首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
胶莱盆地白垩系林寺山组砾岩沉积特征及盆地演化意义   总被引:1,自引:0,他引:1  
胶莱盆地下白垩统莱阳群底部林寺山组主要由砾岩组成。通过对盆地及周缘18个地点林寺山组砾岩系统的调查,从砾岩组分、砾径和长轴排列方向的统计分析出发,研究该砾岩沉积相类型、盆地物源区、古水流及林寺山组上覆地层中砂岩碎屑锆石U-Pb年龄谱特点,并进一步讨论了盆地演化的意义。研究表明,林寺山组底部砾岩以冲积扇相为主,但不同地点亚、微相类型又有差异。原型胶莱盆地由莱阳、海阳-即墨和诸城-五莲3个独立盆地组成,被6个隆起区所分隔。莱阳盆地的物源主要来自胶北隆起和苏鲁造山带北部;海阳-即墨盆地以苏鲁造山带北部隆起区、即墨-牟平隆起、胶南隆起为主物源区;诸城-五莲盆地以胶南隆起和马山-李党家低隆起为主要物源区。林寺山组砾岩的出现标志着苏鲁造山带大规模塌陷和胶莱盆地的形成。  相似文献   

2.
To constrain the provenance of the Ordos Basin and the evolution history of the Qinling Orogen Belt from the Triassic to the Jurassic, 10 samples from the Dongsheng area and 28 samples from the Yan’an area were analyzed for U–Pb ages and Lu–Hf and Sm–Nd isotopic compositions. The results indicate that Middle Jurassic sediments in the Dongsheng area were derived from the Khondalite Belt, Langshan Mountain and the Yinshan Terrane. Mesozoic sediments in the Yan’an area consist of two parts. One part is derived from the North China Craton (NCC), which has U–Pb age groups of ∼1.8 Ga and ∼2.5 Ga, and Hf model ages of ∼2.8 Ga. The other part is derived from the Qilian–Qinling Orogenic Belt, which has U–Pb age groups of 600–1500 Ma and 100–500 Ma, and Nd and Hf isotopic model ages of less than 2.2 Ga. Combining the U–Pb ages with the Hf and Nd isotopic model ages, Mesozoic detrital zircons with U–Pb age groups of ∼1.8 Ga and ∼2.5 Ga in the Yan’an area are found to also be derived from the Khondalite Belt, Langshan Mountain and the Yinshan Terrane, not from the Trans-China Orogen Belt. From the late–Late Triassic sediments of the Yan’an area, the low average values of the Hf (2.03 Ga) and Nd (2.03 Ga) model ages and the characteristic age population of 600–1500 Ma reveal that the main collision or continental subduction between the NCC and the South China Craton (SCC) occurred in the late–Late Triassic. After the main collision or continental subduction, the proportion of sediments from the Qinling–Qilian Orogenic Belt began to decrease (recorded in the early Jurassic samples), which may be in response to the gradual slowing of the uplift speed of the Qinling Orogenic Belt. In the early-middle Jurassic, the sediments have a main U–Pb age population of 100–500 Ma, low detrital zircon Hf model ages (average value is 1.17 Ga) and low whole rock Nd model ages (average value is 1.13 Ga), which suggests that the Qilian–Qinling Orogenic Belt may have a fast uplift history in the early-middle Jurassic.  相似文献   

3.
胶北地体中的深层次拆离构造:扬子板片折返的板上响应   总被引:1,自引:0,他引:1  
通过对胶北地体基底中的韧性变形构造的研究,厘定了位于太古宙胶东群和古元古界粉子山群之间及粉子山群与晚元古界蓬莱群之间的2条深层次韧性拆离断层。显微构造和石英组构研究表明它们的剪切指向自SE向NW,并经历了高温(>650℃)到低温(350℃)的组构演化过程。对剪切带中的长英质糜棱岩进行SHRIMP U-Pb测年,获得153±2Ma和128.5±1.5Ma两组重结晶变形年龄,代表韧性拆离断裂形成及活化的时限。结合地体中岩浆作用、莱阳白垩纪盆地沉积以及制约盆地的韧性拆离断裂(148Ma)等相关伸展构造特征,认为胶北深层次拆离构造是扬子深俯冲板块折返后期的板上伸展的响应。  相似文献   

