首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
区域工程地质适宜性评价是高放废物处置库选址的关键问题之一。基于ArcGIS平台,采用综合指数模型对我国高放核废物处置库阿拉善预选区进行了区域工程地质适宜性评价。在现场工程地质调查与资料系统收集的基础上,综合考虑了核废料选址的特殊目的和要求,比选确定岩性、断裂构造、地震、构造应力、地形变作为阿拉善区域工程地质适宜性评价的因子。利用专家-层次分析法确定了各评价指标的权重,基于评价指标及权重的确定,按适宜性好、适宜性较好、适宜性中等、适宜性较差和适宜性差5个级别对阿拉善区域进行了工程地质适宜性分区。评价分区结果为阿拉善预选区高放废物处置适宜性地段选取提供了依据,其中的塔木素和诺日公区段是适宜性良好的两个地段,进一步的选址工作可在这两个地段开展。  相似文献   

2.
The need for secure sites for such sensitive installations as nuclear power plants and radioactive waste storage has brought increasing significance to the study of the geodynamic processes of the Earth's crust. Among other Earth sciences, geomorphology in Czechoslovakia is also participating in the study of both planning and operating nuclear power station sites. The experience of Czech geomorphologists has shown that the geomorphological information is necessary part of the accurate prediction of events and time which can endanger the security of nuclear power plants, radioactive waste storages, pipelines and other large installations. Geomorphological mapping and morphostructural analysis are important tools for such studies.  相似文献   

3.
1992年以来,湖南省电力勘测设计院在省内开展了核电普查选址工作,经过3年多的勘查,现已筛选出4个侯选厂址。作者著文探讨了这4个厂址的地震地质特征和工程地质条件,可供进一步选址参考  相似文献   

4.
圆明园遗址公园水文地质条件分析   总被引:2,自引:0,他引:2  
通过遥感解译、水文地质调查、钻孔和抽水试验,结合区域水文、气象和地质等资料,对圆明园的水文地质条件有了初步认识:圆明园处在清河古河道范围内,浅层地下水可分为潜水和第一层承压水,含水层岩性以砂类为主,与湖水有直接联系的潜水含水层的渗透系数大于20md;20世纪50~60年代,圆明园所在区域地下水位较高,地下水补给湖水;近年来,受降水减少和地下水开采等因素影响,地下水位下降较大,湖水位高于潜水位,自然条件下湖水补给地下水。  相似文献   

5.
Review: Deep groundwater research with focus on Germany   总被引:1,自引:0,他引:1  
While research focuses mainly on the intensively used shallower aquifers, only a little research has addressed groundwater movement in deeper aquifers. This is mainly because of the negligible relevance of deep groundwater for daily usage and the great efforts and high costs associated with its access. In the last few decades, the discussion about deep geological final repositories for radioactive waste has generated strong demand for the investigation and characterization of deep-lying aquifers. Other utilizations of the deeper underground have been added to the discussion: the use of geothermal energy, potential CO2 storage, and sources of potable water as an alternative to the geogenic or anthropogenic contaminated shallow aquifers. As a consequence, the fast growing requirement for knowledge and understanding of these dynamic systems has spurred the research on deep groundwater systems and accordingly the development of suitable test methods, which currently show considerable limitations. This review provides an overview of the history of deep groundwater research. Deep groundwater flow and research in the main hydrogeological units is presented based on six projects and the methods used. The study focuses on Germany and two other locations in Europe.  相似文献   

