首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents Sr and Pb isotopic ratios and Rb, Sr, U, Th, and Pb concentrations of an ultrapotassic basaltic suite and related rocks from the central Sierra Nevada, California. The ultrapotassic suite yields a narrow range of Sr and Pb isotopic compositions (87Sr/86Sr=0.70597–0.70653; 206Pb/ 204Pb=18.862–19.018; 207Pb/204Pb=15.640–15.686; 208Pb/ 204Pb=38.833–38.950). Associated basalts containing ultramafic nodules have less radiogenic Sr (87Sr/86=0.70430–0.70521) and generally higher Rb/Sr ratios than the ultrapotassic suite. Leucitites from Deep Springs Valley, California, contain high 87Sr/86Sr (71141–0.71240) and low 206Pb/204Pb (17.169–17.234) ratios, reflecting contamination by crustal granulite.The isotopic relationships support an origin of the ultrapotassic basaltic suite by partial melting of an enriched upper mantle source. Dehydration of a gently inclined oceanic slab beneath the Sierra Nevada may have provided Ba, K, Rb, Sr, and H2O, which migrated into the overlying upper mantle lithosphere. The end of subduction 10 m.y. ago allowed increased asthenospheric heat flow into the upper mantle lithosphere. The increased heat flow enhanced fluid movement in the upper mantle and contributed towards isotopic homogenization of the upper mantle source areas. Continued heating of the enriched upper mantle caused partial melting and subsequent eruption of the ultrapotassic lavas.  相似文献   

2.
The Lovozero alkaline massif—an agpaitic nepheline syenite layered intrusion—is located in the central part of the Kola Peninsula, Russia, and belongs to the Kola ultramafic alkaline and carbonatitic province (KACP) of Devonian age. Associated loparite and eudialyte deposits, which contain immense resources of REE, Nb, Ta, and Zr, constitute a world class mineral district. Previous Sr, Nd, and Hf isotope investigations demonstrated that these rocks and mineral deposits were derived from a depleted mantle source. However, because the Sr, Nd, and Hf abundances in the Kola alkaline rocks are significantly elevated, their isotopic compositions were relatively insensitive to contamination by the underlying crustal rocks through which the intruding magmas passed. Pb occurring in relatively lower abundance in the KACP rocks, by contrast, would have been a more sensitive indicator of an acquired crustal component. Here, we investigate the lead isotopic signature of representative types of Lovozero rocks in order to further characterize their sources. The measured Pb isotopic composition was corrected using the determined U and Th concentrations to the age of the crystallization of the intrusion (376?±?28 Ma, based on a 206Pb/204Pb versus 238U/204Pb isochron and 373?±?9 Ma, from a 208Pb/204Pb versus 232Th/204Pb isochron). Unlike the previously investigated Sr, Nd, and Hf isotopes, the lead isotopic composition plot was well outside the FOZO field. The 206Pb/204Pb values fall within the depleted MORB field, with some rocks having lower 207Pb/204Pb but higher 208Pb/204Pb values. Together with other related carbonatites having both lower and higher 206Pb/204Pb values, the combined KACP rocks form an extended linear array defining either a?~2.5-Ga secondary isochron or a mixing line. The projection of this isotopic array toward the very unradiogenic composition of underlying 2.4–2.5-Ga basaltic rocks of the Matachewan superplume and associated Archean granulite facies country rock provides strong evidence that this old lower crust was the contaminant responsible for the deviation of the Lovozero rocks from a presumed original FOZO lead isotopic composition. Evaluating the presence of such a lower crustal component in the Lovozero rock samples suggests a 5–10% contamination by such rocks. Contamination by upper crustal rock is limited to only a negligible amount.  相似文献   

3.
Seven hundred and twenty-five Sr, two hundred and forty-three Nd and one hundred and fifty-one Pb isotopic ratios from seven different Mexican magmatic provinces were compiled in an extensive geochemical database. Data were arranged according to the Mexican geological provinces, indicating for each province total number of analyses, range and mean of values and two times standard deviation (2σ). Data from seven provinces were included in the database: Mexican Volcanic Belt (MVB), Sierra Madre Occidental (SMO), Baja California (BC), Pacific Ocean (PacOc), Altiplano (AP), Sierra Madre del Sur (SMS), and Sierra Madre Oriental (SMOr). Isotopic values from upper mantle and lower crustal xenoliths, basement outcrops and sediments from the Cocos Plate were also compiled. In the MVB the isotopic ratios range as follows:87Sr/86Sr 0.703003-0.70841;143Nd/144Nd 0.512496-0.513098;206Pb/204Pb 18.567-19.580;207Pb/204Pb 15.466-15.647;208Pb/204Pb 38.065-38.632. The SMO shows a large variation in87Sr/86Sr ranging from ∼0.7033 to 0.71387.143Nd/144Nd ratios are relatively less variable with values from 0.51191 to 0.51286. Pb isotope ratios in the SMO are as follows:206Pb/204Pb 18.060-18.860;207Pb/204Pb 15.558-15.636;208Pb/204Pb 37.945-38.625. PacOc rocks show the most depleted Sr and Nd isotopic ratios (0.70232-0.70567 for Sr and 0.512631-0.513261 for Nd). Pb isotopes for PacOc show the following range:206Pb/204Pb 18.049-19.910;207Pb/2047Pb 15.425-15.734;208Pb/204Pb 37.449-39.404. The isotopic ratios of the AP rocks seem to be within the range of those from the PacOc. Most samples with reported Sr and Nd isotopic data are spread within and around the “mantle array”. The SMO seems to have been formed by a mixing process between mantle derived magmas and continental crust. The MVB appears to have a larger mantle component, with AFC as the dominant petrogenetic process for the evolved rocks. There is still a need for Pb isotopic data in all Mexican magmatic provinces and of Nd isotopes in BC, AP, SMS, and SMOr.  相似文献   

