首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the northern-central portion of the Sergipano Orogenic System there is an expressive Neoproterozoic granitic magmatism with high-K calc-alkaline and shoshonitic affinities. The Glória Norte Stock (GNS, 45 km2) is the most important representative of the shoshonitic magmatism in one the domains of the Sergipano System, the Macururé. The contacts of the stock with the host metasedimentary rocks are discordant and steep, with generation of amphibolite facies hornfels. The GNS is made up of predominantly porphyritic quartz-monzonite and monzogranite. It shows a magmatic flow foliation defined by oriented mafic enclaves and feldspar phenocrysts, without evidence for solid state regional deformation. Mafic microgranular enclaves (MME) are abundant and present different sizes and shapes. Minette and biotite diopside cumulate enclaves are also present. Coexistence between two different magmas is indicated by crystal corrosion and dissolution textures, compositional zoning of feldspar and presence of clusters of mafic minerals. Grain size decrease towards the rims of the MME indicates fast cooling of small drops of mafic magma, due to temperature contrast with the felsic magma. The monzonites and granites of the GNS have shoshonitic affinity, and the enclaves are related to ultrapotassic suites (MgO > 3%, K2O > 3%). LREE are enriched as compared to HREE, and there are remarkable negative anomalies of Ta, Nb, Ti, P, Sr and Eu, mostly in the enclaves. The MME have been probably formed from a mantellic magma with shoshonitic affinity. The observed evolution from MME to quartz-monzonites and monzogranites is essentially linked to a process of fractional crystallization. The relations between Ta/Yb and Th/Yb ratios suggest enriched mantle as a possible source of this magmatism. The relative enrichment in Rb, Th, Ce and Sm indicates that magma was generated in post-collisional events. The U-PbSHRIMP age of 588 ± 5 Ma in zircon crystals indicates that the emplacement of the GNS represents a post-collisional magmatism, marking the end of collisional processes in the Macururé Domain.  相似文献   

2.
滇西剑川富碱岩浆岩位于青藏高原东南缘的三江南段,是金沙江-红河富碱岩浆岩带的重要组成部分。剑川富碱岩浆岩包括花岗岩和正长岩两类岩石,前者主要有花岗斑岩和石英二长斑岩,后者主要是正长斑岩和粗面岩。本文对剑川富碱岩浆岩进行了主微量元素、锆石U-Pb年代学和Sr-Nd-Hf同位素特征研究。锆石U-Pb测年结果显示,剑川花岗岩结晶年龄为35. 1~36. 1Ma,正长岩结晶年龄为35. 7~35. 8Ma,均形成于始新世。花岗斑岩和石英二长斑岩的SiO_2含量为67. 92%~69. 93%,K_2O/Na_2O比值介于0. 86~1. 22,具有高钾钙碱性特征;正长斑岩和粗面岩的SiO_2含量为53. 94%~63. 51%,K_2O/Na_2O比值介于1. 30~2. 68,属于钾玄质岩石系列。两类岩石都富集轻稀土元素(LREE)和大离子亲石元素(LILE),相对亏损高场强元素(HFSE)。其中,花岗斑岩和石英二长斑岩有着较高的Sr、Sr/Y、La/Yb值和低的Y、Yb含量,具有埃达克质岩浆属性。结合Sr-Nd-Hf同位素研究认为,滇西剑川地区花岗岩起源于增厚的镁铁质新生下地壳部分熔融,正长岩是由交代富集的岩石圈地幔熔融产生的基性岩浆演化而来的产物。滇西剑川新生代富碱岩浆活动是对印度与欧亚板块晚碰撞阶段,岩石圈地幔发生对流减薄和软流圈物质上涌过程的响应。  相似文献   

3.
东安金矿床是环太平洋成矿域的一处大型低硫型浅成低温热液金矿床,赋存于燕山期碱长花岗岩和中酸性火山岩中。本文通过LA-ICP-MS锆石U-Pb同位素定年,获得赋矿的碱长花岗岩和光华组流纹岩的加权平均年龄分别为183.2±1.3Ma和109.1±1.2Ma,表明碱长花岗岩的侵位年代为早侏罗世,光华组火山岩的喷出时代为早白垩世。在地球化学组成上,东安碱长花岗岩具高硅、高钾和低磷的特征,富集Rb、Th和K,亏损Nb、Ta、Sr、P和Ti,属于高分异的I型花岗岩,是太平洋板块俯冲作用的产物。光华组中酸性火山岩富集Rb、Th、U和K,亏损Nb、Ta、P和Ti,为太平洋板块俯冲方向发生改变后的岩石圈伸展减薄环境下,镁铁质下地壳部分熔融而形成的。东安金矿床成矿年龄(107~108Ma)与光华组火山岩的成岩年龄在误差范围内一致,表明成矿与成岩作用为同一地质事件,均形成于早白垩世太平洋板块俯冲背景下的拉张构造环境中。结合区内其他浅成低温热液型金矿床的赋矿围岩特征,认为早白垩世陆相火山岩是东北地区寻找浅成低温热液金矿床的有利场所。  相似文献   

