首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The morphology of the surface of HPHT-synthesized diamonds was studied using optical parabolic goniometry and atomic force microscopy. The quasi-equilibrium mode of the growth of diamonds was revealed for the growth and “off-stage.” Morphological studies were carried out for thermal etching pits of macro-, micro-, and nanometric dimensions. The occurrence of two mechanisms of the formation of etching pits was discovered, being related to linear and exclusively to near-surface defects of the crystalline structure.  相似文献   

2.
3.
《Applied Geochemistry》1991,6(5):477-494
In the past decade, the isotopic compositions of C in > 600 inclusion-bearing diamonds have been determined. Such analyses have revealed the following isotopic characteristics: (1) peridotitic diamonds, which typically contain garnet, chromite, olivine and/or orthopyroxene inclusions with refractory compositions (high Mg, Cr), have δ13C values predominantly between −10 and −1‰, with a sharp peak in the distribution near −5‰; (2) eclogitic diamonds, which commonly contain inclusions of omphacitic clinopyroxene, Cr-poor pyrope, and/or eclogitic accessory minerals such as rutile, kyanite, coesite or sanidine, have δ13C values between −34 and +3‰, with a smaller peak near −5‰; (3) the isotopic compositions obtained for suites of diamonds from individual occurrences are, in general, unique and do not resemble the range and distribution obtained by amalgamating the diamond isotope data from a number of localities; (4) isotopic zoning patterns and heterogeneities are found in some diamonds; cores of coated diamonds tend to be depleted in13C relative to the rims, and within single octahedral diamonds δ13C variations of nearly 6‰ have been reported.Because expected C isotope fractionations at mantle temperatures are small, attempts to model the full range of diamond isotope values through fractionating a homogeneous mantle C source have been unsuccessful. Nevertheless, fractionation is probably responsible for some of the observed variation in δ13C values. Two other models have also been proposed to account for the diamond characteristics outlined above. The “primordial model” suggests that the range and distribution of C isotope compositions are inherited from primordial C in the mantle which has an inhomogeneous isotopic composition, such as that found in meteorites. The “subduction model” suggests that subducted, crustal C is the source of C in diamonds, as organic and inorganic C compounds in the crust exhibit a range of δ13C values similar to that observed in diamonds. This paper reviews the C isotope characteristics of diamonds and compares the models which have been proposed to explain the origins of these characteristics.  相似文献   

4.
In the 1960s, the so-called “schistose” placer diamonds were found in sandy sediments of Ukraine. Their primary source remained unknown and their origin was supposed to be cosmic, by analogy with the diamonds detected in some meteorites. In the early 1970s, similar diamonds were found in terrestrial rocks of the Popigai impact crater (astrobleme) in northern Siberia. It was shown that these diamonds are products of the transformation of graphite contained in gneisses (Masaitis et al., 1972). Later, such diamonds were found in other astroblemes in Russia, Ukraine, Germany, Finland, and Canada. Impact diamonds markedly differ from diamonds hosted in kimberlites and lamproites in their appearance and in other features. In the 1970s–1990s, diamonds from the Popigai astrobleme were studied in many research institutions of Russia, Ukraine, and outside the USSR. The results of these investigations have been mostly published, and my brief review is based on these data.  相似文献   

