首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Divrigi and Kuluncak ophiolitic mélanges are located in central Anatolia in the Tauride ophiolite belt. The stratigraphic sequence in the Divrigi ophiolitic mélange includes, from bottom to top, the Upper Jurassic-Lower Cretaceous Akdag limestone, Upper Cretaceous Çalti ultramafic rocks, and the Curek listwaenite. The Divrigi ophiolitic mélange is intruded by the Late Cretaceous-Eocene Murmano pluton. The above stratigraphic sequence is followed by the Eocene-Paleocene Ekinbasi metasomatite and the Quaternary Kilise Formation.

The oldest sequence of rocks in Kuluncak ophiolitic mélange in the GuvenÇ area is the Karadere serpentine/ultramafic body overlain successively by the Kurtali gabbro, Gundegcikdere radiolarite, the GuvenÇ listwaenites, and the Buldudere Formation. All of these units are Late Cretaceous in age. The Karamagra siderite deposit in the Hekimhan area probably was formed in the Lower Cretaceous at the contact between Çalti ultramafic rocks and the Buldudere Formation. The Kuluncak ophiolitic mélange was intruded by a subvolcanic trachyte in the Late Cretaceous. The Eocene-Paleocene Konukdere metasomatite, the Miocene Yamadag volcanic rocks, and Quaternary slope deposits are late in the stratigraphic sequence in the GuvenÇ area.

The Kuluncak ophiolitic mélange in the Karakuz area is similar to that at GuvenÇ; however, gabbro, radiolarite, and Miocene volcanic rocks are not present. The Miocene is represented by the Ciritbelen Formation at Karakuz and the Karakuz iron deposit is hosted by a Late Cretaceous subvolcanic trachyte.

The rareearth and trace-element concentration of serpentinite in the Divrigi and Kuluncak ophiolitic mélanges indicate that all of the ultramafics and their alteration products were derived from a MORB, which was depleted in certain elements and oxides. The results expressed in this study support the idea that the Divrigi and Kuluncak ophiolitic mélanges within the Tauride ophiolite belt originated from Northern Tauride oceanic lithosphere (Poisson, 1986), instead of a northern branch of Neo-Tethys (Sengor and Yilmaz, 1981).  相似文献   

2.
The Shyok tectonic zone lies to the north of Ladakh magmatic arc or the Ladakh batholith in the Trans-Himalaya of Ladakh district, J & K. Investigations were carried out on the granitoids exposed along Leh-Siachan highway between Khardung and Panamik villages. The granitoid bodies under study are: Khardung granite (KG), Tirit granite (TG) and Panamik granite (PG) belonging to Ladakh batholith, Shyok ophiolitic mélange and Karakoram batholith respectively. Though the granitoids belong to different litho-tectonic units, yet they have subduction related geochemical characters typical of Andean-type granitoids. Re-melting of crustal rocks of volcanic arc affinity has played an important role for the origin of KG rocks which are more evolved, while the TG and PG rocks represent transitional tectonic environment from primitive to mature arc.  相似文献   

3.
The Guomangco ophiolitic melange is situated in the middle part of the Shiquanhe- Yongzhu-Jiali ophiolitic melange belt (SYJMB) and possesses all the subunits of a typical Penrose- type ophiolite pseudostratigraphy. The study of the Guomangco ophiolitic melange is very important for investigating the tectonic evolution of the SYJMB. The mafic rocks of this ophiolitic melange mainly include diabases, sillite dikes, and basalts. Geochemical analysis shows that these dikes mostly have E-MORB major and trace element signatures; this is the first time that this has been observed in the SYJMB. The basalts have N-MORB and IAB affinities, and the mineral chemistry of harzburgites shows a composition similar to that of SSZ peridotites, indicating that the Guomangco ophiolitic melange probably originated in a back-arc basin. The Guomangco back-arc basin opened in the Middle Jurassic, which was caused by southward subduction of the Neo-Tethys Ocean in central Tibet. The main spreading of this back-arc basin occurred during the Late Jurassic, and the basalts were formed during this time. With the development of the back-arc basin, the subducted slab gradually retreated, and new mantle convection occurred in the mantle wedge. The recycling may have caused the metasomatized mantle to undergo a high degree of partial melting and to generate E- MORBs in the Early Cretaceous. E-MORB-type dikes probably crystallized from melts produced by about 20%-30% partial melting of a spinel mantle source, which was metasomatized by melts from low-degree partial melting of the subducted slab.  相似文献   