4.
The Huangyangshan pluton occurs in the Kalamaili region which is situated in the central part of the Central Asian Orogenic Belt, East Junggar, Xinjiang (NW China). The granitoid rocks are composed of medium-grained biotite (richterite, arfvedsonite) alkali-feldspar granite, fine grained arfvedsonite alkali-feldspar granite and microgranular enclaves. The granites have a pronounced A-type affinity: they are metaluminous to weakly peraluminous and calc-alkaline to alkaline in composition with high concentrations of Na2O + K2O varying from 8.4 to 9.2 wt.%, high FeOt/MgO and 10,000 Ga/Al ratios, low abundances of CaO, MgO and TiO2, enrichment in some LILEs (such as Rb and Th) and HFSEs (such as Zr, Y and REEs except Eu), depletion in Sr and Ba. Moreover, they display characteristic tetrad REE patterns and non-CHARAC trace element behavior, which is well demonstrated in highly differentiated rocks with strong hydrothermal interaction. The U–Pb zircon LA-ICP-MS ages of the host rocks and enclaves are 311 ± 5 Ma and 300 ± 6 Ma, respectively. The similar of these two ages suggests that host rocks and enclaves formed at a same time. Furthermore, the time span closely corresponds to known ages of post-collisional A-type granitoids of the Junggar terrane. Geochemical, geochronological and isotopic data (εNd(T) in the range +5.2 to +6.6 and ISr mostly in the range 0.7031–0.7041) suggest that the Huangyangshan intrusions, and the enclaves are of mixed origin and are most probably formed by the interaction between the lower crust- and mantle-derived magmas in the Late Carboniferous post-collisional tectonic setting (A2 type granite). The magma for the Huangyangshan granites was derived by partial melting of an enriched subcontinental lithospheric mantle (SCLM) that was modified by slab-derived components from an earlier subduction event, this melting resulted from heat supplied from the asthenosphere through an opening created during the break-off of an oceanic slab. This further proves the important contribution of the Late Paleozoic granitic magmatism in terms of vertical crustal growth in northern Xinjiang.  相似文献   

5.
This paper presents detailed SHRIMP zircon U–Pb chronology, mineral chemistry, major and trace element, and Sr–Nd–Hf isotope geochemistry of the Datong pluton and its quenched enclaves from the western Kunlun orogen, northwest China, in an attempt to achieve a better understanding on the origin of diverse arc magmas. The Datong host granitoids are intermediate to acid in composition (SiO2?=?57.5?~?73.1 wt.%), and exhibit high-K calc-alkaline to shoshonitic affinities. The quenched enclaves are silica-rich ultrapotassic rocks. Detailed SHRIMP zircon U–Pb dating indicates that the Datong pluton was emplaced in Ordovician time (473.4–447.7 Ma), which places the Datong pluton in an active continental margin setting, rather than a syn-collision setting of Early Silurian age. The Datong host granitoids were derived by partial melting of subducted sediments, with the subsequent melt interacting with the overlying mantle wedge during its ascent. Partial melting of the veined mantle wedge hybridized by sediment-derived melts generated the silica-rich ultrapotassic magma, which was injected into the Datong granitoid magma chamber and quenched, resulting in enclaves hosted by granitoids. This contribution provides evidence that arc magmas can be derived directly by partial melting of subducted sediments, which is helpful to further understand the origin of diverse arc magmas.  相似文献   

6.
Stratigraphic and structural observations indicate that the Encounter Bay Granites concordantly intruded the youngest formations of the Kanmantoo Group in the Mount Lofty Ranges metamorphic belt prior to the culmination of the first phase of folding and associated schistosity development recorded during the early Palaeozoic Delamerian Orogeny. Metamorphic textures in the metasediments of the Kanmantoo Group suggest that cordierite crystallized locally near the granites prior to and during the F 1 folding, whereas andalusite crystallized on a regional scale during the F 1 folding and in the post‐F 1 and pre‐F 2 static phase.