4.
Analyses of the Pb isotopic compositions of plagioclase from 23 samples covering the stratigraphic thickness of the Stillwater Complex indicate a narrow range of apparent initial isotopic compositions (206Pb/ 204Pb=13.95; 207Pb/204Pb=14.95–15.01; 208Pb/204Pb=33.6). The uniformity of our data is in contrast to, but not necessarily contradictory to, other recent investigations which give indications that the complex formed by repeated injection of magmas with at least two distinct compositions that were presumably derived from different source regions. Samples from the Basal series of the complex have consistently higher 207Pb/204Pb ratios, suggesting either minor contamination from adjacent country rocks or a slight distinction between parental magmas. Apparent initial Pb isotopic compositions of the complex are very radiogenic compared to Late Archean model-mantle values, but are nearly identical to initial Pb isotopic compositions found for the the adjacent, slightly older (2.73–2.79 Ga), Late Archean crustal suite in the Beartooth Mountains. Contamination of magmas parental to the Stillwater Complex by the Late Archean crustal suite is rejected for two reasons: (1) Th and U concentrations in Stillwater rocks and plagioclase are very low (about 0.08 and 0.02 ppm respectively), yet Th/U ratios are uniform at about 4, in contrast to the highly variable (2–26) but often high Th/U ratios found for the Late Archean crustal complex; (2) it seems improbable that any contamination process would have adjusted the isotopic compositions of the diverse magmas entering the Stillwater chamber to near-identical values. The preferred hypothesis to explain the Pb isotopic data for the Stillwater Complex and the associated Late Archean crustal suite involves a major Late Archean crust-forming event that resulted in a compositionally complex crust/mantle system with relatively homogeneous and unusual Pb isotopic compositions. The parental magmas of the Stillwater Complex were generated at different levels within this crust/mantle system, before isotopic contrasts could develop by radioactive decay within compositionally discrete reservoirs. This situation limits the utility of all isotopic tracer systems in discriminating among the various mantle and crustal reservoirs that may have affected the final isotopic character of the Stillwater magmas. The late Archean crustal complex and the Stillwater Complex melts were ultimately derived from the same distinct mantle without obvious direct interaction with the Middle to Early Archean crust present in the region.  相似文献   

5.
The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs.  相似文献   

6.
Over 200 H, O, Sr, Nd, and Pb isotope analyses, in addition to geologic and petrologic constraints, document the magmatic evolution of the 28.5–19 Ma Latir volcanic field and associated intrusive rocks, which includes multiple stages of crustal assimilation, magma mixing, protracted crystallization, and open- and closed-system evolution in the upper crust. In contrast to data from younger volcanic centers in northern New Mexico, relatively low and restricted primary 18O values (+6.4 to +7.4) rule out assimilation of supracrustal rocks enriched in 18O. Initial 87Sr/86Sr ratios (0.705 to 0.708), 18O values (-2 to-7), and 206Pb/204Pb ratios (17.5 to 18.4) of metaluminous precaldera volcanic rocks and postcaldera plutonic rocks suggest that most Latir rocks were generated by fractional crystallization of substantial volumes of mantle-derived basaltic magma that had near-chondritic Nd isotope ratios, accompanied by assimilation of crustal material in two main stages: 1) assimilation of non-radiogenic lower crust, followed by 2) assimilation of middle and upper crust by inter-mediate-composition magmas that had been contaminated during the first stage. Magmatic evolution in the upper crust peaked with eruption of the peralkaline Amalia Tuff (26 Ma), which evolved from metaluminous parental magmas. A third stage of late, roofward assimilation of Proterozoic rocks in the Amalia Tuff magma is indicated by trends in initial 87Sr/86Sr and 206Pb/204Pb ratios from 0.7057 to 0.7098 and 19.5 to 18.8, respectively, toward the top of the pre-eruptive magma chamber. Highly evolved postcaldera plutons are generally fine grained and are zoned in initial 87Sr/86Sr and 206Pb/204Pb ratios, varying from 0.705 to 0.709 and 17.8 to 18.6, respectively. In contrast, the coarser-grained Cabresto Lake (25 Ma) and Rio Hondo (21 Ma) plutons have relatively homogeneous initial 87Sr/86Sr and 206Pb/204Pb ratios of approximately 0.7053 and 17.94 and 17.55, respectively. 18O values for all the postcaldera plutons overlap those of the precaldera rocks and Amalia Tuff, except for those for two late-stage rhyolite dikes associated with the Rio Hondo pluton that have 18O values of-8.6 and-9.5; these dikes are the only Latir rocks which may be largely crustal melts.Chemical and isotopic data from the Latir field suggest that large fluxes of mantle-derived basaltic magma are necessary for developing and sustaining large-volume volcanic centers. Development of a detailed model suggests that 6–15 km of new crust may have been added beneath the volcanic center; such an addition may result in significant changes in the chemical and Sr and Nd isotopic compositions of the crust, although Pb isotope ratios will remain relatively unchanged. If accompanied by assimilation, crystallization of pooled basaltic magma near the MOHO may produce substantial cumulates beneath the MOHO that generate large changes in the isotopic composition of the upper mantle. The Latir field may be similar to other large-volume, long-lived intracratonal volcanic fields that fundamentally owe their origins to extensive injection of basaltic magma into the lower parts of their magmatic systems. Such fields may overlie areas of significant crustal growth and hybridization.  相似文献   