4.
徐梦婧  李才  吴彦旺  解超明 《地质通报》2014,33(7):1061-1066
果芒错蛇绿混杂岩位于狮泉河—永珠—嘉黎蛇绿混杂岩带中段,是该带中保存较好的一套蛇绿混杂岩,其形成环境是确定狮泉河—永珠—嘉黎蛇绿混杂岩带构造属性的重要依据。对果芒错蛇绿混杂岩中的硅质岩进行了地球化学分析,为判断蛇绿混杂岩的形成环境提供新的约束条件。硅质岩通常呈几十厘米夹层产于玄武岩中,含有大量晚三叠世—白垩纪放射虫化石。硅质岩SiO2含量为71.38%~77.67%,Al2O3含量为8.62%~11.51%,MnO/TiO2值为0.28~0.35,(Ce/Ce*)SN值为0.92~0.94,(La/Ce)SN值为1.13~1.17,反映了陆源物质的影响,而V、Ni、Cu和V/Y值高于大陆边缘硅质岩,与洋中脊和大洋盆地硅质岩相似,说明果芒错硅质岩可能形成于受陆源物质影响且与大陆边缘有一定距离的环境中。结合变质橄榄岩、镁铁质岩墙和玄武岩的地球化学特征,初步认为果芒错蛇绿混杂岩的形成环境为靠近大陆边缘的弧后盆地。  相似文献   

5.
The blueschists along the Indus Suture Zone in Ladakh, NW Himalaya   总被引:5,自引:0,他引:5  
ABSTRACT Blueschists occur along the Indus Suture Zone in Ladakh as tectonic thrust slices, as isolated blocks within mélange units and as pebbles within continental detrital series. In the Shergol-Baltikar section high-pressure rocks within the Mélange unit lie between the Dras-Naktul-Nindam nappes in the north and the Lamayuru units in the south. The blueschists are imbricated with mélange formation of probably upper Cretaceous age. They are overlain discordantly by the Shergol conglomerate of post Eocene (Oligo-Miocene ?) age. Blueschist lithologies are dominated by volcanoclastic rock sequences of basic material with subordinate interbedding of cherts and minor carbonates. Mineral assemblages in metabasic rocks are characterized by lawsonite-glaucophane/crossite-Na-pyroxene-chlorite-phengite-titanite ± albite ± stilpnomelane. In the quartz bearing assemblages garnet is present but omphacite absent. P-T estimates indicate temperatures of 350 to 420°c and pressures around 9–11 kbar. Geochemical investigations show the primary alkaline character of the blueschist, which suggests an oceanic island or a transitional MORB type primary geotectonic setting. K/Ar isotopic investigations yield middle Cretaceous ages for both whole rocks and minerals. Subduction related HP-metamorphism affecting the Mesozoic Tethyan oceanic crust developed contemporaneously with magmatism in the Dras volcanic are and the Ladakh batholith. Subsequent collision of India with Asia obducted relics of subduction zone material which later became involved in nappe emplacement during the Himalayan mountain building.  相似文献   