Rb‐Sr isotope data for total‐rock, feldspar, and muscovite samples of the meta‐sediment‐contaminated border facies and the uncontaminated inner facies of the Encounter Bay Granites indicate that the granites were emplaced between 515 ± 8 m.y. and 506 ± 6 m.y. ago in the Late Cambrian epoch. Rb‐Sr and K‐Ar data for biotite from the granites record variable radiogenic Sr loss until about 469 m.y. ago and comparatively uniform radiogenic Ar loss until 460–475 m.y. ago. Rb‐Sr data for Kanmantoo Group metasediments and a metamorphic pegmatite indicate crystallization ages between 459–463 m.y. ago. Thus the regional andalusite‐grade temperatures and pressures, which appear responsible for the leakage of radiogenic Sr and Ar from biotite in the granites and the redistribution of Rb and Sr in the metasediments, seem to have persisted for some 50 m.y. after emplacement of the granites until the Early Ordovician epoch. There is evidence for further leakage of Sr and Ar from biotite in deformed granites from the margins of the intrusion more than 50 m.y. afterwards in the Late Silurian or Early Devonian, possibly during the F 2 folding.

Geological observations and radiometric data for other granitic rocks in southeastern South Australia, including the Palmer Granite, are consistent with this structural and metamorphic history of the Encounter Bay region.  相似文献   

7.
Palaeozoic rapakivi granites occur in the western segment of the China Central Orogenic System. Exhibiting typical rapakivi texture, these granites contain magmatic microgranular enclaves of intermediate compositions. SHRIMP zircon U–Pb ages for the granites and enclaves are 433 ± 5 Ma and 433 ± 3 Ma, respectively. The rapakivi granites are magnesian to ferroan, calc-alkalic to alkalic, and are characterized by high FeOt/(FeOt + MgO) (0.74–0.91) and Ga/Al ratios, and SiO2, Na2O + K2O and rare earth element (apart from Eu) contents, but low CaO, Ba, and Sr contents. These are typical A-type granite geochemical features. The granites and enclaves exhibit a uniform decrease in TiO2, CaO, Na2O, K2O, FeO, and MgO with increasing SiO2, and both lithologies have similar trace element patterns. Whole-rock ?Nd(t) values vary from??9.2 to??8.7 for the granites and from??9.0 to??8.4 for the enclaves, but zircon ?Hf(t) values vary more widely from??5.8 to??0.2 and??4.6 to +5.1, respectively. Our data suggest that the granites and enclaves have crystallized from different magmas. The granites appear to have been derived from old continental crust, whereas the enclaves required a source having a juvenile component. The spherical shape and undeformed nature of the granites and their geochemical characteristics, coupled with the (ultra)-high pressure metamorphism and evolution of Palaeozoic granitoid magmatism in the North Qaidam orogen, indicate that the rapakivi granites were generated in a post-collisional setting. These rocks are therefore an example of Palaeozoic rapakivi granites emplaced in a post-collisional, extensional orogenic setting.  相似文献   

8.
The origin of microgranitoid enclaves in granitic plutons has long been debated (hybrid magma blobs vs. refractory restites or cognate fragments). This article presents detailed petrography, SHRIMP zircon U–Pb chronology, bulk-rock major and trace element analyses, and Sr–Nd isotope and in situ zircon Hf isotopic geochemistry for microgranitoid enclaves within two Late Triassic granitic plutons in the Qinling orogen. Zircon U–Pb dating shows that the enclaves formed during the Carnian (222.5 ± 2.1 to 220.7 ± 1.9 Ma) coeval with their host granitoids (220.0 ± 2.0 to 218.7 ± 2.4 Ma). Field and petrological observations (e.g. double enclaves, xenocrysts, acicular apatite, and poikilitic K-feldspar or quartz) suggest that the enclaves are globules of a mantle-derived more mafic magma that was injected into and mingled with the host magma. The enclaves are mainly ultrapotassic, distinct from the host granitoids that have high-K calc-alkaline bulk-rock compositions. Although the enclaves have closely similar bulk-rock Sr–Nd isotope [initial 87Sr/86Sr?=?0.7046–0.7056, ?Nd (T)?=?–0.3 to –5.0] and in situ zircon Hf isotope [?Hf (T)?=?–1.5 to?+2.9] ratios as the granitoids [initial 87Sr/86Sr?=?0.7042–0.7059, ?Nd (T)?=?–0.6 to –6.3, ?Hf (T)?=?–2.2 to?+1.6], chemical relationships including very different bulk-rock compositions at a given SiO2 content lead us to interpret the isotopic similarities as reflecting similar but separate isotopic source rocks. Detailed elemental and isotopic data suggest that the enclaves and the host granitoids were emplaced in a continental arc environment coupled with northward subduction of the Palaeo-Tethyan oceanic crust. Partial melting of subducted sediments triggered by dehydration of the underlying igneous oceanic crust, with melts interacting with the overlying mantle wedge, formed high-K calc-alkaline granitic magmas, whereas partial melting of diapiric phlogopite-pyroxenites, solidified products of the same subducting sediment-derived melts, generated ultrapotassic magmas of the microgranitoid enclaves. Our new data further confirm that in the Late Triassic time the Qinling terrane was an active continental margin rather than a post-collisional regime, giving new insights into the tectonic evolution of this orogen.  相似文献   