7.
The late Neogene to Quaternary Cappadocian Volcanic Province (CVP) in central Anatolia is one of the most impressive volcanic fields of Turkey because of its extent and spectacular erosionally sculptured landscape. The late Neogene evolution of the CVP started with the eruption of extensive andesitic-dacitic lavas and ignimbrites with minor basaltic lavas. This stage was followed by Quaternary bimodal volcanism. Here, we present geochemical, isotopic (Sr–Nd–Pb and δ18O isotopes) and geochronological (U–Pb zircon and Ar–Ar amphibole and whole-rock ages) data for bimodal volcanic rocks of the Ni?de Volcanic Complex (NVC) in the western part of the CVP to determine mantle melting dynamics and magmatic processes within the overlying continental crust during the Quaternary. Geochronological data suggest that the bimodal volcanic activity in the study area occurred between ca. 1.1 and ca. 0.2 Ma (Pleistocene) and comprises (1) mafic lavas consisting of basalts, trachybasalts, basaltic andesites and scoria lapilli fallout deposits with mainly basaltic composition, (2) felsic lavas consisting of mostly rhyolites and pumice lapilli fall-out and surge deposits with dacitic to rhyolitic composition. The most mafic sample is basalt from a monogenetic cone, which is characterized by 87Sr/86Sr = 0.7038, 143Nd/144Nd = 0.5128, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68, suggesting a moderately depleted signature of the mantle source. Felsic volcanic rocks define a narrow range of 143Nd/144Nd isotope ratios (0.5126–0.5128) and are homogeneous in Pb isotope composition (206Pb/204Pb = 18.84–18.87, 207Pb/204Pb = 15.64–15.67 and 208Pb/204Pb = 38.93–38.99). 87Sr/86Sr isotopic compositions of mafic (0.7038–0.7053) and felsic (0.7040–0.7052) samples are similar, reflecting a common mantle source. The felsic rocks have relatively low zircon δ18O values (5.6 ± 0.6 ‰) overlapping mantle values (5.3 ± 0.3 %), consistent with an origin by fractional crystallization from a mafic melt with very minor continental crustal contamination. The geochronological and geochemical data suggest that mafic and felsic volcanic rocks of the NVC are genetically closely related to each other. Mafic rocks show a positive trend between 87Sr/86Sr and Th, suggesting simultaneous assimilation and fractional crystallization, whereas the felsic rocks are characterized by a flat or slightly negative variation. High 87Sr/86Sr gneisses are a potential crustal contaminant of the mafic magmas, but the comparatively low and invariant 87Sr/86Sr in the felsic volcanics suggests that these evolved dominantly by fractional crystallization. Mantle-derived basaltic melts, which experienced low degree of crustal assimilation, are proposed to be the parent melt of the felsic volcanics. Geochronological and geochemical results combined with regional geological and geophysical data suggest that bimodal volcanism of the NVC and the CVP, in general, developed in a post-collisional extensional tectonic regime that is caused by ascending asthenosphere, which played a key role during magma genesis.  相似文献   