5.
连东洋  杨经绥  刘飞  吴魏伟 《地球科学》2019,44(10):3409-3453
金刚石由于其独特的物理化学性质,在经济生产与科学研究中均具有重要价值.金刚石形成于地球大于150 km的深度范围内,是人类可以获得的来自地球深部地幔乃至核幔边界的最直接的样品,因此可以为研究地球深部物质组成和物理化学条件提供重要的素材.金刚石由碳元素组成,还含有微量的杂质元素(如氮、硼、氢、氧等),其中氮和硼元素对于划分金刚石的晶体结构类型发挥着重要的作用.根据金刚石的产出类型,金刚石可以划分为幔源型、超高压变质型、陨石相关型以及蛇绿岩型金刚石.全球约百分之一的幔源型金刚石含有包裹体,对这些包裹体的研究显示,金刚石主要来源于地球150~200 km深度的岩石圈地幔.这些含有包裹体的金刚石中,仅有1%的金刚石来自于地球深部的软流圈、地幔过渡带、下地幔、甚至核幔边界.我国的金刚石产出类型多样,但是,目前仅山东蒙阴、辽宁复县的金伯利岩矿床以及湖南沅水的砂矿具有经济价值.蛇绿岩型金刚石是近年来金刚石研究领域取得的重要进展,该类型金刚石分布在全球多个造山带不同时代、不同构造属性的蛇绿岩地幔橄榄岩和铬铁矿中,被认为是一种新的金刚石的产出类型.相对于其他国家和地区的金刚石的研究,我国的金刚石领域的研究程度相对较低,缺乏对金刚石结构、化学组成以及包裹体组成的系统研究,制约了对我国金刚石成因的认识,限制了我国的金刚石的找矿工作.因此,亟需结合先进的分析手段对我国的金刚石及其围岩做进一步的研究,以期揭示金刚石的形成过程,为金刚石的找矿提供理论基础.   相似文献   

6.
We present the first results of studying the major- and trace-element composition of microinclusions in the coats of type IV diamonds from the Sytykanskaya pipe. These microinclusions are of silicate–carbonate composition. Similar compositions are reported for diamonds from the placers of the northeastern Siberian Platform and cuboids from the Internatsional'naya pipe. The microinclusions studied are close to kimberlites and carbonatites in trace-element composition but depleted in HFSE, Mg, and transition metals and enriched in K and LILE. The distribution of incompatible elements in the microinclusions studied is similar to the “table” pattern, which was observed for high-density hydrous-silicic fluids.  相似文献   

7.
In the Amba Dongar diatreme, “ferrocarbonatite” is not a single unit of late differentiate of calciocarbonatite magma but it is a family with variation on field occurrence, mineralogy and chemistry of each unit. The family includes dikes of ankeritic carbonatites (phase I and II), plugs of ankeritic carbonatite within sövite ring dike, dikes of sideritic carbonatite in ankeritic carbonatite plug and rödberg veins. Their intrusive relations are very clear in the field and each phase has characteristic mineralogy and trace and REE geochemistry. According to the nomenclature suggested by Harmer and Gittins (1997) majority of “ferrocarbonatites” of Amba Dongar plot in field of “ferruginous calciocarbonatite” and only siderite and rödberg plot in the field of “ferrocarbonatite”. Within these family members, their trace and REE show clear increase from early phase to last phase of sideritic carbonatite. The present short communication discusses various aspects of “ferrocarbonatites”.  相似文献   

8.
Notable within-crystal variability of mineralogical and geochemical properties of single natural diamonds are commonly attributed to changing chemistry of parental fluids, sources of carbon and redox conditions of diamond precipitation. A distinct type of compositional heterogeneity (mixed-habit structure) is well-known to occur in diamonds as well as in many other minerals due to purely “structural” reasons that are unequal crystal chemistry of crystallographically different faces and selective absorption and fractionation of impurities between adjacent growth pyramids. Based on the combined cathodoluminescence, Fourier-transformed infrared spectroscopy and photoluminescence spectroscopy, study of nine diamond crystals with different growth histories and external morphology, but all showing mixed-habit patterns at different growth stages, we show that mixed-diamonds may grow in closed system conditions or with a slowly decreasing growth rate from a media with a much lower impurity content than previously thought. Intracrystal nitrogen distribution seems to be a function of growth rate even in the cases of unusual impurity partitioning between growth sectors. Generally poor with IR-active hydrogen at moderate nitrogen aggregation parameters, studied diamonds likely resemble the low hydrogen content from the growth medium that, for cubic diamonds, was typically suggested hydrogen-rich and a crucial factor for growth of cubic and mixed-habit diamonds. We also show that mixed-habit diamond growth may occur not only in peridotitic suite but also in an extended field of geochemical affinities from high-Ni to low-Ni or maybe even Ni-free environments, such as pyroxenitic or eclogitic.  相似文献   