9.
The mean (87Sr/86Sr) and mean (87Rb/86Sr) ratios of the intrusive granites from the North and South of the Orogen's Central Zone plot on straight lines. These are interpreted as areal isochrons indicating the time of last Sr isotope homogenization 526 and 571 Ma ago in the respective source rocks.Initial (87Sr/86Sr) and mean (87Rb/86Sr) ratios of approximately coeval granites of the main magmatic pulses in the North (470 Ma) and in the South (520 Ma) line up along isochrons suggesting that in both cases 60 Ma passed after the homogenization in the protolith before large scale intrusions took place.The data require that the intrusions have preserved the Rb/Sr ratios of their source rocks permitting only very little assimilation or fractionation.The source rocks in the North and South had rather unradiogenic Sr 526 and 571 Ma ago, respectively. At Ri0.7066 all presently known Damaran metasediments and metavolcanics as well as the basement must be excluded as the protoliths. A hypothetical source with a large proportion of low (87Sr/86Sr) volcanic material is required. In the center, on the other hand, the Sr isotope ratios are more radiogenic and derivation from common Damaran metasediments is a distinct possibility.The total rock 18O values show an unusual spread from 7.1 to 15.2, the majority being very heavy. This excludes granulites and requires sediments or heavily altered volcanics as source rocks. A plot of 18O vs. initial Sr isotope ratios of the granites from the center which could have been derived from Damaran metasediments has a very clear negative slope. No trend is visible for the southern granites. Of the northern granites the older group shows a negative, the younger group a positive correlation. This is interpreted as indicating mainly altered volcanics (perhaps spilites) for the older and a mixture of volcanogenic and metasedimentary rocks as the source for the younger group. The high 18O values show that the granites are crustal remelts.  相似文献   

10.
The late Paleozoic adakitic rocks are closely associated with the shoshonitic volcanic rocks in the western Tianshan Mountains, China, both spatially and temporally. The magmatic rocks were formed during the period from the middle to the late Permian with isotopic ages of 248-268 Ma. The 87Sr/86Sr initial ratios of the rocks are low in a narrow variation range (-0.7050). The 143Nd/144Nd initial ratios are high (-0.51240) with positive εND(t) values (+1.28-+4.92). In the εNd(t)-(87Sr/86Sr)i diagram they fall in the first quadrant. The association of the shoshonitic and adakitic rocks can be interpreted by a two-stage model: the shoshonitic volcanic rocks were formed through long-term fractional crystallization of underplated basaltic magma, while the following partial melting of the residual phases formed the adakitic rocks.  相似文献   