4.
《International Geology Review》2012,54(15):1887-1908
ABSTRACT

The widespread migmatites in the northwestern part of the Sulu Orogen, China, indicate regional anatexis that is of great significance when discussing the tectonic evolution of this continental orogenic belt. Cathodoluminescence (CL) images, U–Pb ages, and in situ trace element compositions of zircons from four pegmatite veins within these migmatites provide clear evidence for the nature of the post-collisional evolution of the Sulu Orogen. The inherited zircon cores reveal that the protoliths of the migmatites were middle Neoproterozoic magmatic rocks (810–620 Ma) of the South China Block. The protoliths underwent two partial melting events. The mantle domains of the inherited zircons record a Late Triassic (222.0–204.0 Ma) partial melting event that occurred during the exhumation and retrograde metamorphism, after ultrahigh-pressure (UHP) metamorphism. Subsequent newly grown zircons record a Middle–Late Jurassic to Early Cretaceous (164.1–125.5 Ma) anatexis event, indicating that the late Mesozoic anatexis started before ca. 164.1 Ma, reached a peak at ca. 152.1 Ma, and ceased at ca. 125.5 Ma. Combined with previous results of studies on the Sulu orogen, the late Mesozoic anatexis suggested that the thickened crust of the Sulu Orogen had started to become unstable before 164.1 Ma. The duration of ~164.1–137 Ma corresponds to a period of transition in the tectonic regime of the Sulu Orogen, enabling the early high-temperature ductile deformation. After ca. 137 Ma, the tectonic regime was fully transformed into extension and the Sulu Orogen underwent rapid thinning and collapse, thus leading to the late medium–low temperature ductile deformation (137–121 Ma) and laying the foundations for the large-scale magmatic emplacement during the late Early Cretaceous (127–115 Ma). These two partial melting events together promoted the rapid exhumation of the Sulu UHP rocks.  相似文献   

5.
林寺山组是胶莱盆地莱阳群底部重要的地层单元之一.准确限定其沉积时代与物源性质对于客观重建华北陆块东部晚中生代大地构造格局以及周缘造山带/前寒武纪变质基底晚中生代的折返过程具有重要的制约作用.以莱阳盆地蛇窝泊地区莱阳群林寺山组细砾岩为研究对象,对其开展了野外地质调查、岩相学观察、锆石U-Pb测年与锆石稀土元素分析等综合研究,并获得了如下初步认识.(1)林寺山组细砾岩中最小一组碎屑锆石加权平均年龄分别为129±1 Ma与127±5 Ma,结合区域上不整合于莱阳群之上青山群火山岩锆石谐和年龄为119±1 Ma,推测蛇窝泊地区林寺山组沉积时代介于127~119 Ma.(2)蛇窝泊地区林寺山组细砾岩的碎屑锆石年龄变化于2 858~126 Ma之间,并以新太古代晚期与白垩纪早期碎屑锆石为主.前古元古代的碎屑锆石主要来源于胶北前寒武纪变质岩,表明胶北太古宙-古元古代变质岩至少在白垩纪早期已折返至近地表.(3)160~120 Ma岩浆型碎屑锆石主要来源于胶东同时代的中酸性侵入体,暗示在白垩纪早期至少部分160~120 Ma中酸性侵入体已抬升至地表.(4)林寺山组发育少量的二叠纪(280 Ma)和印支期(213 Ma)变质锆石,表明胶东地区可能存在二叠纪约280 Ma区域变质-变形事件,同时暗示早白垩世苏鲁超高压变质岩已经折返到地表.   相似文献   