9.
《Gondwana Research》2014,25(3-4):1223-1236
Repeating volcano-tectonic (VT) earthquakes, taking place at Mt. Etna during 1999–2009, were detected and analyzed to investigate their behavior. We found 735 families amounting to 2479 VT earthquakes, representing ~ 38% of all the analyzed VT earthquakes. The number of VT earthquakes making up the families ranges from 2 to 23. Over 70% of the families comprise 2 or 3 VT earthquakes and only 20 families by more than 10 events. The occurrence lifetime is also highly variable ranging from some minutes to ten years. In particular, more than half of the families have a lifetime shorter than 0.5 day and only ~ 10% longer than 1 year. On the basis of these results, most of the detected families were considered “burst-type”, i.e., show swarm-like occurrence, and hence their origin cannot be explained by a temporally constant tectonic loading. Indeed, since the analyzed earthquakes take place in a volcanic area, the rocks are affected not only by tectonic stresses related to the fairly steady regional stress field but also by local stresses, caused by the volcano, such as magma batch intrusions/movements and gravitational loading. We focused on the five groups of families characterized by the longest repeatability over time, namely high number of events and long lifetime, located in the north-eastern, eastern and southern flanks of the volcano. Unlike the first four groups, which similarly to most of the detected families show swarm-like VT occurrences, group “v”, located in the north-eastern sector, exhibits a more “tectonic” behavior with the events making up such a group spread over almost the entire analyzed period. It is clear how both occurrence and slip rates do not remain constant but vary over time, and such changes are time-related to the occurrence of the 2002–2003 eruption. Finally, by FPFIT algorithm a good agreement between directions identified by nodal planes and the earthquake epicentral distribution was generally found.  相似文献   

10.
The Venetia kimberlites in the Northern Province of South Africa sampled diamonds from the lithosphere underlying the Central Zone of the Limpopo Belt. Given the general correlation of diamond-bearing kimberlites with old stable cratons, this tectonic setting is somewhat anomalous and, therefore, it is desirable to characterise the diamonds in terms of their infrared characteristics. A suite of diamonds of known paragenesis from the Venetia mine spans a large range of nitrogen concentrations from less than the detection limit to 1,355 ppm. Diamond nitrogen contents are, on average, higher in the eclogitic diamond population relative to the websteritic and peridotitic diamonds. Nitrogen aggregation states are variable, ranging from almost pure type IaA diamond (poorly aggregated nitrogen) to pure type IaB diamond (highly aggregated nitrogen). On a nitrogen aggregation diagram two distinct groups can be identified based on nitrogen content and nitrogen aggregation state. These are a minor population of diamonds with nitrogen contents generally higher than 500 ppm and nitrogen aggregation states of less than 40% IaB, and another, dominant population that is characterised by higher and more variable nitrogen aggregation. The unusually aggregated nature of the majority of the diamonds analysed is unique to Venetia relative to other intrusives on the Kaapvaal-Kalahari craton, but is similar to aggregation states observed for diamonds from other craton margin or adjacent mobile belt settings such as the Argyle lamproite and the George Creek kimberlite. This could be a consequence of diamond mantle residence at mantle temperatures higher than the norm for other kimberlites from the interior of cratons. Deformation of the mantle, associated with dynamic processes such as orogenesis or subduction, might also be responsible for accelerating the rate of nitrogen aggregation in these diamonds. Low numbers of diamonds with degradation of platelets at the Venetia kimberlite, relative to diamonds from the Argyle lamproite, indicate that deformation was at a significantly lower level. The comparatively low value of diamonds from Argyle (at approximately US8/carat) as opposed to Venetia (US8/carat) as opposed to Venetia (US90/carat) is in large part because of the very high abundance of brown diamonds at Argyle. Therefore, it is apparent that deformational history of the mantle in which the diamonds were resident prior to or during sampling by the host may have an important role to play in the profitability of a primary diamond deposit. The apparently consistent association of diamonds with unusually aggregated nitrogen with kimberlites, or lamproites intruded into craton margin or mobile belt settings suggests that it may be possible to recognise such contributory sources in alluvial diamond deposits, through the study of the infrared characteristics of the diamonds. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00410-002-0385-2  相似文献   