11.
东南沿海分布大面积的白垩纪晚期侵入岩。这些岩石可分为两期:其中115~100Ma以钙碱性系列岩石为主,岩石组合为辉长岩-闪长岩-花岗闪长岩-二长花岗岩-碱性长石花岗岩;而100~86Ma的岩石为碱性系列,岩石组合为石英二长斑岩-正长斑岩-碱性长石花岗岩。115~100Ma的辉长岩以角闪辉长岩为主,具有极高的CaO、MgO和Al_(2)O_(3)含量,具有极低的SiO_(2)(42.9%~53.8%)、全碱(K_(2)O+Na_(2)O:0.86%~5.28%)、Ba、Nb、Th、Rb和Zr含量,也具有极低的FeO^(T)/MgO、La/Yb和Zr/Hf比值,较高的Eu/Eu^(*)、Sr/Y比值和Sr含量,为基性-超基性堆晶岩。与辉长岩同期的闪长岩和细粒暗色包体具有较高的SiO_(2)(50.34%~63.68%),较低的CaO、P_(2)O_(5)、MgO、Al_(2)O_(3)含量,相对低的Eu/Eu^(*)和Sr/Y比值,变化较大的La/Yb和Zr/Hf比值,代表了从基性岩浆储库中抽取的富硅熔体。115~100Ma的花岗闪长岩和二长花岗岩类岩石为准铝质岩石,SiO_(2)含量变化较大(61.7%~75.3%),具有较低的FeO^(T)/MgO、Ga/Al比值和Nb、Zr及Nb+Zr+Ce+Y元素含量,显示出典型I型花岗岩的特征。这些花岗岩具有相对高的La/Yb、Eu/Eu^(*)和Zr/Hf比值和高的Sr、Ba和Zr含量。结合岩相学特征,这些花岗岩为堆晶花岗岩。而115~100Ma的碱性长石花岗岩具有极高的SiO_(2)含量(大于75%),低的Eu/Eu^(*)、La/Yb、Zr/Hf和Sr/Y比值,具有低的Ba、Sr和Zr含量和高的Rb、Nb、Y和Th含量和Rb/Sr比值,表明这些花岗岩是由富硅岩浆储库中抽离的高硅熔体侵入地壳形成。100~86Ma期间形成的二长斑岩和正长斑岩具有极高的全碱含量,可以达到8%~12%,其SiO_(2)主要集中在60%~70%,具有极高的Zr、Sr和Ba含量和Eu/Eu^(*)、La/Yb和Sr/Y比值,显示出堆晶花岗岩的特征。而100~86Ma期间形成的大部分碱性长石花岗岩具有极高的SiO_(2)含量(大于75%),并显示出A型花岗岩的特征,具有高的Rb/Sr比值和高的Rb、Y和Th和低的Ba、Sr含量和低的Zr/Hf、La/Yb、Eu/Eu^(*)和Sr/Y比值,表明它们是由富硅岩浆储库抽离的高硅熔体侵入浅部地壳形成。东南沿海高硅花岗岩的形成和穿地壳岩浆系统密切相关,高硅花岗岩是由浅部地壳内晶体-熔体分异产生的熔体侵入地壳所形成,而高硅花岗岩的地球化学特征与岩浆储库的水及挥发份含量密切相关。115~100Ma期间,从富水的岩浆储库抽离的熔体形成具有低高场强元素含量和低Rb/Sr比值的高硅花岗岩,这一过程与古太平洋板块俯冲有关;100~86Ma期间,从富挥发份的岩浆储库抽离的熔体形成碱性特征、富含高场强元素和具有高的Rb/Sr比值的高硅花岗岩,这一过程和古太平洋板块回撤软流圈上涌有关。  相似文献   

12.
The Roccamonfina volcano is characterised by two stages of volcanic activity that are separated by volcano-tectonic caldera collapses. Ultrapotassic leucite-bearing rocks are confined to the pre-caldera stage and display geochemical characteristics similar to those of other volcanoes in the Roman Province. After the major sector collapse of the volcano, occurred at ca. 400 ka, shoshonitic rocks erupted from cinder cones and domes both within the caldera and on the external flanks of the pre-caldera Roccamonfina volcano. On the basis of new trace element and Sr–Nd–Pb isotope data, we show that the Roccamonfina shoshonitic rocks are distinct from shoshonites of the Northern Roman Province, but are very similar to those of the Neapolitan volcanoes. The last phases of volcanic activity erupted sub-alkaline magmas as enclaves in trachytic domes, and as lavas within the Monte Santa Croce dome. Ultrapotassic rocks of the pre-caldera composite volcano are plagioclase-bearing leucitites characterised by high levels of incompatible trace elements with an orogenic signature having troughs at Ba, Ta, Nb, and Ti, and peaks at Cs, K, Th, U, and Pb. Initial values of 87Sr/86Sr range from 0.70926 to 0.70999, 143Nd/144Nd ranges from 0.51213 to 0.51217, while the lead isotope rations vary between 18.788–18.851 for 206Pb/204Pb, 15.685–15.701 for 207Pb/204Pb, and 39.048–39.076 for 208Pb/204Pb. Shoshonites show a similar pattern of trace element depletions and enrichments to the earlier ultrapotassic leucite-bearing rocks but have a larger degree of differentiation and lower concentrations of incompatible trace elements. On the other hand, shoshonitic rocks have Sr, Nd, and Pb isotopes consistently different than pre-caldera ultrapotassic leucite-bearing rocks. 87Sr/86Sr ranges from 0.70665 to 0.70745, 143Nd/144Nd ranges from 0.51234 to 0.51238, 206Pb/204Pb ranges from 18.924 to 19.153, 207Pb/204Pb ranges from 15.661 to 15.694, and 208Pb/204Pb ranges from 39.084 to 39.212. High-K calc-alkaline samples have intermediate isotopic values between ultrapotassic plagioclase leucitites and shoshonites, but the lowest levels of incompatible trace element contents. It is argued that ultrapotassic magmas were generated in a modified lithospheric mantle after crustal-derived metasomatism. Interaction between the metasomatic agent and lithospheric upper mantle produced a low-melting point metasomatised veined network. The partial melting of the veins alone produced pre-caldera leucite-bearing ultrapotassic magmas. It was possibly triggered by either post-collisional isotherms relaxation or increasing T°C due increasing heat flow through slab tears. Shoshonitic magmas were generated by further melting, at higher temperature, of the same metasomatic assemblage with addition 10–20% of OIB-like astenospheric mantle material. We suggest that addition of astenospheric upper mantle material from foreland mantle, flowing through slab tearing after collision was achieved. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
The NNW-trending Nova Lacerda tholeiitic dike swarm in Mato Grosso State, Central Brazil, intrudes the Nova Lacerda granite (1.46 Ga) and the Jauru granite-greenstone terrain (ca. 1.79–1.77 Ga). The swarm comprises diabases I and II and amphibolites emplaced at ca. 1.38 Ga. Geochemical data indicate that these are evolved tholeiites characterized by high LILE/HSFE and LREE/HSFE ratios. Isotopic modelling yields positive ?Nd(T) values (+0.86 to?+2.65), whereas values for ?Sr(T) range from positive to negative (+1.96 to -5.56). Crustal contamination did not play a significant petrogenetic role, as indicated by a comparison of isotopic data (Sr–Nd) from both dikes and country rocks, and by the relationship between isotopic and geochemical parameters (SiO2, K2O, Rb/Sr, and La/Yb) of the dikes. We attribute the origin of these tholeiites to fractional crystallization of evolved melts derived from a heterogeneous mantle source. Comparison of the geochemical and isotopic data of the studied swarm and other tholeiitic Mesoproterozoic mafic intrusions of the SW Amazonian Craton – the Serra da Providência, Colorado, and Nova Brasilândia bimodal suites – indicates that parental melts of the Nova Lacerda swarm were derived from the most enriched mantle source. This enrichment was probably caused by the stronger influence of the EMI component on the DMM end-member. These data, coupled with trace element bulk-rock geochemistry of the country rocks, and comparisons with the Colorado Complex of similar age, suggest a continental-margin arc setting for the emplacement of the Nova Lacerda dikes.  相似文献   