6.
Reprocessing of spent nuclear fuel (SNF) for recovery of fissionable elements is a precondition of long-term development of nuclear energetics. Solution of this problem is hindered by the production of a great amount of liquid waste; 99% of its volume is low- and intermediate-level radioactive waste (LILW). The volume of high-level radioactive waste (HLW), which is characterized by high heat release, does not exceed a fraction of a percent. Solubility of glasses at an elevated temperature makes them unfit for immobilization of HLW, the insulation of which is ensured only by mineral-like matrices. At the same time, glasses are a perfect matrix for LILW, which are distinguished by low heat release. The solubility of borosilicate glass at a low temperature is so low that even a glass with relatively low resistance enables them to retain safety of under-ground LILW depositories without additional engineering barriers. The optimal technology of liquid confinement is their concentration and immobilization in borosilicate glasses, which are disposed in shallow-seated geological repositories. The vitrification of 1 m3 liquid LILW with a salt concentration of ~300 kg/m3 leaves behind only 0.2 m3 waste, that is, 4–6 times less than by bitumen impregnation and 10 times less than by cementation. Environmental and economic advantages of LILW vitrification result from (1) low solubility of the vitrified LILW in natural water; (2) significant reduction of LILW volume; (3) possibility to dispose the vitrified waste without additional engineering barriers under shallow conditions and in diverse geological media; (4) the strength of glass makes its transportation and storage possible; and finally (5) reliable longterm safety of repositories. When the composition of the glass matrix for LILW is being chosen, attention should be paid to the factors that ensure high technological and economic efficiency of vitrification. The study of vitrified LILW from the Kursk nuclear power plant with high-power channel reactors (HPCR; equivalent Russian acronym, RBMK) and the Kalinin nuclear power plant with pressurized water reactors (PWR; equivalent Russian acronym VVER) after their 14-yr storage in the shallow-seated repository at the MosNPO Radon testing ground has confirmed the safety of repositories ensured by confinement properties of borosilicate matrix. The most efficient vitrification technology is based on cold crucible induction melting. If the content of a chemical element in waste exceeds its solubility in glass, a crystalline phase is formed in the course of vitrification, so that the glass ceramics become a matrix for such waste. Vitrified waste with high Fe; Na and Al; Na, Fe, and Al; Na and B is characterized. The composition of frit and its proportion to waste depends on waste composition. This procedure requires careful laboratory testing.  相似文献   

7.
再生水在北京被广泛用于补给河道,2007年底至2017年共有2.3×108 m3再生水补给至潮白河顺义段。其污染物本底值较高(Cl?浓度约62~122 mg/L),通过河床入渗补给到周边的含水层中,对周边地下水产生一定影响,尤其是浅层地下水。为了定量评价再生水补给河道对周边浅层地下水的影响,基于10年(2007—2017)的地下水监测数据,建立了再生水补给河道周边的地下水水流和溶质运移模型,模拟了受水区浅层地下水的水位和Cl?浓度的变化,分析了浅层地下水水量、Cl?负荷和NO3-N负荷的变化。结果表明,再生水补给河道后的前2年(2007—2009),河道周边浅层地下水水位迅速抬升了3~4 m,之后在再生水的持续补给下保持稳定。但受深层地下水开采影响,2007—2014年研究区整体浅层地下水的水量仍在下降。2014年底实施地下水压采措施后,浅层地下水水量从2014年底的3.76×108 m3恢复到了2017年底的3.85×108 m3。周边浅层地下水中的Cl?浓度从再生水补给前的5~75 mg/L变化到了补给后的50~130 mg/L,之后保持稳定。浅层地下水水质受再生水影响的范围从2008年底的11.7 km2扩大到2017年的26.7 km2,影响区内的Cl?负荷从2008年底的1.8×103 t增加到2017年底的3.8×103 t,NO3-N负荷从2008年的29.8 t下降到2017年的11.9 t。尽管研究显示影响范围外的浅层地下水质受再生水影响不明显,但潜在的咸化和污染的隐患不容忽视,需要在后续研究中进一步明确。  相似文献   

8.
Landfill site selection by using geographic information systems   总被引:3,自引:3,他引:3  
One of the serious and growing potential problems in most large urban areas is the shortage of land for waste disposal. Although there are some efforts to reduce and recover the waste, disposal in landfills is still the most common method for waste destination. An inappropriate landfill site may have negative environmental, economic and ecological impacts. Therefore, it should be selected carefully by considering both regulations and constraints on other sources. In this study, candidate sites for an appropriate landfill area in the vicinity of Ankara are determined by using the integration of geographic information systems and multicriteria decision analysis (MCDA). For this purpose, 16 input map layers including topography, settlements (urban centers and villages), roads (Highway E90 and village roads), railways, airport, wetlands, infrastructures (pipelines and power lines), slope, geology, land use, floodplains, aquifers and surface water are prepared and two different MCDA methods (simple additive weighting and analytic hierarchy process) are implemented to a geographical information system. Comparison of the maps produced by these two different methods shows that both methods yield conformable results. Field checks also confirm that the candidate sites agree well with the selected criteria.  相似文献   