8.
The problem of mantle metasomatism vs. crustal contamination in the genesis of arc magmas with different potassium contents has been investigated using new trace element and Sr–Nd–Pb isotopic data on the island of Vulcano, Aeolian arc. The analysed rocks range in age from 120 ka to the present day, and cover a compositional range from basalt to rhyolite of the high-K calc-alkaline (HKCA) to shoshonitic (SHO) and potassic (KS) series. Older Vulcano products (>30 ka) consist of HKCA–SHO rocks with SiO2=48–56%. They show lower contents of K2O, Rb and of several other incompatible trace element abundances and ratios than younger rocks with comparable degree of evolution. 87Sr/86Sr ranges from 0.70417 to 0.70504 and increases with decreasing MgO and compatible element contents. 206Pb/204Pb ratios display significant variations (19.31 to 19.76) and are positively correlated with MgO, 143Nd/144Nd (0.512532–0.512768), 207Pb/204Pb (15.66–15.71) and 208Pb/204Pb (39.21–39.49). Overall, geochemical and isotopic data suggest that the evolution of the older series was dominated by assimilation–fractional crystallisation (AFC) with an important role for continuous mixing with mafic liquids. Magmas erupted within the last 30 ka consist mostly of SHO and KS intermediate and acid rocks, with minor mafic products. Except for a few acid rocks, they display moderate isotopic variations (e.g. 87Sr/86Sr=0.70457–0.70484; 206Pb/204Pb=19.28–19.55, but 207Pb/204Pb=15.66–15.82), which suggest an evolution by fractional crystallisation, or in some cases by mixing, with little interaction with crustal material. The higher Sr isotopic ratios (87Sr/86Sr=0.70494–0.70587) of a few, low-volume, intermediate to acid rocks support differentiation by AFC at shallow depths for some magma batches. New radiogenic isotope data on the Aeolian islands of Alicudi and Stromboli, as well as new data for lamproites from central Italy, are also reported in order to discuss along-arc compositional variations and to evaluate the role of mantle metasomatism. Geochemical and petrological data demonstrate that the younger K-rich mafic magmas from Vulcano cannot be related to the older HKCA and SHO ones by intra-crustal evolutionary processes and point to a derivation from different mantle sources. The data from Alicudi and Stromboli suggest that, even though interaction between magma and wall rocks of the Calabrian basement during shallow level magma evolution was an important process locally, a similar interpretation can be extended to the entire Aeolian arc. Received: 27 September 1999 / Accepted: 24 May 2000  相似文献   

9.
The Tabar–Lihir–Tanga–Feni (TLTF) islands of Papua New Guinea mainly comprise high-K calc-alkaline and silica undersaturated alkaline rocks that have geochemical features typical for subduction-related magmatism. Numerous sedimentary, mafic, and ultramafic xenoliths recovered from Tubaf seamount, located on the flank of Lihir Island, provide a unique opportunity to study the elemental and isotopic composition of the crust and mantle wedge beneath the arc and to evaluate their relationships to the arc magmatism in the region. The sedimentary and mafic xenoliths show that the crust under the islands is composed of sedimentary sequences and oceanic crust with Pacific affinity. A majority of the ultramafic xenoliths contain features indicating wide spread metasomatism in the mantle wedge under the TLTF arc. Leaching experiments reveal that the metasomatized ultramafic xenoliths contain discrete labile phases that can account for up to 50% or more of elements such as Cu, Zn, Rb, U, Pb, and light REE (rare-earth elements), most likely introduced in the xenoliths via hydrous fluids released from a subducted slab. The leaching experiments demonstrated that the light REE enrichment pattern can be more or less removed from the metasomatized xenoliths and the residual phases exhibit REE patterns that range from flat to light REE depleted. Sr–Nd isotopic data for the ultramafic residues show a coupled behavior of increasing 87Sr/86Sr with decreasing 143Nd/144Nd ratios. The labile phases in the ultramafic xenoliths, represented by the leachates, show decoupling between Sr and Nd with distinctly more radiogenic 87Sr/86Sr than the residues. Both leachates and residues exhibit very wide range in their Pb isotopic compositions, indicating the involvement of three components in the mantle wedge under the TLTF islands. Two of the components can be identified as Pacific Oceanic mantle and Pacific sediments. Some of the ultramafic samples and clinopyroxene separates, however, exhibit relatively low 206Pb/204Pb at elevated 207Pb/204Pb suggesting that the third component is either Indian Ocean-type mantle or Australian subcontinental lithospheric mantle. Geochemical data from the ultramafic xenoliths indicate that although the mantle wedge in the area was extensively metasomatized, it did not significantly contribute to the isotopic and incompatible trace element compositions of TLTF lavas. Compared to the mantle samples, the TLTF lavas have very restricted Pb isotopic compositions that lie within the Pacific MORB range, indicating that magma compositions were dominated by melts released from a stalled subducted slab with Pacific MORB affinity. Interaction of slab melts with depleted peridotitic component in the mantle wedge, followed by crystal fractionation most likely generated the geochemical characteristics of the lavas in the area. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
 Cerro Panizos, a large caldera in the central Andes Mountains, produced two large dacitic ignimbrites at 7.9 Ma and 6.7 Ma and many andesitic and dacitic lava flows and domes. The older rhyodacitic Cienago Ignimbrite represents the most silicic magma erupted by the system. The younger, much larger volume dacitic Cerro Panizos Ignimbrite is very crystal-rich, containing up to 50% biotite, plagioclase, and quartz crystals in the pumice. It is weakly zoned, with most of the zoning apparent between two main cooling units. Major and most trace elements show little variation through the Cerro Panizos Ignimbrite, but the small range of composition is consistent with typical fractionation trends. Sr, Nd, and Pb isotopic ratios are very “crustal”, with initial 87Sr/86Sr values of 0.711 to 0.715, ɛNd values of –7.5 to –10.2, and nearly invariant Pb isotopic ratios (206Pb/204Pb=18.85, 207Pb/204Pb=15.67, and 208Pb/204Pb=38.80). The limited zonation observed in the Cerro Panizos Ignimbrite is explained by impeded crystal settling due to high crystal content. The magma body was a crystal-liquid mush before ascent to the pre-eruption crustal levels. Crystals formed, but did not separate easily from the magma. Limited fractionation of plagioclase and biotite may have occurred, but the composition was largely controlled by lower crustal MASH processes. AFC modeling shows that the Cerro Panizos magmas resulted from a mixture of roughly equal proportions of late Miocene mantle-derived basalts and melts from ∼1.0 Ga (Grenville age) lower crust. This occurred in a MASH zone in the lower crust, and set the crustal isotopic ratios observed in the Cerro Panizos magmas. The great thickening of the crust beneath the central Andes Mountains sent upper and middle crustal rock types to lower crustal (and deeper) depths, and this explains the “upper crustal” isotopic signatures of the Cerro Panizos rocks. Minor upper crustal assimilation of early Miocene volcanic or subvolcanic rocks produced much of the isotopic variation seen in the system. The nearly invariant high Pb isotopic values and high Pb concentrations indicate that Pb came almost entirely from the crustal source, and was little altered by any subsequent upper crustal assimilation. This Pb signature is isotopically similar to that of the southern Bolivian Tin Belt, suggesting a widely distributed Pb source. The great difference between compositions of Miocene and Quaternary central Andean volcanic rocks is explained by crustal thickening in early Miocene time leading to abundant lower crustal water and associated fluxed melting during the time of the earlier eruptions. The lower crust dried out considerably by Quaternary time, so less crustal component is present. Received: 22 December 1994 / Accepted: 13 September 1995  相似文献   