6.
胶西北东季金矿床钾长石和石英的Ar-Ar年龄及其意义   总被引:25,自引:3,他引:25  
东季金矿床位于焦家_新城金矿带中 ,其围岩蚀变以钾长石化为特征。作者采用Ar_Ar同位素定年方法对东季金矿床矿脉中的石英及其两侧的蚀变钾长石进行了测试 ,获得钾长石Ar_Ar坪年龄为 (116 .0 7± 0 .30 )Ma ,等时线年龄为 (116 .34± 0 .81)Ma ,石英脉中石英Ar_Ar坪年龄为 (115 .2 2± 0 .2 0 )Ma ,等时线年龄为(114.44± 0 .16 )Ma。这些年龄基本上代表了焦家断裂成矿带的成矿时限。  相似文献   

7.
ABSTRACT

The Late Mesozoic Jiaolai basin preserves sediment source information that can help elucidate the tectonic history of East Shandong, China. The terrestrial Wangshi and Laiyang Groups are major components of the basin succession, but are not well studied in terms of their provenance and role in basin evolution. The Early Cretaceous Laiyang Group consists primarily of fluvial and lacustrine facies siltstones and sandstones, whereas the Late Cretaceous Wangshi Group consists of reddish fluvial siltstones and sandstones with interbedded conglomerates. This study reports detrital zircon age distributions from eight sandstones collected from the two groups. Age distributions exhibited four major populations of Palaeoproterozoic (2.5–2.4 Ga), Palaeoproterozoic (1.9–1.8 Ga), Neoproterozoic (850–700 Ma), and Jurassic to Early Cretaceous (171–107 Ma) ages. We interpret a maximum depositional age of 107 Ma for the Wangshi Group and a depositional age of 121–120 Ma for the upper Laiyang Group. Age distributions indicate that the Sulu orogenic belt of the East Shandong complex served as the primary source area. Detrital zircon age data also indicate major changes in the types of source material contributed to the Laiyang and Wangshi groups. Based on these shifts, we propose a four-stage model for Early Cretaceous evolution of the Jiaolai basin. In this model, subduction of the Pacific plate and associated transform motion on the Tan-Lu fault influenced the transition from a transpressional to an extensional tectonic setting.  相似文献   

8.
The Sulu Orogenic Belt in eastern China has experienced a multistage tectonic evolutionary history. However, its geological evolution has not yet been corroborated by sufficient direct evidence from basement rocks. Chaolian Island on the Qianliyan Uplift provides an opportunity to study the formation and evolution of the Sulu Orogenic Belt using direct geochronological and geochemical evidence. We determined that the characteristic mineral assemblage in the study region is quartz + K-feldspar + perthite + biotite + muscovite. The samples are silica- (SiO2 = 72.8%–75.8%) and alkali-rich (ALK(Na2O+K2O) = 8.7%–9.3%), with high iron-magnesium ratios (FeO*/(FeO*+MgO) = 0.92–0.96) and low CaO and MgO concentrations. Furthermore, they are rich in large-ion lithophile elements K, Rb, Ba, and U, but depleted in high field strength elements Nb, Ta, and Zr. They exhibit high Ga/Al values (Ga × 104/Al = 3.33–3.74) and significant fractionation between light and heavy rare earth elements. The samples are A-type granites. In the discrimination diagrams for granite genesis types, the samples plotted in the post-orogenic A2-type granite region. Secondary ion mass spectrometer (SIMS) zircon U–Pb dating results indicated that the granitic gneiss formed ~782.6–802.3 Ma (Middle Neoproterozoic), consistent with the timing of the breakup of the Rodinia supercontinent on the northeastern margin of the Yangtze Plate. Comparing geochemical characteristics and zircon U–Pb ages of the A-type granitic gneisses of the Sulu Orogenic Belt, the Qianliyan Uplift appears to be an extension of the belt across the ocean and is affiliated with the Yangtze Plate. The granitic gneiss on Chaolian Island is related to the formation of a mantle superplume during the breakup of Rodinia, and the northeastern margin of the Yangtze Plate during the Middle Neoproterozoic was located in a back-arc extension setting induced by the subduction of oceanic plates.  相似文献   