11.
J.G. Chapman  G.L. Boxer   《Lithos》2004,76(1-4):369-375
Analysing the size frequency distributions (SFDs) of both micro diamonds and macro diamonds from primary deposits shows that the distributions are continuous across all sizes and that there are two regions of different character with a transition about 1–2 mm. Using log axes, the frequency curve is linear for the smaller sizes allowing slope and intercept parameters to be determined which are less ambiguous than stone counts and ratios of macro to micro populations that are generally reported. Modelling a diamond population that has undergone removal of a uniform thickness of the outer layer transforms a linear frequency curve into a quadratic form, which is also the form of the frequency curve for macro diamonds. Diamonds grown synthetically also display a linear distribution across a smaller fraction of their size distribution curve.  相似文献   

12.
The diamonds from the Swartruggens dyke swarm are mainly tetrahexahedra, with subsidiary octahedral and cuboid crystals. They are predominantly colourless, with subordinate yellows, browns, and greens. The existence of discrete cores and oscillatory growth structures within the diamonds, together with the recognition of harzburgite, lherzolite, at least two eclogitic and a websteritic diamond paragenesis, variable nitrogen contents, and both Type IaAB and Type Ib–IaA diamonds provides evidence for episodic diamond growth in at least six different environments. The predominance of plastic deformation in the diamonds, the state of nitrogen aggregation, and the suite of inclusion minerals recovered are all consistent with a xenocrystic origin for the diamonds, with the Type Ib–IaA diamonds being much younger than the rest. Mantle storage at a time-averaged temperature of ±1100 °C is inferred for the Type IaAB diamonds. The distribution of mantle xenocrysts of garnet and chromite within the high-grade Main kimberlite dyke compared to the low-grade Changehouse kimberlite dyke strongly suggests that the difference in diamond content is due to an increased eclogitic component of diamonds in the Main kimberlite dyke.  相似文献   

13.
S.H. Richardson  S.B. Shirey  J.W. Harris   《Lithos》2004,77(1-4):143-154
Major element and Re–Os isotope analysis of single sulfide inclusions in diamonds from the 240 Ma Jwaneng kimberlite has revealed the presence of at least two generations of eclogitic diamonds at this locality, one Proterozoic (ca. 1.5 Ga) and the other late Archean (ca. 2.9 Ga). The former generation is considered to be the same as that of eclogitic garnet and clinopyroxene inclusion bearing diamonds from Jwaneng with a Sm–Nd isochron age of 1.54 Ga. The latter is coeval with the 2.89 Ga subduction-related generation of eclogitic sulfide inclusion bearing diamonds from Kimberley formed during amalgamation of the western and eastern Kaapvaal craton near the Colesberg magnetic lineament.

The Kimberley, Jwaneng, and Premier kimberlites are key localities for characterizing the relationship between episodic diamond genesis and Kaapvaal craton evolution. Kimberley has 3.2 Ga harzburgitic diamonds associated with creation of the western Kaapvaal cratonic nucleus, and 2.9 Ga eclogitic diamonds resulting from its accretion to the eastern Kaapvaal. Jwaneng has two main eclogitic diamond generations (2.9 and 1.5 Ga) reflecting both stabilization and subsequent modification of the craton. Premier has 1.9 Ga lherzolitic diamonds that postdate Bushveld–Molopo magmatism (but whose precursors have Archean Sm–Nd model ages), as well as 1.2 Ga eclogitic diamonds. Thus, Jwaneng provides the overlap between the dominantly Archean vs. Proterozoic diamond formation evident in the Kimberley and Premier diamond suites, respectively. In addition, the 1.5 Ga Jwaneng eclogitic diamond generation is represented by both sulfide and silicate inclusions, allowing for characterization of secular trends in diamond type and composition. Results for Jwaneng and Kimberley eclogitic sulfides indicate that Ni- and Os-rich end members are more common in Archean diamonds compared to Proterozoic diamonds. Similarly, published data for Kimberley and Premier peridotitic silicates show that Ca-rich (lherzolitic) end members are more likely to be found in Proterozoic diamonds than Archean diamonds. Thus, the available diamond distribution, composition, and age data support a multistage process to create, stabilize, and modify Archean craton keels on a billion-year time scale and global basis.  相似文献   


