot be correlated with known provenance areas. Similar zircon U–Pb ages have been obtained previously from sediments along the southeastern and western margins of the Yangtze Block. Thus, it is suggested that an unexposed old basement is widespread beneath the Yangtze Block and was the major contributor to the Neoproterozoic sediments. This basement had a magmatic activity at ~ 2.5 Ga, similar to that in North China; but zircon Hf isotopes suggest significant differences in the overall evolutionary histories between the Yangtze and North China.  相似文献   

15.
Relatively successive sequences of Late Mesozoic are preserved and exposed in Luxi Uplift (LU), eastern North China block (NCB), which is an important region to study the late Mesozoic tectonic evolution of the eastern NCB. In this study, in situ U–Pb ages and Hf isotopic analyses on detrital zircons from the sandstones of Jurassic Fangzi and Santai Formations in LU combining the analysis of sandstone detrital modes were performed, with an aim to trace the Jurassic sediment provenances and the tectonic–paleogeographic configuration of eastern NCB. Three sandstone samples (one from Fangzi Formation and two from Santai Formation) have very similar U–Pb age spectrums which can be divided into three major groups: Phanerozoic (I), Paleoproterozoic (II), and Neoarchean (III). Detrital zircons of Group II and Group III broadly match the age spectra of the basement of NCC which exposed extensively in the northern part. No middle Neoproterozoic magmatic zircons or Triassic metamorphic zircons were found in this study, ruling out the clastic provenance transported from the Sulu orogen to LU. Dominant zircon populations of Group Iare Late Paleozoic (250–393 Ma) recording the corresponding magmatic activities which are not found both in LU and its peripheral tectonic terranes, but can be well compared with that of the northern NCB (NNCB) and the Xing-Meng Orogenic Belt (XMOB). Furthermore, Hf isotope compositions of the Phanerozoic detrital zircons can be distinctly divided into two clusters with εHf(t) values ranging from −1.0 to +12.7 and −21.9 to −3.0, respectively resemble those from the XMOB and NCB (mainly from NNCB). Sandstone detrital modes analysis indicates the provenance came from the areas that have been eroded deeply to expose the basement rocks which accords with the tectonic setting of the NNCB. This research proposes that an evident mountain or provenance region once increasingly developed along NNCB during Early to Late Jurassic (182–155 Ma) due to the continuous collision of the Siberia and North China–Mongolian plates, easily shed mass clastic materials southward into the inner NCB and became the major provenance of Jurassic sediments in LU.  相似文献   

16.
Detailed zircon analyses were carried out on samples from the Bálvány North section, which contains the Permian–Triassic boundary. A fine-grained sandstone bed within the “boundary shale” contains a significant amount of zircon crystals. Pupin morphological, scanning electron microscopy [secondary electron, back-scattered electron, cathodoluminescence (CL)] and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) investigations were done in selected single grains to combine morphological information with radiometric ages, and infer the provenance of zircons. Three populations are distinguished on the basis of Pupin morphology. Their centres of gravity are S17, S2 and P1. The LA-ICP-MS radiometric ages reveal three main age groups and a smaller one, apart from a few scattered old ages. The largest group, comprising ca. 50% of the measured grains, has an age of 470–440 Ma. The two other main groups, which together represent ca. 25% of the measured grains, are around 280 and 600 Ma. The 280 Ma group contains slightly more grains than the 600 Ma group. A small group has an age of 370–340 Ma. In addition, there are some older grains with ages of 850, 969, 1,050 and 2,150 Ma. Based on the zircon morphology no clear separation of the different age groups could be made. Both the 280 Ma and the 470–440 Ma age groups tend to show zircon crystals derived from three types of sources: crustal granites, calc-alkaline granitoids and alkali granites and/or their volcanic equivalents. Zircons in the 450 Ma group have a magmatic rim around their altered, relict core, as revealed by CL images. Post-magmatic processes also affected the rim. The age of the core is possibly reset during the formation of the magmatic rim. This suggestion is supported by the LA-ICP-MS data, because no difference was seen between the core and the rim. The different roundness of the zircons, the well-sorted crystals and the at least five different source rocks indicate previous concentration of the grains, before their transportation into the “boundary shale”. Austroalpine and Southern Alpine rocks could be the sources of the zircon crystals, which fit well into the paleogeographical model of the area, which suggests that the Bükk Mts. was located in the foreground of the Alpine units.  相似文献   