6.
The Batinah mélange which overlies the late Cretaceous Semail ophiolite in the northern Oman Mountains comprises mostly sedimentary rocks of deep-water facies, alkalic lavas and intrusives, all of continental margin affinities, together with smaller volumes of Semail ophiolitic and metamorphic rocks. Four intergradational textural types of mélange can be recognized. Sheet mélange has large (>1 km) intact sheets either with little intervening matrix or set in other mélange types, and with an organised sheet orientation fabric. Slab mélange is finer textured (>100 m) and more disrupted. Block mélange has smaller (> m) blocks with some matrix and a weak to random block fabric. Clast mélange is matrix-supported rudite with a weak depositional clast fabric. Structural relationships, particularly the absence of tectonic fabrics, the decreasing strength of fragment fabrics with increasing fragmentation, and the abundance of brittle fragmentation, suggest that these mélange types formed by either gravity-driven sedimentary processes or superficial sliding or thrusting of individual rock slabs.In the slab mélange, long sequences can be pieced together, passing up from Upper Triassic mafic sub-marine extrusives and sediments into radiolarian cherts, hemipelagic and redeposited limestones, and terminating in non-calcareous radiolarities with Mn-deposits of early Cretaceous age. Mafic sills are numerous. These sequences can be matched with sub-ophiolite rocks now exposed in fault corridors through the Semail. These sequences become progressively disrupted upwards in the corridors and can be traced continuously into overlying mélange, which then thins away from the corridors.We argue that, during late Cretaceous emplacement over the Arabian margin, active fault corridors split the Semail slab and acted as conduits up which sub-ophiolite rocks were supplied to the ophiolite surface. There the rocks were redisributed by superficial processes.  相似文献   

7.
《Geodinamica Acta》2013,26(5):349-361
The most widespread blocks within the Cretaceous ophiolitic mélange (North Anatolian ophiolitic mélange) in Central Anatolia (Turkey) are pillow basalts, radiolarites, other ophiolitic fragments and Jurassic-Cretaceous carbonate blocks. The pillow basalts crop out as discrete blocks in close relation to radiolarites and ophiolitic units in Cretaceous ophiolitic mélange.

The geochemical results suggest that analyzed pillow basalts are within-plate ocean island alkali basalts. The enrichment of incompatible elements (Nb, Ta, Light REE, Th, U, Cs, Rb, Ba, K) demonstrates the ocean island environment (both tholeiites and alkali basalts) and enriched MORB. Dated calcareous intrafills and biodetrital carbonates reveal an age span of Callovian—Early Aptian. The thin-shelled protoglobigerinids, belonging to the genus Globuligerina, in the calcareous intrafills between pillow basalt lobes indicates a Callovian—Barremian age interval, most probably, Valanginian to Late Barremian. The volcanic and radiolarite detritus-bearing orbitolinid—Baccinella biodetrital carbonates dated as Late Barremian-Early Aptian in age, were probably deposited around atolls and have a close relationship with the ocean island pillow basalts.

The results collectively support the presence of a seamount on the Neo-Tethyan oceanic crust during the Valanginian—Late Barremian and atolls during the Late Barremian-Early Aptian interval. The presence of an oceanic crust older than that seamount along the Northern Branch of Neo-Tethys is conformable with the geodynamic evolution of the Tethys.  相似文献   

8.
《Geodinamica Acta》2013,26(4):167-183
The Eastern Anatolian Plateau (EAP) of Turkey, with an elevation ranging from 1700 to 2000 m, is located between the Eastern Pontide Arc to the north and the Arabian Platform to the south. In this region, pre-Maastrichtian tectonic units representing the crust crop out in only a few localities. As they are covered by Maastrichtian-Quaternary rock units, it is difficult to study the nature and mutual relationships of these pre-Maastrichtian tectonic units.

The palaeotectonic units of the EAP comprise two different levels in the present study: (1) The lower level consists of platform-type carbonates and their metamorphic equivalents. These units may represent the Taurus Platform and its metamorphic equivalents. (2) The upper level consists of an ophiolitic-mélange prism which is made up mainly of oceanic crust; the prism comprises a complex of ophiolite, ophiolitic mélange, and fore-arc deposits. This upper unit represents a subduction-accretion prism and may have originated partly from the North Anatolian Suture to the north, and partly from the South-eastern Anatolian Suture to the south.