14.
Garnets and clinopyroxenes, intergrown with diamonds in 37 diamondites (“bort”, “polycrystalline diamond aggregates”, “polycrystalline diamond”, “framesite”), presumably from southern Africa, were analyzed for trace element contents by LA-ICP-MS. The intimate diamond-silicate intergrowths suggest that both precipitated from the same fluids during the same crystallization events. In this study we distinguish 5 chemical garnet groups: “peridotitic” (P), intermediate (I) and 3 “eclogitic” groups (E1, E2 and E3). Chondrite-normalized trace element patterns for the garnet groups roughly correlate with major element abundances. Most of P garnets show complex, mildly sinusoidal REEN patterns with relatively flat HREEN-MREEN, a small hump at Sm-Nd and depleted LREEN, and have relatively high contents of Nb, Ta, U, and Th. The REEN abundance patterns of E garnets differ by showing a continuous increase from LREE to HREE and depletion in LREE and highly incompatible elements relative to the P garnets. Of all garnet groups, E3 garnets are the poorest in highly incompatible trace elements and in Mg. Model equilibrium fluids for P garnets suggest crystallization from magnesian carbonate-bearing fluids/melts, which were very rich in incompatible trace elements — similar to kimberlites. Hypothetical equilibrium melts for E1 and E2 garnets are also magnesian and poorer in LREE and highly incompatible elements relative to typical kimberlitic or carbonatitic melts. Fluids that crystallized the P and most of the E garnets have similar mg numbers indicating a peridotitic source for both. The differences in Cr and highly incompatible element contents can be the result of differences in fluid formation and/or evolution rather than different source rock. The positive correlation of Cr2O3 and mg with the abundances of highly incompatible elements in garnets indicate fluid-rock fractionation processes rather than igneous fractional crystallization processes being responsible for the evolution of the diamondite-forming fluids.  相似文献   

15.
Two diamond bearing xenoliths found at Finsch Mine are coarse garnet lherzolites, texturally and chemically similar to the dominant mantle xenoliths in that kimberlite. A total of 46 diamonds weighing 0.053 carats have been recovered from one and 53 diamonds weighing 0.332 carats from the other. The diamonds are less corroded than diamonds recovered from the kimberlite. Geothermobarometric calculations indicate that the xenoliths equilibrated at 1,130° C and pressures 50 kb which is within the diamond stability field; this corresponds to depths of 160 km and would place the rocks on a shield geotherm at slightly greater depths than most coarse garnet lherzolites from kimberlite. The primary minerals in the two rocks are very similar to each other but distinctly different to the majority of mineral inclusions in Finsch diamonds. This suggests a different origin for the diamonds in the kimberlite and the diamonds in the xenoliths although the equilibration conditions for both suites are approximately coincident and close to the wet peridotite solidus.  相似文献   

16.
The occurrence of the rare phenomena of a booming sand is recorded and an account given of its behaviour in the field. Its sedimentological properties are compared with those of a squeaking sand from the seashore. Both sands are moderately to wellsorted, and show similar roundness and sphericity. The desert sand is silent, whereas the seashore sand can be made to emit a noise in the laboratory. The marked distinction between the sands lies in the mechanical analyses based on the number frequency of grains, rather than on the weight frequency. A “body-centred cubic” packing has been proposed for the desert sand and a “rhombic” packing for the seashore. Shear-box tests on the disturbed sands appear to support the hypothesis of two different modes of packing. The source of the characteristic booming sound is discussed, but it is suggested that an explanation is more likely to be forthcoming from field investigation than from small-scale laboratory studies.  相似文献   

