首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Chorukh-Dairon deposit is part of the metallogenic belt of WMo, CuMo, AuW, and Au deposits along the Late Paleozoic active continental margin of the Tien Shan. It is related to the Late Carboniferous multiphase pluton, with successive intrusive phases of early monzogabbro through monzonite-quartz monzonite to monzogranite and leucogranite, and the latest lamprophyre dikes. The deposit is an example of complex W–Mo–Cu magmatic-hydrothermal system related to magnetite-series shoshonitic igneous suite. It contains zones of W–Cu–Mo oxidized prograde and retrograde skarns, with abundant scapolite, plagioclase, K-feldspar, andradite garnet, magnetite, as well as molybdoscheelite and minor chalcopyrite, and molybdenite. Skarns are overprinted by hydrosilicate alteration assemblages, with amphibole, chlorite, epidote, quartz, calcite, scapolite, albite, scheelite, and chalcopyrite, and are cut by quartz-carbonate-barite-fluorite-sulfide veins.The fluid evolution included a release of high temperature (~ 400–500 °C), high pressure (900–1100 to 700–800 bars), high salinity magmatic-hydrothermal aqueous chloride fluid, with its direct separation from crystallizing magma and formation of prograde and retrograde skarns. Fluid enrichment in Ca (up to 15–22 wt.% CaCl2) at the retrograde skarn stage was possibly related to magmatic differentiation and provided intense molybdoscheelite deposition from a homogenous fluid. In contrast, hydrosilicate alteration assemblages were formed at lower temperatures (~ 350–400 °C) initially from a homogenous and then from a boiling Ca-rich (20–22 wt.% CaCl2) magmatic-hydrothermal fluid, with the latter contributing to the most intense scheelite deposition. The stable isotope data (δ13CCO2 =  3.0 ± 0.5‰ and δ18ОH2O = + 6.5 ± 0.5‰, δ34S = + 7.5 to + 7.7‰) obtained for the hydrosilicate stage minerals suggest significant fluid sourcing from magmatic and meteoric waters as well as from sedimentary rocks enriched in seawater sulfate, possibly evaporites, although a strongly homogenous character of the isotopic composition reveals intense isotope homogenization in a magmatic chamber. Some light sulfur isotope enrichment of sulfides from the quartz-carbonate-barite-fluorite-sulfide veins (δ34S = + 6.0 to + 6.1‰) may be linked to the evolution of the magmatic source toward more mantle-related sulfur species, as these veins were formed after emplacement of the late mafic (lamprophyre) dikes.  相似文献   

2.
The South Tian Shan, which is located along the southwestern margin of the Central Asian Orogenic Belt, is widely accepted as a collisional orogen between the Kazakhstan-Yili Block in the north and the Tarim Craton in the south, and the collision is thought to have occurred in either Late Paleozoic or Triassic. Regardless of the timing of the collision, the major magmatic events in the South Tian Shan Orogen should be related to subduction, collision and post-collision. We investigate this problem through U–Pb age of detrital zircons from the eastward-flowing Tekes River and its southern branches flowing through the northern slope of the Chinese South Tian Shan. A total of 500 analyses on 494 zircon grains from five sand samples yield an age range of 2590 to 268 Ma, but they are dominated by Paleozoic magmatic zircon grains, with some Precambrian population, but no Mesozoic and Cenozoic grains were detected. One of the samples from the Tekes River contains zircon grains from the Chinese South Tian Shan and other areas because the river receives its discharge from multiple sources. The other four samples were collected from four branches originating from the Chinese South Tian Shan only. From west to east, the sample from the Kayintemuzhate River shows two peak ages of 475 and 345 Ma, sample from the Muzhaerte (also called Xiate) River has peak ages of 422 and 290 Ma, sample from the Akeyazi River is characterized by a single peak age of 421 Ma, and sample from the Kekesu River shows a more complicated spectra with peak ages of 426, 398, 362, 327, and 285 Ma. When pooled together, the four samples yield four distinct age populations of 500–460, 450–390, 360–320, and 300–270 Ma, indicating the major magmatic events in the Chinese South Tian Shan. These results, combined with regional data, show an absence of Mesozoic magmatic events in the drainage areas of the Tekes River, and thus the South Tian Shan does not seem to be a Triassic orogen because of the lack of syn-collisional and post-collisional magmatism. The 300–270 magmatic event is thought to post-date the closure of the South Tian Shan Ocean, while the 360–320 and 450–390 Ma events were closely related to the northward subduction of the South Tian Shan Ocean. Our results strongly suggest a Late Carboniferous (320–300 Ma) collision between the Kazakhstan-Yili Block and the Tarim Craton. Possibly, the 500–460 Ma magmatism was related to subduction and closure of the Early Paleozoic Terskey Ocean.  相似文献   