Continental crustal rocks were thrust over by the ophiolitic mélange prism; thus outcrops of them are scarce in the region as they are exposed in tectonic windows through the ophiolitic thrust sheets. The pre-Maastrichtian tectonic units of the EAP are blanketed by Maastrichtian to Quaternary volcanic and sedimentary rock units; these sequences include successive transgressive and regressive intervals and overlie the palaeotectonic units along a pronounced unconformity. Olistostromal units are abundant in the Eocene sedimentary units and were derived from the ophiolites and ophiolitic mélange. The Maastrichtian-Quaternary cover is made up of collisional and post-collisional deposits across the whole region.

Although the EAP has been experiencing considerable N-S compression, it has not been affected by significant crustal thickening because of the strike-slip tectonic regime that is dominant in the region.  相似文献   

9.
王莹  黄河  张东阳  张招崇  赵莉 《岩石学报》2012,28(4):1273-1281
齐齐加纳克蛇绿混杂岩位于中国新疆西南天山阔克萨彦岭地区,主要由辉石橄榄岩,橄榄辉石岩,橄榄玄武岩,辉长岩,辉绿岩,基性熔岩等组成。它们以一系列构造碎片近东西向产出,断续沿长约5km,宽约500m。本文应用SHRIMP方法对该蛇绿混杂岩中玄武岩中的锆石进行SHRIMP锆石U-Pb测年,获得了399±4Ma的加权平均年龄,说明该蛇绿混杂岩形成于早泥盆世。结合前人的研究成果,我们推测齐齐加纳克蛇绿混杂岩与吉根蛇绿岩残片均为中亚造山带南天山蛇绿岩带的延伸,可能代表了一个多岛窄洋盆演化的产物,为南天山洋北向俯冲及其后的塔里木微板块与哈萨克斯坦-准噶尔板块陆陆碰撞形成的最后缝合带。  相似文献   

10.
The Alxa region, located in the southernmost part of Central Asian Orogenic Belt, is a key region for understanding the tectonic processes associated with the closure of the Paleo-Asian Ocean. Issues of late Paleozoic tectonic settings and tectonic unit divisions of the Alxa region still remain controversial. In this study, we report a new ophiolitic mélange named the Tepai ophiolitic mélange in the northern Alxa region, northwest of Alxa Youqi. The tectonic blocks in the Tepai ophiolitic mélange are mainly composed of serpentinized peridotites, serpentinites, mylonitized gabbros, gabbros, basalts, and quartzites, with a matrix comprising highly deformed clastic rocks. A gabbro exhibits a zircon LA-ICP-MS Ue Pb age of278.4 ± 3.3 Ma. Gabbros exhibit high Mg O and compatible element contents, but extremely low TiO_2,totally rare earth element and high field strength element contents. These rocks exhibit light rare earth element depleted patterns, and display enriched in large-ion lithophile elements and depleted in high field strength elements. Boninite-like geochemical data show that they were formed in a subductionrelated environment, and derived from an extremely depleted mantle source infiltrated by subduction-derived fluids and/or melts. The Tepai ophiolitic mélange exhibits similar zircon U-Pb-O isotopic compositions and whole-rock geochemical characteristics to those of the Quagan Qulu ophiolite.Therefore, we propose that the Tepai ophiolitic mélange may have been the western continuation of the Quagan Qulu ophiolite. Our new finding proves the final closure of the Paleo-Asian Ocean might have taken place later than the early Permian.  相似文献   

11.
岩湾-鹦鸽咀蛇绿混杂岩是秦岭商丹蛇绿混杂岩带的重要组成部分,由变质基性火山岩(玄武岩)、蛇纹岩、变辉长岩、硅质岩、变复理石(云母石英片岩)等构造岩块组成.其中变基性火山岩具有N-MORB的地球化学特征,安山岩具有与俯冲作用密切相关的岛弧火山岩的性质.玄武岩的锆石SHRIMP U-Pb年龄为483 Ma±13Ma,与天水关子镇和丹风蛇绿混杂岩的时代相一致.对岩湾-鹦鸽咀蛇绿混杂岩的岩石组成和形成时代进行研究,可为进一步探讨商丹蛇绿混杂岩带和秦岭造山带的增生造山作用提供重要证据.  相似文献   