14.
The Achala batholith of Argentina contains very unusual layered enclaves containing up to 30% apatite and 50% biotite in some layers. This modal mineralogy produces bulk-rock compositions that cannot represent liquids, having as little as 29% SiO2 and up to 8% P2O5. Nor can the enclaves represent metasedimentary xenoliths because: (1) none of the Precambrian wall rocks has these compositions; (2) none of the metasedimentary xenoliths present within the batholith shows any degree of transition to the mica-apatite-rich enclaves; (3) the compositions and textures in the enclaves are inconsistent with metasediments; (4) a geochronological study of zircon from an enclave gives an age of 368 ± 2 Ma, the exact age of zircons in the granitic host rocks. For these reasons, we conclude that the enclaves are neither xenoliths of Precambrian wall rocks nor restite of a Precambrian source. The identical age of the enclave and the host granites, coupled with textural, mineralogical, and bulk-rock characteristics of the enclaves, indicates that the enclaves are magmatic segregations, i.e., cumulates. The F-rich nature of the stubby-shaped apatites and biotites indicates a high F content of the magma parental to the enclaves. We infer that the viscosity of the melt was lowered sufficiently to allow cumulates to form in spite of the granitic composition of the melt. Received: 12 December 1996 / Accepted: 11 August 1997  相似文献   

15.
The petrogenesis of Abu Khruq, an 89 Ma alkaline ring complex of eastern Egypt which is composed of alkali gabbros and both silica over- and undersaturated syenites, has been investigated. Major and trace element relationships and Nd and Sr isotope data are consistent with formation of the gabbros from an alkaline mafic magma that experienced extensive fractionation, and all syenites from a felsic derivative of this melt. The parental magma had an 87Sr/86Sr of 0.7030 and an 143Nd/144Nd of 0.512750 (Nd = +4.4) indicating derivation from a depeleted mantle source. The initial 143Nd/144Nd ratios are: 0.512721 to 0.512748 for the gabbros, 0.512739 to 0.512750 for the alkali syenites and trachytes, 0.512717 to 0.512755 for the nepheline syenites, and, 0.512706 to 0.512732 for the quartz syenites. In contrast, analyzed Precambrian granites from eastern Egypt have generally lower 143Nd/144Nd ratios (ranging from 0.51247 to 0.51261 or Nd = -0.8 to 1.7, for 89Ma); their Nd model ages range from 775 to 935 Ma and suggest there was no significant input of pre-Pan-African crust in their formation. Among Abu Khruq rocks, 143Nd/144Nd ratios indicate that the quartz syenites formed by open-system, crustal contamination processes whereas the nepheline syenites experienced little or no contamination. Modeling shows that contamination occurred at various stages, affecting both mafic and more evolved compositions with input of about 20% crustal Nd for the most contaminated samples. The degree of contamination is related to the silica saturation of the quartz syenites. Simplified modeling of magma evolution within Petrogeny's Residua System demonstrates the ability of AFC processes to cause a critically undersaturated magma to evolve across the feldspar join and produce oversaturated rocks. The oversaturated syenites at Abu Khruq were produced in this manner whereas the nepheline syenites formed by fractionation without similarly large degrees of contamination. The results have broad implications for the formation of subvolcanic complexes in continental settings beyond the important production of silica oversaturated compositions from crustal interaction. They underscore the importance of crustal interactions in the formation of the various lithologies. Such interactions occur at various stages in the evolution of the magmas and, as such, are not strictly coupled with fractional crystallization. While previous study of Abu Khruq has demonstrated extensive hydrothermal alteration of O and Sr isotopes, the present work shows that the Nd isotope ratios were not significantly affected and thus reflect magmatic signatures. This feature combined with relatively small corrections for initial ratios emphasizes the utility of Nd isotopes for petrogenetic studies.  相似文献   