17.
Individual U–Pb ages for 5,655 detrital zircons (DZ) in 61 sandstone samples from Mesozoic strata of the Colorado Plateau and nearby areas provide insights into paleogeographic relations across the interior of North America and the paleotectonic evolution of North American continental margins. Pre-Mesozoic DZ grains derived either directly, or ultimately through sediment recycling, from distant sources in eastern North America are more abundant than DZ grains derived from the nearby Cordilleran magmatic arc of western North America. Sediment dispersal patterns included Triassic fluvial transport of detritus westward from the Ouachita orogen uplifted along the northern flank of rift highlands precursor to the oceanic Gulf of Mexico, Jurassic eolian transport southward into widespread ergs from deflation of floodplains of transcontinental paleorivers with headwaters in pre-Atlantic Appalachian highlands, and Jurassic-Cretaceous recycling of eolianite DZ from retroarc Sevier thrust sheets and from sedimentary cover of the Mogollon paleohighlands flanking the Border rift system.  相似文献   

18.
The tectonic evolution of the Chinese Tianshan Belt which is located in the southern margin of the Central Asian Orogenic Belt remains controversial. In order to reveal the evolutionary history of this belt, we investigate metasedimentary rocks from the Tianshanmiao of Harlik domain and Xingxingxia area of central Tianshan domain in this study. The Permian siltstones from Xingxingxia contain six zircon populations with ages peak at 280, 815 and 910, 1590, 1855 and 2340 Ma, suggesting a diverse provenance. The 2544–2294 Ma ages correlate with the generation of continental nuclei in Tarim. The tectonothermal events during 1855, 1590, 910 and 815 Ma may correspond to the assembly and breakup of the Columbia and Rodinia supercontinents, respectively. Similar Precambrian age spectra and “event signature” curves suggest that the central Tianshan was most likely a part of the Tarim block in the Proterozoic. The detrital zircon U–Pb ages of Ordovician meta-greywackes from the Tianshanmiao sequence reveal six zircon populations with peaks at 460, 933, 1382, 1850, 2000 and 2462 Ma, among which the zircons with dominant age peaks (460 Ma and 930 Ma, more than 70%) are euhedral, low sphericity and exhibit clear oscillatory zoning, suggesting local derivation from the proximal Ordovician and Neoproterozoic granitoids. The range of εHf(t) values (−5.4 to +21) of zircon grains from Ordovician rocks suggests that these were derived from depleted mantle or through partial melting of juvenile crust, similar to the case for the Early Paleozoic magmatism in Chinese Altai. Our detrital zircon data suggest that the provenance of the Harlik was neither the Tarim nor the Junggar, and instead, we propose a connection with the Chinese Altai-Tuva–Mongol Arc along the southern margin of the Siberia craton at ∼500 Ma. The Harlik domain drifted southward and then collided with the central Tianshan in the Carboniferous-Permian as a result of the closure of Paleo-Tianshan Ocean.  相似文献   

19.
This work presents the U–Pb (LA–ICP–MS) data of detrital zircons from metasedimentary sequences of northwestern Taimyr. An analysis of the youngest populations of detrital zircons testifies to the wide distribution of Cambrian sequences in the study area, but not Precambrian sequences as was considered earlier, and the need for a substantial revision of the stratigraphic scheme of this area. The detrital zircon age distribution shows that the Timan margin of the Baltic paleocontinent was a major provenance area of the Cambrian sediments in northern and northwestern Taimyr, as well as the coeval sediments of the Severnaya Zemlya archipelago.  相似文献   

20.
《Gondwana Research》2016,29(4):1361-1372
New in situ U–Pb-Hf analyses of detrital zircons from across the Archaean Dharwar craton indicate significant juvenile crustal extraction events at ~ 3.3 and 2.7 Ga, and continuous extraction from 3.7 to 3.3 Ga. Reworking in the older western block at ~ 3.0 Ga marks the onset of cratonisation, most likely due to ‘modern’ plate tectonic processes, whilst reworking in both the western and younger eastern block at 2.55–2.50 Ga indicates accretion of the two terranes and final cratonisation much later than in most other Archaean terranes (~ 2.7 Ga). Different patterns of disturbance to the zircon U–Pb systematics reflect variations in both the U content of parent rocks and later metamorphic conditions. Tectonic links are observed between the Kaapvaal and western Dharwar cratons, and between the north China and eastern Dharwar cratons, though none of these links necessarily requires a consanguineous origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号