9.
Tritium is a short-lived radioactive isotope (T 1/2=12.33 yr) produced naturally in the atmosphere by cosmic radiation but also released into the atmosphere and hydrosphere by nuclear activities (nuclear power stations, radioactive waste disposal). Tritium of natural or anthropogenic origin may end up in soils through tritiated rain, and may eventually appear in groundwater. Tritium in groundwater can be re-emitted to the atmosphere through the vadose zone. The tritium concentration in soil varies sharply close to the ground surface and is very sensitive to many interrelated factors like rainfall amount, evapotranspiration rate, rooting depth and water table position, rendering the modeling a rather complex task. Among many existing codes, SOLVEG is a one-dimensional numerical model to simulate multiphase transport through the unsaturated zone. Processes include tritium diffusion in both, gas and liquid phase, advection and dispersion for tritium in liquid phase, radioactive decay and equilibrium partitioning between liquid and gas phase. For its application with bare or vegetated (perennial vegetation or crops) soil surfaces and shallow or deep groundwater levels (contaminated or non-contaminated aquifer) the model has been adapted in order to include ground cover, root growth and root water uptake. The current work describes the approach and results of the modeling of a tracer test with tritiated water (7.3×108 Bq m−3) in a cultivated soil with an underlying 14 m deep unsaturated zone (non-contaminated). According to the simulation results, the soil’s natural attenuation process is governed by evapotranspiration and tritium re-emission. The latter process is due to a tritium concentration gradient between soil air and an atmospheric boundary layer at the soil surface. Re-emission generally occurs during night time, since at day time it is coupled with the evaporation process. Evapotranspiration and re-emission removed considerable quantities of tritium and limited penetration of surface-applied tritiated water in the vadose zone to no more than ∼1–2 m. After a period of 15 months tritium background concentration in soil was attained.  相似文献   

10.
在高放废物处置库选址中,场地水文地质条件的认识极为重要,因为任何从处置库释放出来的放射性物质都将通过地下水搬运向人类生存环境或生物圈迁移.甘肃北山地区是我国高放废物处置库的重要预选区之一,位于我国西北甘肃省西北部.为了认识预选区的水文地质条件,从水文地质角度评价其作为高放废物处置库场地的适宜性,在过去的10 a,在该区开展了同位素水文地质调查工作.野外调查和氢、氧稳定同位素分析结果表明,研究区地下水主要源自大气降水补给.浅部地下水主要由现代区内降水补给形成,而深部地下水则可能由地质历史时期降水补给形成;浅部地下水系统具有相对开放性特征,水循环交替能力较强,而深部地下水系统具有相对封闭性特征,水循环交替能力较弱.  相似文献   

11.
地质系统热-水-力耦合作用的随机建模初步研究   总被引:2,自引:0,他引:2  
热-水-力(THM)耦合作用是岩石力学与环境地质中的重要基础理论问题,核废料地质处置库周围的缓冲材料和围岩中的热-水-力耦合现象将影响其力学稳定性、热传导性和渗透性,进而影响放射性核素在裂隙岩体中的迁移规律。核废料或放射性废料的地下深埋处置是国际上正在研究的永久性隔离的有效方法之一。因此,对核废料地质处置法安全性评估的一个重要内容就是对裂隙岩体中力学稳定性与构造应力、地下水渗流及热载荷等的耦合作用之数值模拟和评估。这已成为当前刻不容缓的重要的环境影响评价课题。笔者研究了温度场-渗流场-应力场中热传导系数和渗透率以及岩体力学参数的空间变异性,用实验方法研究三场耦合效应及裂隙岩体的场性能等效处理,试图建立热-水-力耦合作用的随机性数学模型及可视化数值模拟方法,为核废料地质处置安全性评估提供直观的新方法。  相似文献   