3.
The retreat of the Tethys Sea and the uplift of the Tibetan Plateau play the critical roles in driving Asian climatic changes during the Cenozoic. In the Pamir–Tien Shan convergence zone, over 3000 m of Cenozoic successions, consisting of marine deposits in the lower, continental clay and fine sand in the middle, and molasse in the upper part, record the evolution of the Tethys Sea, the Asian aridification, and the deformation of the Pamir. In this work, the existing biostratigraphic subdivisions and new electronic spinning resonance dating results were used to assign ages to formations within the Ulugqat section. Sedimentary facies analysis and multi-proxy indices were used to reconstruct the paleo-environmental evolution. The results show: (1) the Pamir–Tien Shan convergence zone has undergone progressive environmental changes from shallow marine before ∼34 Ma to arid land at ∼23 Ma and finally to inter-mountain basin by ∼5.3 Ma; (2) the overall increase in mean size of grains, decrease in redness, in magnetic susceptibility, and in proportion of the ultrafine component of the sediments studied revealed a long-term strengthening in potential energy to transporting medium, cooling, and enhanced continental aridity, respectively; (3) the easternmost edge of the Tethys Sea prevailed in the western Tarim Basin from late Cretaceous to early Cenozoic, and finally retreated from this region around the Eocene–Oligocene transition, which in turn strengthened the Asian aridification; (4) accumulation of molasse with an upper age of ∼1 Ma suggests that the deformation front of the Pamir migrated to this area at or before that time.  相似文献   

4.
The deformation history of the Late Palaeozoic Ural–Tian Shan junction is discussed for the example of the Karatau ridge in southern Kazakhstan. Three deformation events are recognized. The Late Carboniferous D1 event is characterized by Laramide-style thrust-and-fold structures on the southern margin of Kazakhstan with shortening in a NE–SW direction. The Latest Permian and Triassic D2 event is controlled by compression in an east–west direction, which reflects collisional deformation in the Urals. The main structures are submeridional folds and north–west-striking sinistral strike–slip faults. The Triassic D3 event with shortening in a north–south direction reflects collision of the Turan microcontinent against the southern margin of Kazakhstan. The main structures are north–west-striking dextral strike–slip faults. Our new data provides important clues for the reconstruction of pre-Cretaceous structures between the Urals and the Tian Shan.  相似文献   

5.
6.
7.
The zones of the origin of seismic centers within highly seismic areas of the Pamirs and Tien Shan are established. The majority of catastrophic earthquakes coincide with them in this part of High Asia. Their establishment is based on the distribution of the most intensive epicenters and the maximal volumes of the seismic energy together with its calculation and forecasting of the possible manifestations of high seismicity. The investigation of the deep structure of these zones allows us to determine the connection of the seismicity with geophysical field anomalies and some factors of the deep and near surface lithosphere and crust structure, which influence the present-day geodynamics. The results of our research enable us to appreciate the level of the seismic danger in different parts of the region investigated.  相似文献   

8.
<正>There are lots of Neoproterozoic-lower Paleozoic outcropping bitumen distributed at the northern Longmen Shan trust belt in Southwest China,indicative of existing paleo-oil reservoir.The bitumen develops from the Sinian to Permian strata,mainly along the thrust fault plane and fracture system in the  相似文献   