12.
The West Junggar lies in the southwest part of the Central Asian Orogenic Belt (CAOB) and consists of Palaeozoic ophiolitic mélanges, island arcs, and accretionary complexes. The Barleik ophiolitic mélange comprises several serpentinite-matrix strips along a NE-striking fault at Barleik Mountain in the southern West Junggar. Several small late Cambrian (509–503 Ma) diorite-trondhjemite plutons cross-cut the ophiolitic mélange. These igneous bodies are deformed and display island arc calc-alkaline affinities. Both the mélange and island arc plutons are uncomfortably covered by Devonian shallow-marine and terrestrial volcano-sedimentary rocks and Carboniferous volcano-sedimentary rocks. Detrital zircons (n = 104) from the Devonian sandstone yield a single age population of 452–517 million years, with a peak age of 474 million years. The Devonian–Carboniferous strata are invaded by an early Carboniferous (327 Ma) granodiorite, late Carboniferous (315–311 Ma) granodiorites, and an early Permian (277 Ma) K-feldspar granite. The early Carboniferous pluton is coeval with subduction-related volcano-sedimentary strata in the central West Junggar, whereas the late Carboniferous–early Permian intrusives are contemporary with widespread post-collisional magmatism in the West Junggar and adjacent regions. They are typically undeformed or only slightly deformed.

Our data reveal that island arc calc-alkaline magmatism occurred at least from middle Cambrian to Late Ordovician time as constrained by igneous and detrital zircon ages. After accretion to another tectonic unit to the south, the ophiolitic mélange and island arc were exposed, eroded, and uncomfortably overlain by the Devonian shallow-marine and terrestrial volcano-sedimentary strata. The early Carboniferous arc-related magmatism might reflect subduction of the Junggar Ocean in the central Junggar. Before the late Carboniferous, the oceanic basins apparently closed in this area. These different tectonic units were stitched together by widespread post-collisional plutons in the West Junggar during the late Carboniferous–Permian. Our data from the southern West Junggar and those from the central and northern West Junggar and surroundings consistently indicate that the southwest part of the CAOB was finally amalgamated before the Permian.  相似文献   

13.
The West Junggar, located in the southernmost part of the Central Asian Orogenic Belt (CAOB), is a key region for understanding the Paleozoic evolution of the CAOB. Issues of the timing of initial subduction and tectonic unit connections in northern West Junggar still remain controversial. In this study, we report a new ophiolitic mélange named the E'min ophiolitic mélange in northern West Junggar. The tectonic blocks in the E'min ophiolitic mélange are mainly composed of serpentinized peridotite, serpentinite, gabbros, pillow basalts, and cherts, with a matrix consisting of highly deformed serpentinites. A gabbro exhibits a zircon SHRIMP U-Pb age of 476 ± 2 Ma, and the zircon grains have δ18O values similar to those of mantle zircons. Those basalt samples display depletions of light rare earth element (REE) relative to heavy REEs. They exhibit weak enrichment of Ba and Th, and moderate depletion of Nb and Ta. The basalts display similar geochemical characteristics to that of fore–arc basalts in the present-day fore–arc setting. The gabbros exhibit high MgO and compatible element contents, but low TiO2, total REE and high field strength element (HFSE) contents. They exhibit light REE depletion, enrichment in large-ion lithophile elements, and depletion of HFSEs. The boninite-like geochemical patterns of the gabbros indicate that they were formed in a subduction-related environment, and were derived from an extremely depleted mantle source infiltrated by subduction-derived fluids and/or melts. The E'min ophiolitic mélange has a geochemical make-up similar to those of suprasubduction-zone (SSZ)-type ophiolites formed in a forearc setting. Hence, we propose that the E'min ophiolitic mélange formed in a forearc setting and may represent the initial subduction in northern West Junggar. Based on geochronological data, we propose that the E'min ophiolite, together with the Kujibai, Hoboksar and Hongguleleng ophiolites, formed during a similar period and comprise a huge E–W trending ophiolitic belt.  相似文献   