12.
The present-day landscape in Central Germany, in particular the region of Leipzig, Halle and Bitterfeld, is characterized by the scars of former industrial activities. Vast districts have been devastated by lignite strip mining. Industrial and domestic waste, residues from ore smelting, and highly toxic waste products from petrochemical plants and pesticide production were deposited in abandoned pits near population centers. The chief effects of waste on the environment are the contamination of groundwater by dissolved pollutants, the acidification of soil and water by the oxidation of pyrite-containing mining waste, and the salinization of shallow aquifers by rising brines from adjacent confined groundwater affected by mining. The consequences for the region are serious: mining lakes used for recreational purposes are contaminated by leachates from adjacent waste dumps. Pyrite-containing refuse from lignite mining under oxidation gives rise to the acidification of surface and groundwater, a basic condition for pollutant mobilization. In former metal mining districts, metalliferous and radioactive residues from smelting jeopardize public health. These effects are described in detail using three case studies. Received: 30 July 1996 · Accepted: 24 February 1997  相似文献   

13.
14.
Karst aquifers supply a significant fraction of the world's drinking water. These types of aquifers are alsohighly susceptible to pollution from the surface with recharge usually occurring through fractures and solution openings at the bedrock surface. Thickness of the protective soil cover, macropores and openings within the soil cover, and the nature of the weathered bedrock surface all influence infiltration. Recharge openings at the bedrock surface, however, are often covered by unconsolidated sediments, resulting in the inadvertent placement of landfills, unregulated dump sites, tailing piles, waste lagoons and septic systems over recharge zones. In these settings surface geophysical surveys, calibrated by a few soil cores, could be employed to identify these recharge openings, and qualitatively assess the protection afforded by the soil cover. In a test of this hypothesis, geophysical measurements accurately predicted the thickness of unconsolidated deposits overlying karstic dolomite at a site ab  相似文献   

15.
高放废物处置库甘肃北山预选区地下水的形成   总被引:1,自引:0,他引:1  
在高放废物处置库场地选择和性能评价中,水文地质特征是最重要的因素之一,地下水的形成则是水文地质研究中的首要问题。在水文地质、地下水化学、同位素、CFC、地下水动态等资料综合分析的基础上,探讨了高放废物处置库甘肃北山预选区地下水的形成问题。研究结果表明,北山地区地下水以赋存于变质岩、岩浆岩、碎屑岩、碳酸岩节理、裂隙中的基岩裂隙潜水为主,地下水化学成分具有明显的水平分带性特征,地下水动态类型主要为入渗—蒸发—径流型,结合地下水同位素和CFC 特征,认为区内地下水主要由当地大气降水入渗补给形成。浅部地下水主要由现代区内降水补给形成,而深部地下水则可能由地质历史时期降水补给形成。  相似文献   

16.
通过天然放射性的变化,放射性安全标准体系知识介绍,以及日本3.11大地震及引发的海啸和核泄漏对环境影响范围的分析,说明福岛第一核电站核泄漏对中国领域没有任何影响;以WHO安全标准衡量,在本洲岛的影响范围小于1万km2.同时通过实例讨论,强调了加强对核电站周边环境的日常监测,重视核电站周边放射性环境微小变化,是保障核安全的重要环节之一.最后介绍了大亚湾核电站周边水库水质重金属元素分析结果,并评价了核电站环境的安全性,指出具有好的安全保障体系的核能利用是清洁、环保的能源.  相似文献   

17.
The traditional role of aquifers for groundwater supply may not be appropriate in some areas of Scotland where high rainfall, low evapotranspiration, and abundant upland catchments and storage areas yield more than adequate surface water supplies. Some groundwater will always be required to satisfy specific needs but much aquifer potential will remain untapped. It is suggested that some of this potential could usefully be allocated to the disposal of wastes including oiled beach material, or the storage of heat or fluids, any of which could contaminate the aquifer. Care will be required to ensure that surface waters and other amenities are not put at risk. Resolution of conflicts between water supply and waste disposal usage of an aquifer requires guidelines; suggestions are made for their formulation and the need for legislative and planning controls is outlined.  相似文献   