9.
We have conducted a paleomagnetic investigation on the Middle–Upper Jurassic marine strata exposed in the hanging wall of the Tanggula Thrust system near the Yanshiping area, northern Tibet. Progressive demagnetization experiments successfully isolated stable magnetization over a broad spectrum of demagnetization temperatures. The mean direction of the characteristic remanent magnetizations for the Middle–Late Jurassic Yanshiping Group in stratigraphic coordinates (D/I (Declination/Inclination) = 5.6°/60.3°, k = 22.9, α95 = 12.9°, N = 7 s) is much more clustered than the mean direction in geographic coordinates (D/I = 345.5°/37.2°, k = 2.5, α95 = 48.4°), indicating magnetization was not acquired after folding. Although the conventional fold test is positive, incremental untilting test on the characteristic remanent magnetization reveals that a maximum value of precision parameter k occurs at 82.1 ± 4.6% untilting (D/I = 3.3°/57.8°, k = 43.9, α95 = 9.2°), which indicates the ChRMs are probably acquired during Late Cretaceous folding. This synfolding magnetization component is therefore secondary. The corresponding pole position (84.4°N, 119.4°E with dp/dm = 13.5/9.9°) is inconsistent with Jurassic–Early Cretaceous paleopoles of the region, but the paleolatitude is consistent with the Late Cretaceous paleolatitude observed in the Qiangtang terrane and its periphery. The synfolding component is carried by both magnetite and hematite, which were identified by isothermal remnant magnetization acquisition experiments, unblocking temperatures of stable magnetic components, and Curie temperature determination and correlated with observed hydrothermal veins. Available geological evidences indicate that the synfolding magnetization is probably the result of chemical remagnetization caused by orogenic fluids or hydrothermal sources during the early uplift of the Tibetan Plateau.  相似文献   

10.
New structural and petrological data unveil a very complicated ductile deformation history of the Xiongdian-Suhe HP metamorphic unit, north-western Dabie Shun, central China. The finegrained symplectic amphibolite-facies assemblage and coronal structure enveloping eclogite-facies garnet,omphacite and phengite etc., representing strain-free decompression and retrogressive metamorphism,are considered as the main criteria to distinguish between the early-stage deformation under HP metamorphic conditions related to the continental deep subduction and collision, and the late-stage deformation under amphibolite to greenschist-facies conditions occurred in the post-eclogite exhumation processes.Two late-stages of widely developed, sequential ductile deformations D3 and D4, are recognized on the basis of penetrative fabrics and mineral aggregates in the Xiongdian-Suhe HP metamorphic unit, which shows clear, regionally, consistent overprinting relationships. D3 fabrics are best preserved in the Suhe tract of low post-D3 deformation intensity and characterized by steeply dipping layered mylonitic amphibolites associated with doubly vergent folds. They are attributed to a phase of tectonism linked to the initial exhumation of the HP rocks and involved crustal shortening with the development of upright structures and the widespread emplacement of garnet-bearing granites and felsic dikes. D4 structures are attributed to the main episode of ductile extension (D^24) with a gently dipping foliation to the north and common intrafolial, recumbent folds in the Xiongdian tract, followed by normal sense top-to-the northductile shearing (D^24) along an important tectonic boundary, the so-called Majiawa-Hexiwan fault (MHF), the westward continuation of the Balifan-Mozitan-Xiaotian fault (BMXF) of the northern Dabie Shan. It is indicated that the two stages of ductile deformation observed in the Xiongdian-Suhe HP metamorphic unit, reflecting the post-eclogite compressional or extrusion wedge formation, the subhorizontal ductile extension and crustal thinning as well as the top-to-the north shearing along the high-angle ductile shear zones responsible for exhumation of the HP unit as a coherent slab, are consistent with those recognized in the Dabie-Sulu UHP and HP metamorphic belts, suggesting that they were closely associated in time and space. The Xiongdian-Suhe HP metamorphic unit thus forms part of the Triassic(250-230 Ma) collision orogenic belt, and can not connect with the South Altun-North Qaidam-North Qinline UHP metamorphic belt formed durin~ the Early Paleozoic (500-400Ma).  相似文献   