14.
The Cycladic blueschist belt in the central Aegean Sea has experienced high‐pressure (HP) metamorphism during collisional processes between the Apulian microplate and Eurasia. The general geological and tectonometamorphic framework is well documented, but one aspect which is yet not sufficiently explored is the importance of HP mélanges which occur within volcano‐sedimentary successions. Unresolved issues concern the range in magmatic and metamorphic ages recorded by mélange blocks and the significance of eventual pre‐Eocene HP metamorphism. These aspects are here addressed in a U‐Pb zircon study focusing on the block–matrix association exposed on the island of Syros. Two gneisses from a tectonic slab of this mélange, consisting of an interlayered felsic gneiss‐glaucophanite sequence, yielded zircon 206Pb/238U ages of 240.1 ± 4.1 and 245.3 ± 4.9 Ma, respectively, similar to Triassic ages determined on zircon in meta‐volcanic rocks from structurally coherent sequences elsewhere in the Cyclades. This strongly suggests that parts of these successions have been incorporated in the mélanges and provides the first geochronological evidence that the provenance of mélange blocks/slabs is neither restricted to a single source nor confined to fragments of oceanic lithosphere. Zircon from a jadeitite and associated alteration zones (omphacitite, glaucophanite and chlorite‐actinolite rock) all yielded identical 206Pb/238U ages of c. 80 Ma. Similar Cretaceous U‐Pb zircon ages previously reported for mélange blocks have been interpreted by different authors to reflect magmatic or metamorphic ages. The present study adds a further argument in favour of the view that zircon formed newly in some rock types at c. 80 Ma, due to hydrothermal or metasomatic processes in a subduction zone environment, and supports the interpretation that the Cycladic blueschist belt records both Cretaceous and Eocene HP episodes and not only a single Tertiary HP event.  相似文献   

15.
The western margin of Myanmar is the northern extension the active Sunda (India-Eurasia) subduction zone. Coastal regions and offshore islands have remarkable exposures of chaotic rock terranes along wave-cut terraces that allow characteristics of tectonic, sedimentary and diapiric mélanges to be recognized. Tectonic shear zones (tectonic mélanges) contain fragments of Cretaceous ophiolites (chrome-spinel-bearing peridotites and radiolarian cherts) that are in contact with thrust packets of Eocene turbidite units (broken formations). The turbidites contain shale-rich beds that have been sheared during soft-sediment deformation (sedimentary broken formations) and are sandwiched between undeformed thick sandy beds. These are mass transport deposits (MTDs) that most likely formed during deposition of the initial detritus of the Himalayan orogenic zone, probably trench slope basins on the accretionary prism. The ophiolitic and turbiditic thrust slices have been exhumed and are currently being intruded by active mud volcanoes that bring fragments of units up from depth to the surface, forming diapiric mélanges. These diapiric mélange bodies contain only small fragments (<50 cm) that are randomly oriented and do not exhibit shear fabrics. Because the region lacks superimposed deformation characteristic of most orogenic belts, the origins of all three rock bodies can easily be distinguished.  相似文献   