18.
Uranium is a common contaminant of concern in the aquifers of nuclear waste management facilities around the world. The Electrochemical Plant (ECP) (Krasnoyarsk Krai, Russia) and the Angarsk Electrolysis Chemical Complex (AEСC) (Irkutsk Region, Russia) have produced enriched uranium and related nuclear wastes (sludge materials) since the 1960s. The results of the detailed sampling of groundwater and waste solutions near the storage sites of radioactive waste are presented elsewhere (Gaskova et al., 2011, Boguslavskiy et al., 2012). A number of experimental studies were conducted in the laboratory (a) to investigate the uranium-containing sludge leaching by regional groundwater and (b) to understand the ability of host sediments to retain major and minor components from drainage solutions as a function of the water/rock ratio (indicating the timescale over which the behavior is observed). The geochemical modeling code “HCh” was applied to simulate these processes and to predict the long-term environmental impact of residual uranium. The experimental and thermodynamic results indicate that U leaching from the sludge materials is less dependent on the specific solubility of the sludge sediments and more dependent on the solid uranium species in this sludge. The model simulation of uranium sorption in dynamic experiments was successful only in the case of the permanent filtration of less mineralized groundwater in fine-grained clay rocks. To more accurately describe the potential future release of U from the residual waste sites, a series of batch reactor experiments needs to be conducted.  相似文献   

19.
Groundwater in shallow unconsolidated sedimentary aquifers close to the Bornheim fault in the Lower Rhine Embayment (LRE), Germany, has relatively low δ2H and δ18O values in comparison to regional modern groundwater recharge, and 4He concentrations up to 1.7?×?10?4 cm3 (STP) g–1?±?2.2 % which is approximately four orders of magnitude higher than expected due to solubility equilibrium with the atmosphere. Groundwater age dating based on estimated in situ production and terrigenic flux of helium provides a groundwater residence time of ~107 years. Although fluid exchange between the deep basal aquifer system and the upper aquifer layers is generally impeded by confining clay layers and lignite, this study’s geochemical data suggest, for the first time, that deep circulating fluids penetrate shallow aquifers in the locality of fault zones, implying  that sub-vertical fluid flow occurs along faults in the LRE. However, large hydraulic-head gradients observed across many faults suggest that they act as barriers to lateral groundwater flow. Therefore, the geochemical data reported here also substantiate a conduit-barrier model of fault-zone hydrogeology in unconsolidated sedimentary deposits, as well as corroborating the concept that faults in unconsolidated aquifer systems can act as loci for hydraulic connectivity between deep and shallow aquifers. The implications of fluid flow along faults in sedimentary basins worldwide are far reaching and of particular concern for carbon capture and storage (CCS) programmes, impacts of deep shale gas recovery for shallow groundwater aquifers, and nuclear waste storage sites where fault zones could act as potential leakage pathways for hazardous fluids.  相似文献   

20.
Underground geological storage of CO2 in deep saline aquifers is considered for reducing greenhouse gases emissions into the atmosphere. However, some issues were raised with regard to the potential hazards to shallow groundwater resources from CO2 leakage, brine displacement and pressure build-up. An overview is provided of the current scientific knowledge pertaining to the potential impact on shallow groundwater resources of geological storage of CO2 in deep saline aquifers, identifying knowledge gaps for which original research opportunities are proposed. Two main impacts are defined and discussed therein: the near-field impact due to the upward vertical migration of free-phase CO2 to surficial aquifers, and the far-field impact caused by large-scale displacement of formation waters by the injected CO2. For the near-field, it is found that numerical studies predict possible mobilization of trace elements but concentrations are rarely above the maximum limit for potable water. For the far-field, numerical studies predict only minor impacts except for some specific geological conditions such as high caprock permeability. Despite important knowledge gaps, the possible environmental impacts of geological storage of CO2 in deep saline aquifers on shallow groundwater resources appears to be low, but much more work is required to evaluate site specific impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号