11.
The Bogda Shan orogenic belt is interpreted to be an Upper Palaeozoic continental rift, which was closed towards the end of the Carboniferous period. Intrusive activities in that belt are represented mainly by a large number of diabasic sills, dykes and stocks with sparse dioritic and granitic bodies. Determinations on a group of samples from the Shangdaheyan intrusion yielded a mineral-rock Rb-Sr isochron with an age of 298.4±0.76 Ma and an initial87Sr/86Sr ratio of 0.7041. In combination with field evidence, these results indicate that most of the intusions of the Bogda Shan orogenic belt were emplaced during the Hercynian cycle as a result of initial extension following rift closure, and that post-Hercynian intrusive activities are not important in that belt.  相似文献   

12.
The Ming-Kush-Kökömeren Zone in the Middle Tien Shan is a transpressional structural unit, i.e., a longitudinal recent faultline depression, where manifestations of transverse shortening (intense folding, reverse and thrust faulting) are combined with left-lateral offset along the same faults; the left-lateral offset is commensurable to vertical separation along reverse and thrust faults or it even exceeds the latter. The complicated deformation within this zone has developed most intensely since the late Pliocene and reached a peak in the Pleistocene. However, the origin of this structural unit was at the onset of neotectonic stage, as evidenced from the Oligocene-lower Miocene conglomerate unit, which was formed as a product of the destruction of reactivated Hercynian thrust faults and nappes in the southern wall of the zone. The conglomerate filled a narrow ramp valley that formed in front of thrusts, probably due to the strike-slip offsets along boundary faults. Similar transpressional linear zones-Tessyk-Sary-Bulak, Uzunbulak-Oy-Kain, Kara-Köl, and Chong-Kemin (Kemin-Chilik)-are known in the Middle Tien Shan.  相似文献   

13.
The Karatau–Talas–Ferghana Fault (KTF) extending for 1500 km from Turgai to western Tarim is one of the world’s largest intracontinental strike-slip faults. This paper overviews the evolution of the KTF, providing insight into its relatively poorly studied northern segment in the Karatau Range and Turgai, known as the Main Karatau Fault (MKF). The right-lateral strike-slip along the KTF developed during three stages in the late Permian–Triassic, Early–Middle Jurassic, and late Cenozoic. The total strike-slip decreases northward from 200 km in the Ferghana Range to 100 km in the Karatau Range and decreases to zero in southern Turgai. Kinematic analysis of Jurassic grabens compensating the strike-slip in southern Turgai shows that strike slip along the KTF in the Jurassic, previously regarded as insignificant, actually measures tens of kilometers and 50% of the total strike slip in the northern segment of this fault.  相似文献   

14.
As the boundary between the Indochina and the South China blocks, the Ailao Shan-Red River (ASRR) shear zone underwent a sinistral strike-slip shearing which is characterized by ductile deformation structures along the Ailao Shan range. The timing issue of left-lateral shearing along the ASRR shear zone is of first-order importance in constraining the nature and regional significance of the shear zone. It has been, therefore, focused on by many previous studies, but debates still exist on the age of initiation and termination of shearing along the shear zone. In this paper, we dated 5 samples of granitic plutons (dykes) along the Ailao Shan shear zone. Zircon U–Pb ages of four sheared or partly sheared granitic rocks give ages of 30.9 ± 0.7, 36.6 ± 0.1, 25.9 ± 1.0 and 27.2 ± 0.2 Ma, respectively. An undeformed granitic dyke intruding mylonitic foliation gives crystallization age of 21.8 ± 1 Ma. The Th/U ratios of zircon grains from these rocks fall into two populations (0.17–1.01 and 0.07–0.08), reflecting magmatic and metamorphic origins of the zircons. Detailed structural and microstructural analysis reveals that the granitic intrusions are ascribed to pre-, syn- and post-shearing magmatisms. The zircon U–Pb ages of these granites provide constraints on timing of the initiation (later than 31 Ma from pre-shearing granitic plutons, but earlier than 27 Ma from syn-shearing granitic dykes) and termination (ca. 21 Ma from the post-shearing granitic dykes) of strong ductile left-lateral shearing, which is consistent with previous results on the Diancang Shan and Day Nui Con Voi massifs in the literature. We also conclude that the left-lateral shearing along the ASRR shear zone is the result of southeastward extrusion of the Indochina block during the Indian–Eurasian plate collision. Furthermore, the left-lateral shearing was accompanied by the ridge jump, postdating the opening, of the South China Sea.  相似文献   