16.
The main site and timing of the final closure of the middle segment of the Paleo-Asian Ocean (PAO) has been an issue of hot debate, which hampers us from better understanding the late-stage tectonic evolution of the Central Asian Orogenic Belt (CAOB). Synthesizing the available geological records for the ophiolitic mélanges in the Beishan Orogenic Belt (BOB), we regard the Liuyuan ophiolitic mélange as the main site of the final closure of the middle segment of the PAO. To determine the final closure time of the middle segment of the PAO, this study mainly applied field-based, systematic zircon U-Pb-Hf isotopic analyses for the Carboniferous and Permian sedimentary successions on the northern and southern sides of the Liuyuan ophiolitic mélange. Our results indicate that the late Carboniferous sedimentary successions north of the Liuyuan mélange consisting mainly of interbedded sandstone and siltstone with minor conglomerate show primarily affinity with a local, single source, i.e. the constituent units of the BOB north of the Liuyuan mélange. They were closely associated with the northward subduction of the middle segment of the PAO. By contrast, the unconformably overlying Permian clastic deposition on both sides of the Liuyuan ophiolitic mélange shows comparable lithology that fines from a thick sequence of conglomerate at the base to thin-bedded turbidite sequences up section. These Permian units were probably deposited in a progressively deepening basin within an extensional post-collision regime after the disappearance of the middle segment of the PAO. All the <274–261 Ma sandstones on both sides of the Liuyuan ophiolitic mélange were derived from commingling source regions on both sides of the Liuyuan mélange, as supported by comparable, diagnostic ages and εHf(t) values between the studied detrital zircons and coeval magmatic zircons from the BOB and north Tarim. Such a marked transition from a single, local provenance in the late Carboniferous to commingling provenances at ca. 274–261 Ma indicates the final closure of the middle segment of the PAO prior to the end of the early Permian. In conjunction with available data for the eastern and western segments of the PAO, we establish the eastward-younging, scissor-like closure for the whole PAO during mid Carboniferous to Early Triassic time.  相似文献   

17.
A belt of Jurassic to Cretaceous ophiolitic rocks borders the western margin of the U.S. Cordillera and stretches from central California to northwestern Washington State. The northern end of this belt lies between the San Juan Islands and the Northwest Cascades. Within this region, ophiolitic rocks consist of a succession of oceanic and arc-affinity igneous and sedimentary rocks which form a sedimentary mélange and sedimentary overlap sequence which is imbricated during the mid-Cretaceous. The mélange contains blocks and olistoliths of peridotite, plagiogranite, chert, basalt, and volcanoclastic conglomerate which range in size from a meter to over 1 km and are contained within a matrix of argillite and volcanoclastic breccia and conglomerate. Peridotites were exposed to the sub-aqueous surface along serpentinized shear zones prior to their incorporation into the mélange, and the sedimentary matrix of the mélange underwent brittle deformation during the earliest stages of its structural history. Mélange rocks are overlain in angular unconformity by a Jura-Cretaceous arc-sourced sedimentary succession which is at least 500 meters thick and passes upward from a basal breccia containing clasts of plagiogranite, gabbro, tonalite, chert, and basalt into argillite containing Late Jurassic radiolarians. The argillite is overlain by poorly-sorted greywacke and conglomerate with clast populations similar to those of the basal breccia. The conglomerate fines upward into a massive to bedded, feldspathic-lithic arenite and greywacke that yields mid-Cretaceous detrital zircons. The overlap succession and the mélange are deformed by two generations of highly-penetrative structures (D1a and D1b) which produced north-to-east vergent tight-to-isoclinal folds and axial-planar pressure-solution cleavages. All units are further deformed by three generations of penetrative structures. The successively younger NNE to NW, NE, and E-W to WNW trending folds have foliations that cross-cut the earlier structural fabrics and faults. Formation of the mélange required differential elevations during the time of deposition and the presence of rocks which are sourced from both arc and oceanic crust. Extension within the forearc provides a mechanism to exhume peridotites and generate differential topography for arc and oceanic affinity rocks to erode and be incorporated into the mélange as part of olistostromal deposits.  相似文献   