11.
28 samples of Cenozoic volcanic rocks collected from Shandong Province have been dated by K-Ar method. They are mainly Neogene with an age range of 4–19 m. y. The basalts from Linqu and Yishui in west Shandong Province are Miocene and those from Penglai and Qixia in east Shandong Province are Miocene and Pliocene in age. The basalts from Wudi in north Shandong Province are Middle-Early Pleistocene in age. In each area the duration of volcanic eruption was estimated at about 2–3 m. y. Pb and Sr isotopic compositions and U, Th, Pb, Rb, Sr, and major elements in most of the samples were determined. The isotopic compositions are:206Pb/204Pb—16.92-18.48,207Pb/204Pb—15.30-15.59,208Pb/204Pb—37.83-38.54, and (87Sr/86Sr)i—0.70327-0.70632. There are some positive or negative linear correlations between206Pb/204Pb and207Pb/204Pb, Pb isotopes and Pb content, Pb isotopes and Sr isotopes, and Sr isotopes and other elements. The basaltic rocks from east and west Shandong Province have somewhat differences in isotopic composition and element content. The basalts probably are products of multi-stage evolution of the mantle. They have preserved the primary features of the source, although they were influenced, to some extent, by the contamination of crustal materials.  相似文献   

12.
浙闽沿海大面积出露的中生代酸性火山岩区有少量早白垩世玄武岩分布,它们具典型钾富集和铌等元素亏损特征,其同位素组成表现为较高ISr(0.7055-0.7106)、低的εNd(1.2--10.6,大多介于-3.2--10.6之间)及富放射性成因铅(206Pb/204Pb=18.355-18.726,207Pb/204Pb=15.455-15.799,208Pb/204Pb=38.530-39.319).这些特征表明玄武岩源区为一富集型的陆下岩石圈地幔,由古老的俯冲地壳物质再循环进入并交代地幔而形成。没有证据表明本区早白垩世基性和酸性岩浆之间发生过大规模的化学混合,但不排除同位素之间的交换以及局部的化学和机械混合。壳-幔混合与地壳混染仅在少数玄武岩的形成过程中起着较重要的作用。  相似文献   