16.
The Jálama pluton (JP) is a Variscan peraluminous granitoid that intruded into low-grade metasediments from the Central Iberian Zone (CIZ). It comprises a sillimanite-bearing two-mica monzogranite in the inner zone, followed by a tourmaline-bearing two-mica monzogranite, and a marginal tourmaline-muscovite leucogranite in the northern half of the pluton. Microgranitoid enclaves and metasedimentary xenoliths occur locally in monzogranites. The change in rock type from the central monzogranite to the marginal leucogranite corresponds to decreasing TiO2, MgO, FeO, CaO, Sr, Ba, Zr, and ΣREE, and increasing SiO2, Na2O, P2O5, Rb, Li, Cs, Ta, Sn, and W. Fe/(Fe+Mg) ratios in biotite, muscovite and tourmaline increase with increasing Fe/(Fe+Mg) in bulk rock, suggesting an important control of the bulk-rock composition on mineral chemistry. The high peraluminosity, the low CaO and high P contents, as well as the similarity of ε(Nd)300 values in both the granites and metasediments of the southern CIZ constitute strong evidences for a crustal origin of the granite suite, probably by melting of these metasedimentary rocks. Field and petrographic observations, together with mineralogical and geochemical data, suggest that assimilation and mingling/mixing acted in concert with fractional crystallization during the formation of the JP. These processes may also have been important in the evolution of other granitoids from this region.  相似文献   

17.
Strontium isotopes and other geochemical signatures are used to determine the relationships between CO2-rich thermal (Chaves: 76 °C) and mineral (Vilarelho da Raia, Vidago and Pedras Salgadas: 17 °C) waters discharging along one of the major NNE–SSW trending faults in the northern part of mainland Portugal. The regional geology consists of Hercynian granites (syn-tectonic-310 Ma and post-tectonic-290 Ma) intruding Silurian metasediments (quartzites, phyllites and carbonaceous slates). Thermal and mineral waters have 87Sr/86Sr isotopic ratios between 0.716713 and 0.728035. 87Sr/86Sr vs. 1/Sr define three end-members (Vilarelho da Raia/Chaves, Vidago and Pedras Salgadas thermal and mineral waters) trending from rainfall composition towards that of the CO2-rich thermal and mineral waters, indicating different underground flow paths. Local granitic rocks have 87Sr/86Sr ratios of 0.735697–0.789683. There is no indication that equilibrium was reached between the CO2-rich thermal and mineral waters and the granitic rocks. The mean 87Sr/86Sr ratio of the thermal and mineral waters (0.722419) is similar to the Sr isotopic ratios of the plagioclases of the granitic rocks (0.71261–0.72087). The spatial distribution of Sr isotope and geochemical signatures of waters and the host rocks suggests that the thermal and mineral waters circulate in similar but not the same hydrogeological system. Results from this study could be used to evaluate the applicability of this isotope approach in other hydrogeologic investigations.  相似文献   