18.
In the southern Chinese Tianshan, the southernmost part of the Central Asian Orogenic Belt (CAOB), widespread ophiolitic mélanges form distinct tectonic units that are crucial for understanding the formation of the CAOB. However, the timing of tectonic events and the subduction polarity are still in controversy. In order to better understand these geological problems, a comprehensive study was conducted on the Heiyingshan ophiolitic mélange in the SW Chinese Tianshan. Detailed structural analysis reveals that the ophiolitic mélange is tectonically underlain by sheared and weakly metamorphosed pre-Middle Devonian rocks, and unconformably overlain by non-metamorphic and undeformed lower Carboniferous (Serpukhovian) to Permian strata. The igneous assemblage of the mélange comprises OIB-like alkali basalt and andesite, N-MORB-like tholeiitic basalt, sheeted diabase dikes, cumulate gabbro and peridotite. Mafic rocks display supra-subduction signatures, and some bear evidence of contamination with the continental crust, suggesting a continental marginal (back-arc) basin setting. Zircons of a gabbro were dated at 392 ± 5 Ma by the U–Pb LA-ICP-MS method. Famennian–Visean radiolarian microfossils were found in the siliceous matrix of the ophiolitic mélange. Mylonitic phyllite which displays northward-directed kinematic evidence yielded muscovite 40Ar/39Ar plateau ages of 359 ± 2 Ma and 356 ± 2 Ma.These new data, combined with previously published results, suggest that the mafic protoliths originally formed in a back-arc basin in the Chinese southern Tianshan during the late Silurian to Middle Devonian and were subsequently incorporated into the ophiolitic mélange and thrust northward during the Late Devonian to early Carboniferous. Opening of the back-arc basin was probably induced by south-dipping subduction of the Paleo-Tianshan Ocean in the early Paleozoic, and the Central Tianshan block was rifted away from the Tarim block. Closure of the back-arc basin in the early Carboniferous formed the South Tianshan Suture Zone and re-amalgamated the two blocks.  相似文献   

19.
Abstract The relationships and boundary between the North China and Tarim plates have been unclear for a long time; however, the two plates occupy a prominent position in the formation and evolution of the continental lithosphere of China. It is proposed that the Engger Us ophiolitic mélange zone discovered recently north of Alaxa is a typical suture between the two plates. The ophiolitic mélange zone is composed mainly of a mixture of fragments of ancient oceanic crust and sedimentary rocks of active and passive continental margins. The mélange may be divided into tectonic inclusions and matrix. The suture extends northeastwards into the Republic of Mongolia and probably westwards to meet the Altun fault. With the Engger Us ophiolitic mélange zone as the boundary the Alaxa area may be divided into two parts: the northern part (AN) belongs to the Tarim plate, while the southern part (AS) the North China plate. Geological evidence shows that the two plates were amalgamated in the Late Permian or a bit later.  相似文献   

20.
How ophiolitic mèlanges can be defined as sutures is controversial with regard to accretionary orogenesis and continental growth.The Chinese Altay,East junggar,Tianshan,and Beishan belts of the southern Central Asian Orogenic Belt(CAOB) in Northwest China,offer a special natural laboratory to resolve this puzzle.In the Chinese Altay,the Erqis unit consists of ophiolitic melanges and coherent assemblages,forming a Paleozoic accretionary complex.At least two ophiolitic melanges(Armantai,and Kelameili) in East Junggar,characterized by imbricated ophiolitic melanges,Nb-enriched basalts,adakitic rocks and volcanic rocks,belong to a Devonian-Carboniferous intra-oceanic island arc with some Paleozoic ophiolites,superimposed by Permian arc volcanism.In the Tianshan,ophiolitic melanges like Kanggurtag,North Tianshan,and South Tianshan occur as part of some Paleozoic accretionary complexes related to amalgamation of arc terranes.In the Beishan there are also several ophiolitic melanges,including the Hongshishan,Xingxingxia-Shibangjing,Hongliuhe-Xichangjing,and Liuyuan ophiolitic units.Most ophiolitic melanges in the study area are characterized by ultramafic,mafic and other components,which are juxtaposed,or even emplaced as lenses and knockers in a matrix of some coherent units.The tectonic settings of various components are different,and some adjacent units in the same melange show contrasting different tectonic settings.The formation ages of these various components are in a wide spectrum,varying from Neoproterozoic to Permian.Therefore we cannot assume that these ophiolitic melanges always form in linear sutures as a result of the closure of specific oceans.Often the ophiolitic components formed either as the substrate of intra-oceanic arcs,or were accreted as lenses or knockers in subduction-accretion complexes.Using published age and paleogeographic constraints,we propose the presence of (1) a major early Paleozoic tectonic boundary that separates the Chinese Altay-East Junggar multiple subduction system  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号