13.
The Pb and Sr isotope ratios of Plio-Pleistocene volcanic rocks from the Aleutian volcanic arc are used as tracers of the lithospheric subduction process at the converging Pacific and Bering plates. Aleutian arc lavas do not have the same Pb isotopic compositions as volcanic rocks of the subducted Pacific ocean crust or the nearby Pribilof Islands, but appear to contain an ‘old continental crustal component’ with high 207Pb/204Pb ratio, as has been found in some other volcanic arcs.87Sr/86Sr ratios in the Aleutian volcanic arc rocks average 0.70322, slightly higher than fresh volcanic rocks from normal ridge segments, but within the range of values from ‘Icelandic’ ridge segments, oceanic islands and the Pribolof Islands. The Pb and Sr isotopic compositions of Aleutian lavas show a positive correlation and the range of values does not change for volcanoes distributed along strike in the arc, even though the crustal type in the hanging wall of the Benioff zone changes from oceanic in the west to continental in the east. Since the basement of the continental arc segment is older than the basement of the oceanic segment, and probably has a different isotopic character, the constancy of isotopic ratios along the arc argues against contamination by wall rocks of the type exposed in the arc.A sufficient explanation for the isotopic data is the mixture of several per cent of continent-derived sediment with melt derived from the underthrust oceanic crust and overlying mantle. This small amount of contaminant is difficult to document by geophysical observations. Such a model implies extensive recycling of Ba, Pb, K and Rb through volcanism at convergent plate margins like the Aleutians.  相似文献   

14.
We conducted geochemical and isotopic studies on the Oligocene–Miocene Niyasar plutonic suite in the central Urumieh–Dokhtar magmatic belt, in order better to understand the magma sources and tectonic implications. The Niyasar plutonic suite comprises early Eocene microdiorite, early Oligocene dioritic sills, and middle Miocene tonalite + quartzdiorite and minor diorite assemblages. All samples show a medium-K calc-alkaline, metaluminous affinity and have similar geochemical features, including strong enrichment of large-ion lithophile elements (LILEs, e.g. Rb, Ba, Sr), enrichment of light rare earth elements (LREEs), and depletion in high field strength elements (HFSEs, e.g. Nb, Ta, Ti, P). The chondrite-normalized rare earth element (REE) patterns of microdiorite and dioritic sills are slightly fractionated [(La/Yb)n = 1.1–4] and display weak Eu anomalies (Eu/Eu* = 0.72–1.1). Isotopic data for these mafic mantle-derived rocks display ISr = 0.70604–0.70813, ?Nd (microdiorite: 50 Ma and dioritic sills: 35 Ma, respectively) = +1.6 and ?0.4, TDM = 1.3 Ga, and lead isotopic ratios are (206Pb/204Pb) = 18.62–18.57, (207Pb/204Pb) = 15.61–15.66, and (208Pb/204Pb) = 38.65–38.69. The middle Miocene granitoids (18 Ma) are also characterized by relatively high REE and minor Eu anomalies (Eu/Eu* = 0.77–0.98) and have uniform initial 87Sr/86Sr (0.7065–0.7082), a range of initial Nd isotopic ratios [?Nd(T)] varying from ?2.3 to ?3.7, and Pb isotopic composition (206Pb/204Pb) = 18.67–18.94, (207Pb/204Pb) = 15.63–15.71, and (208Pb/204Pb) = 38.73–39.01. Geochemical and isotopic evidence for these Eocene–Ologocene mafic rocks suggests that the magmas originated from lithospheric mantle with a large involvement of EMII component during subduction of the Neotethyan ocean slab beneath the Central Iranian plate, and were significantly affected by crustal contamination. Geochemical and isotopic data of the middle Miocene granitoids rule out a purely crustal-derived magma genesis, and suggest a mixed mantle–crustal [MASH (melting, assimilation, storage, and homogenization)] origin in a post-collision extensional setting. Sr–Nd isotope modelling shows that the generation of these magmas involved ~60% to 70% of a lower crustal-derived melt and ~30% to 40% of subcontinental lithospheric mantle. All Niyasar plutons exhibit transitional geochemical features, indicating that involvement of an EMII component in the subcontinental mantle and also continental crust beneath the Urumieh–Dokhtar magmatic belt increased from early Eocene to middle Miocene time.  相似文献   

15.
Based on the petrological studies of wall rocks, mineralized rocks, ores and veins from the Laowangzhai gold deposit, it is discovered that with the development of silification, carbonation and sulfidation, a kind of black opaque ultracrystalline material runs through the space between grains and amphibole cleavages, which is the product of fast condensing consolidation with magma mantle fluids turning into hydrothermal crustal fluids in the process of mineralization and alteration. It is thought that the water in ore-forming fluids mainly derived from magmatic water through research on H-O isotopes, and C as well as S isotopic compositions, has clear mantle-derived characteristics, and rock (mine) stones contain high 87Sr/86 Sr ratios, low 143Nd/144 Nd ratios and high 206Pb/204 Pb ratios, which also reflects the ore-forming fluids were derived from the metasomatically enriched mantle. In combination with the features of H-O-C-S isotopes and Sr-Nd-Pb isotopes described above, the ore-forming fluids of the Laowangzhai gold deposit in the northern part of the Ailao Mountains were derived mainly from the deep interior of the mantle, and their properties were transformed from magma fluids to hydrothermal fluids in the course of metasomatism and alteration, which initiated crust-mantle contamination simultaneously to be in favor of mineralization.  相似文献   