17.
The first data are reported on the carbon isotopic composition of diamond crystals from the Grib pipe kimberlite deposit of the Archangelsk diamond province (ADP). The δ13C value of the crystals ranges from ?2.79 to ?9.61‰. The isotopic composition of carbon was determined in three zoned crystals (δ13C of ?5.8 ?6.96 ‰, ?5.64/ ?5.85 ‰, and ?5.94/ ?5.69 ‰), two “diamond in diamond” samples (diamond inclusion with δ13C of ?4.05 and ?6.34 ‰ in host diamond crystals with δ13C of ?8.05 and ?7.54 ‰, respectively), and two samples of coated diamonds (cores with δ13C of ?6.98 and ?6.78‰ and coats with δ13C of ?7.51 and ?8.01 ‰, respectively). δ13C values were obtained for individual diamond crystals from bort-type aggregates (δ13C of ?4.24/ ?4.05 ‰, ?6.58/ ?7.48 ‰, and ?5.48/ ?6.08 ‰). Correlations were examined between the carbon isotopic composition of diamonds and their crystal morphology; the color; the concentration of nitrogen, hydrogen, and platelet defects; and mineral inclusions content. It was supposed that the observed δ13C variations in the crystals are most likely related to the fractionation of carbon isotopes rather than to the heterogeneity of carbon sources involved in diamond formation. The isotopic characteristics of diamonds from the Grib pipe were compared with those of previously investigated diamonds from the Lomonosov deposit. It was found that diamonds from these relatively closely spaced kimberlite fields are different; this also indicates the existence of spatially localized peculiarities of isotope fractionation in processes accompanying diamond formation.  相似文献   

18.
The IR-peak 1450 cm–1 (H1a-center) associated with nitrogen interstitials have been studied in nitrogen-bearing diamonds synthesized at high P-T parameters in the Fe–Ni–C system. FTIR study shows that manifestation of this nitrogen form is restricted to the regions of active transformation of C-defects into A-defects, which confirms the connection of its formation with C => A aggregation process. An examination of the dependence of the 1450 cm–1 peak on the degree of nitrogen aggregation indicates that H1a-centers are not only formed during C/A aggregation but also disappear simultaneously with the end of C => A transformation. Established facts suggest direct involving of nitrogen as interstitials in the C => A aggregation and serve as strong experimental argument in support of the “interstitial” mechanism of nitrogen migration during aggregation in diamonds containing transition metals.  相似文献   

19.
有关辽东五行山群“水母化石”的讨论   总被引:1,自引:0,他引:1       下载免费PDF全文
辽东五行山群的“水母化石”(以下简称“化石”)是刘桂芝1974年冬首先发现的。后经邢裕盛、刘桂芝(1979)以及段吉业、林蔚兴(1980)的研究、描述并发表。 澳大利亚M. F. Glaessner到化石产地进行考察后认为,五行山群的“水母化石”乃是气体逃逸或水渗漏形成的构造而非水母化石1)。这引起国内地质界的广泛注意。 1981年9月,笔者实地考察了五行山群“水母化石”产地,采集了标本,进行了观察研究。并观察了沈阳地矿所和辽宁省地质局科研队的丰富标本和薄片,得到了较深刻的认识。  相似文献   

20.
The occurrence rates of combinatorial types of simple polyhedra {111} are analyzed for natural and artificial diamonds. The empirical occurrence rates of 14 possible polyhedra in an isotropic environment are obtained based on numeral simulation of growth forms of octahedral crystals by the Monte-Carlo method. The phenomenon of dissymmetrization by Curie’s principle related to the crystallization conditions is established for artificial and natural diamonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号