18.
Geochemical and Sr- and Nd-isotopic data have been determined for mafic to intermediate microgranular enclaves and host granitoids from the Early Cretaceous Gudaoling batholith in the Liaodong Peninsula, NE China. The rocks include monzogranite, porphyric granodiorite and quartz diorite. Monzogranites have relatively high 87Rb/86Sr ratios (0.672-0.853), low initial 87Sr/86Sr ratios (0.7052-0.7086) and ε Nd(t) values (−18.5 to −20.9) indicating that they were mainly derived from a newly underplated crustal source with a short crustal residence time. Quartz diorites have high initial 87Sr/86Sr ratios (0.7118-0.7120) and negative ε Nd(t) values (−13.2 to −18.1) coupled with high Al2O3 and MgO contents, indicating they were derived from enriched lithospheric mantle with contributions of radiogenic Sr from plagioclase-rich metagreywackes or meta-igneous rocks, i.e., ancient lower crust. Two groups of enclaves with igneous textures and abundant acicular apatites are distinguished: dioritic enclaves and biotite monzonitic enclaves. Dioritic enclaves have low Al2O3 (13.5-16.4 wt%) and high MgO (Mg# = ∼72.3) concentrations, low initial 87Sr/86Sr ratios (0.7058-0.7073) and negative ε Nd(t) values (∼−7.2), and are enriched in LILEs and LREEs and depleted in HFSEs, suggesting they were derived from an enriched lithospheric mantle source. Biotite monzonitic enclaves have Sr and Nd isotopic compositions similar to the monzogranites, indicating they were crystal cumulates of the parental magmas of these monzogranites. Granodiorites have transitional geochemistry and Nd- and Sr-isotopic compositions, intermediate between the monzogranites, quartz diorites and the enclaves.Geochemical and Sr- and Nd-isotopic compositions rule-out simple crystal-liquid fractionation or restite unmixing as the major genetic link between enclaves and host rocks. Instead, magma mixing of mafic mantle-derived and juvenile crustal-derived magmas, coupled with crystal fractionation and assimilation of ancient lower crust, is compatible with the data. This example shows that at least some calc-alkaline granitoids are not produced by pure intracrustal melting, but formed through a complex, multi-stage hybridization process, involving mantle- and crustal-derived magmas and several concomitant magmatic processes (crystal fractionation, crustal assimilation and crustal anatexis).  相似文献   

19.
《International Geology Review》2012,54(11):1296-1308
Geochronological, geochemical, and whole-rock Sr–Nd isotopic analyses were performed on a suite of Palaeozoic nepheline syenites from Zijinshan to characterize their ages and petrogenesis. Laser ablation inductively coupled plasma-mass spectrometry U–Pb zircon analyses yield consistent ages of 525.7 ± 2.8 million years for a sample (HYK01). These intrusive rocks belong to the foid syenite magma series in terms of K2O?+?Na2O contents (14.3–15.2 wt.%) and to the shoshonitic series based on their high K2O contents (5.42–5.61 wt.%). The nepheline syenites are further characterized by high light rare earth element contents [(La/Yb) N ?=?29.1–36.1]; show modest negative Eu anomalies (δEu?=?0.5–0.6) and positive anomalies in Rb, Th, U, Pb, Zr, and Hf; are depleted in Ba and high field strength elements (P and Ti). In addition, all the nepheline syenites in this study display relatively low radiogenic Sr (87Sr/86Sr) i (0.7042–0.7043) and positive ?Nd (t) (0.7–0.8). These results suggest that the nepheline syenites were derived from depleted continental crust. The parent magmas likely experienced fractional crystallization of plagioclase, Ti-bearing oxides (e.g. rutile, ilmenite, and titanite), apatite, and zircon during ascent, with negligible crustal contamination before final emplacement at a high crustal level.  相似文献   

20.
The unaltered magmatic rocks of the Zadoi Massif were analyzed for Sr isotopic composition and concentrations of major oxides and trace elements by ICP MS. The evolution of the massif involved four phases: (i) perovskite and ilmenite clinopyroxenites, (ii) ijolites, (iii) nepheline syenites, and (iv) carbonatites. The perovskite clinopyroxenites have anomalously high Ce/Pb (223–1132) and Pr/Sr × 1000 (70–360) ratios at a low initial Sr isotopic ratio (87Sr/86Sr)0 = 0.70247–0.70285. The ilmenite clinopyroxenites have Ce/Pb and Pr/Sr × 1000 ratios approaching those in basalts of oceanic islands (OIB) (decreasing to 39 and 30, respectively) at a simultaneous increase in the (87Sr/86Sr)0 ratios (0.7030–0.7036). The ijolites and nepheline syenites have patterns of incompatible trace elements similar to those in OIB and the highest (87Sr/86Sr)0 ratios (0.70346–0.70414). The carbonatites are complementarily enriched in incompatible elements of the nepheline syenites and have (87Sr/86Sr)0 = 0.7029–0.7034, which is comparable with the range of analogous ratios for the ilmenite clinopyroxenites. Our geochemical data indicate that the carbonatites were formed as an immiscible liquid or fluid, which separated from the ijolite-nepheline syenite melt during its interaction with the source material of the perovskite and ilmenite clinopyroxenites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号