16.
《International Geology Review》2012,54(12):1389-1400
Post-orogenic mafic dikes are widespread across eastern Shandong Province, North China Craton, eastern China. We here report new U–Pb zircon ages and bulk-rock geochemical and Sr–Nd–Pb isotopic data for representative samples of these rocks. LA-ICP-MS U–Pb zircon analysis of two mafic dike samples yields consistent ages of 118.7 ± 0.25 million years and 122.4 ± 0.21 million years. These Mesozoic mafic dikes are characterized by high (87Sr/86Sr) i ranging from 0.7082 to 0.7087, low ?Nd(t) values from??17.0 to??17.5, 206Pb/204Pb from 17.14 to 17.18, 207Pb/204Pb from 15.44 to 15.55, and 208Pb/204Pb from 37.47 to 38.20. Our results suggest that the parental magmas of these dikes were derived from an ancient, enriched lithospheric mantle source that was metasomatized by foundered lower crustal eclogitic materials prior to magma generation. The mafic dikes underwent minor fractionation during ascent and negligible crustal contamination. Combined with previous studies, these findings provide additional evidence that intense lithospheric thinning beneath eastern Shandong occurred at ~120 Ma, and that this condition was caused by the removal/foundering of the lithospheric mantle and lower crust.  相似文献   

17.
There has been little research on geochemistry and isotopic compositions in tholeiites of the Northern region from the Paraná Continental Flood Basalts (PCFB), one of the largest continental provinces of the world. In order to examine the mantle sources involved in the high-Ti (Pitanga and Paranapanema) basalt genesis, we studied Sr, Nd, and Pb isotopic systematics, and major, minor and incompatible trace element abundances. The REE patterns of the investigated samples (Pitanga and Paranapanema magma type) are similar (parallel to) to those of Island Arc Basalts' REE patterns. The high-Ti basalts investigated in this study have initial (133 Ma) 87Sr/86Sr ratios of 0.70538–0.70642, 143Nd/144Nd of 0.51233–0.51218, 206Pb/204Pb of 17.74–18.25, 207Pb/204Pb of 15.51–15.57, and 208Pb/204Pb of 38.18–38.45. These isotopic compositions do not display any correlation with Nb/Th, Nb/La or P2O5/K2O ratios, which also reflect that these rocks were not significantly affected by low-pressure crustal contamination. The incompatible trace element ratios and Sr–Nd–Pb isotopic compositions of the PCFB tholeiites are different to those found in Tristan da Cunha ocean island rocks, showing that this plume did not play a substantial role in the PCFB genesis. This interpretation is corroborated by previously published osmium isotopic data (initial γOs values range from +1.0 to +2.0 for high-Ti basalts), which also preclude basalt generation by melting of ancient subcontinental lithospheric mantle. The geochemical composition of the northern PCFB may be explained through the involvement of fluids and/or small volume melts related to metasomatic processes. In this context, we propose that the source of these magmas is a mixture of sublithospheric peridotite veined and/or interlayered with mafic components (e.g., pyroxenites or eclogites). The sublithospheric mantle (dominating the osmium isotopic compositions) was very probably enriched by fluids and/or magmas related to the Neoproterozoic subduction processes. This sublithospheric mantle region may have been frozen and coupled to the base of the Parana basin lithospheric plate above which the Paleozoic subsidence and subsequent Early Cretaceous magmatism occurred.  相似文献   