15.
16.
The Yellow River system, the largest river system in northern China, generally flows northeasterly through a series of linear mountain belts in the northeastern margin of the Tibetan plateau, the youngest of which are the Laji–Jishi Shan and Riyue Shan ranges, formed during late Cenozoic time due to NE–SW oblique shortening. As the product of the interaction between the tectonic process and the climate, the incision of the Yellow River system is a crucial parameter in models of the scale and timing of the crustal uplift and erosion in northeastern Tibetan plateau. Thus, whether the along-strike topographic feature of the Laji-Jishi Shan that is cut through by the Yellow River system and related streams is controlled by structural deformation or by erosion needs to be constrained. Our mapping shows that the variation in deformation along this mountain belt formed two structural saddles with relative low elevation in late Cenozoic time, through which the Yellow and Yaoshui Rivers cut into the plateau and drained a series of the Tertiary basins. The Yaoshui River is the tributary of the Huangshui River which itself flows into the Yellow River in the Lanzhou area. One saddle is present along the Yaoshui River valley, formed by NW–SE extension along the Riyue Shan Pass (RSP) normal fault, along which the Miocene and Mesozoic rocks were subsided against Proterozoic metamorphic rocks. These deformed rocks in the hanging wall are truncated by a sub-horizontal erosion surface at an elevation of 3200 m, on which terrace deposits are locally present, presumably middle Pleistocene in age. This terrace is incised by the Yaoshui River to an elevation of 3000 m, which yields 300 m of incision. Another saddle is along the Yellow River valley (the Xunhua-Linxia gouge) between the southern tip of the Laji Shan and the northern tip of the Jishi Shan, generated by en echelon folding. This structural saddle is underlain by the lower Cretaceous and Pliocene clastic rocks, which are truncated on the top by a rugged erosion surface at an average elevation of 3000 m. The Yellow River incised into this surface to an elevation of 1900 m, which yields 1100 m of incision. These two saddles, featured by topographic and structural low, were formed in the middle or late Miocene, and facilitated the headward propagation of the Yellow and Yaoshui Rivers, which initiated in early and middle Pleistocene time, respectively.  相似文献   

17.
Antiquated stratigraphic and tectonic concepts on non‐metamorphic upper Palaeozoic and Mesozoic sequences in eastern Burma are revised.

Post‐Silurian of Northern Shan States: The misleading traditional term Plateau Limestone ('Devonian‐Permian') is abandoned. The Devonian part is to be known as Shan Dolomite—with the Eifelian Padaukpin Limestone and the Givetian Wetwin Shale as subordinate member formations—and the disconformable Permian as Tonbo Limestone. Carboniferous formations are absent.

Upper Palaeozoic of Karen State: The sequence begins with the fossiliferous Middle to Upper Carboniferous Taungnyo Group resting unconformably on the epimetamorphic Mergui ‘Series’ (probably Silurian) and on older metamorphics. There is no evidence of Devonian rocks. The Permian is represented by widespread, but discontinuous, reef complexes, known as Moulmein Limestone, which rest unconformably on the moderately folded Carboniferous. The earliest beds of the Permian are of the Artinskian Epoch. No Mesozoic sequence is known west of the Dawna Range.

Mesozoic of Northern Shan States: Triassic and Jurassic are present, but the Cretaceous is absent. The Bawgyo Group (Upper Triassic and Rhaetic) rests unconformably on the Palaeozoic and consists of the Pangno Evaporites (below) and the Napeng Formation. The Jurassic Namyau Group, consisting of the Tati Limestone (Bathonian‐Callovian) and the Hsipaw Redbeds (Middle to Upper Jurassic) follows unconformably.