18.
The mid‐Cretaceous Spences Bridge Group (SBG) comprises a series of basaltic to rhyolitic lavas and related volcaniclastic rocks (Pimainus Formation) overlain by a succession of mainly amygdaloidal andesites (Spius Formation) related to the closure of the Methow–Tyaughton basin and accretion of the Insular terrane in the North American Cordillera. Geochemical variation in the SBG is related primarily to metasomatic processes in the mantle wedge. Pimainus lavas include low‐ to high‐K, tholeiitic and calc‐alkaline types, and have isotopic compositions (εNd(100Ma) = + 5.2 to + 7.0, εSr(100Ma) = − 10 to − 20, 206Pb/204Pb = 18.82 to 18.91, 207Pb/204Pb = 15.55 to 15.60, 208Pb/204Pb = 38.24 to 38.43) between the ranges for primitive arcs and accreted terrane crust. Crustal sources are identified only for some low–medium K dacite and rhyolite compositions. The occurrence of intermediate compositions with high MgO contents (up to 6 wt%) and the presence of adakitic trace element features in medium–high K felsic lavas attests to metasomatism of the mantle wedge by slab melts during Pimainus volcanism. Spius lavas have comparable K2O and Pb isotopic compositions to the Pimainus, even higher MgO (up to 9.2 wt%), and display a mild intraplate character in having up to 0.6 wt% P2O5, 15 ppm Nb, and 240 ppm Zr. Spius Nd−Sr isotopic compositions (εNd(100Ma) = + 5.3 to + 6.9, εSr(100Ma) = − 14 to − 25) define an array extending from Pimainus to alkaline seamount compositions. The low εSr values, elevated high field strength element contents, and moderate silica contents suggest Spius volcanism was related to the introduction of small melt fractions from the asthenosphere into the mantle wedge which had previously generated Pimainus melts. The range of compositional types in the Pimainus Formation constrains tectonic scenarios to include an elevated slab thermal regime, likely from approach of an ocean ridge system toward the continental margin. Spius volcanism may have been generated by asthenospheric upwelling triggered by slab window development or slab‐hinge roll‐back on closure of the Methow–Tyaughton basin. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
 Alkali basalts and nephelinites from the volcanic province of northern Tanzania contain pyroxene and nepheline that show evidence for chemical and/or isotopic disequilibria with their host magmas. Olivine, pyroxene, nepheline and plagioclase all appear to be partially xenocrystic in origin. Five whole rock/mineral separate pairs have been analyzed for Sr, Nd, and Pb isotopic compositions. The 206Pb/204Pb ratios are distinct by as much as 20.94 (whole rock) vs. 19.10 (clinopyroxene separate). The Sr and Nd isotopic disequilibria vary from insignificant in the case of nepheline, to Δ 87Sr/86Sr of 0.0002 and ΔɛNd of 0.7 in the case of clinopyroxene. The mineral chemistry of 25 samples indicates the ubiquitous presence of minerals that did not crystallize from a liquid represented by the host rock. The northern Tanzanian magmas are peralkaline and exhibit none of the xenocrystic phases expected from crustal assimilation. The disequilibria cannot be the result of mantle source variations. Rather the xenocrystic phases present appear to have been derived from earlier alkali basaltic rocks or magmas that were contaminated by the crust. Material from this earlier magma was then mixed with batches of magma that subsequently erupted on the surface. Disequilibrium in volcanic rocks has potentially serious consequences for the use of whole rock data to identify source reservoirs. However, mass balance calculations reveal that the 206Pb/204Pb isotopic compositions of the erupted lavas were changed by less than 0.25% as a result of this indirect crustal contamination. Received: 15 February 1995 / Accepted: 4 May 1996  相似文献   

20.
The western Anatolian volcanic province formed during Eocene to Recent times is one of the major volcanic belts in the Aegean–western Anatolian region. We present new chemical (whole-rock major and trace elements, and Sr, Nd, Pb and O isotopes) and new Ar/Ar age data from the Miocene volcanic rocks in the NE–SW-trending Neogene basins that formed on the northern part of the Menderes Massif during its exhumation as a core complex. The early-middle Miocene volcanic rocks are classified as high-K calc-alkaline (HKVR), shoshonitic (SHVR) and ultrapotassic (UKVR), with the Late Miocene basalts being transitional between the early-middle Miocene volcanics and the Na-alkaline Quaternary Kula volcanics (QKV). The early-middle Miocene volcanic rocks are strongly enriched in large ion lithophile elements (LILE), have high 87Sr/86Sr(i) (0.70631–0.71001), low 143Nd/144Nd(i) (0.512145–0.512488) and high Pb isotope ratios (206Pb/204Pb = 18.838–19.148; 207Pb/204Pb = 15.672–15.725; 208Pb/204Pb = 38.904–39.172). The high field strength element (HFSE) ratios of the most primitive early-middle Miocene volcanic rocks indicate that they were derived from a mantle source with a primitive mantle (PM)-like composition. The HFSE ratios of the late Miocene basalts and QKV, on the other hand, indicate an OIB-like mantle origin—a hypothesis that is supported by their trace element patterns and isotopic compositions. The HFSE ratios of the early-middle Miocene volcanic rocks also indicate that their mantle source was distinct from those of the Eocene volcanic rocks located further north, and of the other volcanic provinces in the region. The mantle source of the SHVR and UKVR was influenced by (1) trace element and isotopic enrichment by subduction-related metasomatic events and (2) trace element enrichment by “multi-stage melting and melt percolation” processes in the lithospheric mantle. The contemporaneous SHVR and UKVR show little effect of upper crustal contamination. Trace element ratios of the HKVR indicate that they were derived mainly from lower continental crustal melts which then mixed with mantle-derived lavas (~20–40%). The HKVR then underwent differentiation from andesites to rhyolites via nearly pure fractional crystallization processes in the upper crust, such that have undergone a two-stage petrogenetic evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号