Origin of folding of Mesozoic: The intense primary folding of the Triassic and Jurassic sequences in the Hsipaw region is due to gravity‐sliding (Gleittektonik) on the Upper Triassic evaporites. Secondary complications were introduced by diapiric displacements which are probably continuing. Neither of these tectonic phases shows a significant causal relationship with the Alpine Orogeny sensu stricto. The latter is at best responsible for minor overprinting, chiefly through broad warping and horst‐and‐graben fracturing of the Shan Dolomite with locally considerable vertical displacements. There are no Alpine fold structures in the region. Geotectonically, it was a well‐consolidated frontal block of the Alpidic hinterland.  相似文献   

18.
The Ysyk-Köl Basin filled with Lower Jurassic–Quaternary sedimentary rocks is the largest intermontane negative structural unit of the northern Tien Shan. The basement of this basin is composed of Precambrian–Paleozoic rocks, largely of Ordovician and Silurian granitoids exposed in mountain ranges of the basin framework and as separate anticlinal domes situated in areas occupied by the Mesozoic–Cenozoic sedimentary cover. The postmagmatic tectonic internalstructure of the Chonkurchak (Chunkurchak), Kyzyl-Choku, Kyzyl-Bulak, and Prishib massifs emplaced in the basement, as well as their relationships to the sedimentary cover, are described in the paper. The study was carried out using the morphostructural method, detailed geological mapping, structural kinematic analysis, and petrographic examination of rocks. The internalstructure of Paleozoic granites in the basement and indications of their 3D tectonic flow are characterized. It is shown that granites underwent 3D deformation after their emplacement in the consolidated crust, and this process had a substantial influence on tectonic processes at the plate and orogenic stages of regional evolution.  相似文献   

19.
Left-lateral motion along the Ailao Shan–Red River (ASRR) Shear Zone has been widely advocated to be the result of the collision between the Indian and Eurasian plates and to account for sea-floor spreading in the South China Sea. Our new 40Ar/39Ar data on the south-easternmost outcrop of the Day Nui Con Voi metamorphic massif, northern Vietnam, suggest that the exhumation of metamorphic massif by shearing along the ASRR zone began ∼27 Ma and lasted until ∼22 Ma. A perfect correlation between location and cooling path for the samples along the shear zone suggests that the transtensional deformation may have propagated northwestward at a rate of ∼6 cm y−1. Such a good correlation also indicates that the onset of the left-lateral movement of the shear zone may have occurred later than ∼27.5 Ma. This conclusion is consistent with our previous interpretation that collision-induced southeastward extrusion of Indochina along the ASRR Shear Zone postdates the opening of the South China Sea, and that extrusion tectonics in SE China may not be responsible for the opening of the South China Sea.  相似文献   

20.
中生代和新生代多期次的新老构造活动叠加造成了龙门山现今地震频发和复杂的构造格局。沿2008年汶川地震断裂带出露有多种断裂岩组合,为直接开展断裂带热年代学研究提供了重要素材。本研究首次尝试针对映秀-北川断裂带出露的假玄武玻璃开展^(40)Ar/^(39)Ar年龄的多重扩散域(MDD)模拟研究。与钾长石相似的阶梯状上升的年龄谱图表明假玄武玻璃同样具有开展MDD模拟的应用潜力。模拟结果显示,映秀-北川断裂带分别经历了~230Ma和~180Ma起始的构造热事件,对应青藏高原东缘中-晚三叠世统一的挤压造山运动和造山后的伸展垮塌。断裂带内新获得的断层角砾岩磷灰石裂变径迹(AFT)结果与上、下盘已有结果共同组成了较为完整的年龄-高程剖面,揭示出年龄拐点出现在~13Ma,位于~1100m的海拔高度,与热历史反演结果一致,对应映秀-北川断裂带的出露位置,直接证实断裂活动在中中新世以来龙门山的隆升过程中发挥了重要作用。进入中中新世以来,龙门山断裂带的快速剥蚀和地温梯度的显著降低很可能暗示了构造活动机制上的重要转变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号