9.
As an important part of South China Old Land, the Jiangnan Orogenic Belt plays a significant role in explaining the assembly and the evolution of the Upper Yangtze Block and Cathaysia, as well as the structure and growth mechanism of continental lithosphere in South China.The Lengjiaxi and the Banxi groups are the base strata of the west section of the Jiangnan Orogenic Belt.Thus, the research of geochronology and tectonic evolution of the Lengjiaxi and the Banxi groups is significant.The maximum sedimentary age of the Lengjiaxi Group is ca.862 Ma, and the minimum is ca.822 Ma.The Zhangjiawan Formation, which is situated in the upper part of the Banxi Group is ca.802 Ma.The Lengjiaxi Group and equivalent strata should thus belong to the Neoproterozoic in age.The Jiangnan Orogenic Belt consisting of the Lengjiaxi and the Banxi groups as important constituents is not a Greenville Orogen Belt(1.3 Ga–1.0 Ga).The Jiangnan Orogenic Belt is a recyclic orogenic belt, and the prototype basin is a foreland basin with materials derived from the southwest and the sediments belong to the active continental sedimentation.By combining large amounts of dating data of the Lengjiaxi and the Banxi groups as well as equivalent strata, the evolutionary model of the western section of the Jiangnan Orogenic Belt is established as follows: Before 862 Ma, the South China Ocean was subducted beneath the Upper Yangtze Block, while a continental island arc was formed on the side near the Upper Yangtze Block.The South China Ocean was not closed in this period.From 862 Ma to 822 Ma, the Upper Yangtze Block was collided with Cathaysia; and sediments began to be deposited in the foreland basin between the two blocks.The Lengjiaxi Group and equivalent strata were thus formed and the materials might be derived from the recyclic orogenic belt.From 822 Ma to 802 Ma, Cathaysia continued pushing to the Upper Yangtze Block, experienced the Jinning-Sibao Movement(Wuling Movement); as result, the folded basement of the Jiangnan Orogenic Belt was formed.After 802 Ma, Cathaysia and the Upper Yangtze Block were separated from each other, the Nanhua rift basin was formed and began to receive the sediments of the Banxi Group and equivalent strata.These large amounts of dating data and research results also indicate that before the collision of the Upper Yangtze Block with Cathaysia, materials of the continental crust became less and less from the southwest to the east in the Jiangnan Orogeneic Belt; only island arc and neomagmatic arc were developed in the eastern section.Ocean-continent subduction or continent-continent subduction took place in the western and southern sections, while intra-oceanic subduction occurred in the eastern section.Comprehensive analyses on U-Pb ages and Hf model ages of zircons, the main provenance of the Lengjiaxi Group is Cathaysia.  相似文献   

10.
吴龙  柳长峰  刘文灿  张宏远 《现代地质》2021,35(5):1178-1193
三叠系沉积物广泛覆盖青藏高原东北缘,其中松潘—甘孜地区三叠系的沉积物得到了较系统的研究,但是青藏高原北缘的祁连山三叠系盆地的研究却较为缺乏。为了丰富相关研究和揭示区域构造演化的特点,通过古水流方向统计、砂岩中碎屑矿物统计和碎屑锆石U-Pb测年等方法对祁连山三叠纪盆地物源进行系统研究。结果表明,祁连山三叠系盆地的古流向主要有南东向、正南向、南西向,物源来自岩浆弧和大规模褶皱造山作用的混合区。祁连山三叠系砂岩中的碎屑锆石的年龄谱主要峰值集中在250~290 Ma、360~460 Ma、1 600~2 000 Ma和2 200~2 600 Ma这4个年龄段。通过对比分析华北板块、华南板块中和秦祁昆中央造山带中岩浆锆石年龄谱特征可知:1 600~2 000 Ma和2 200~2 600 Ma年龄段的锆石来自华北板块,360~460 Ma年龄段的锆石来自北祁连造山带,250~290 Ma年龄段的锆石来自东昆仑的火山岛弧。此外,600~1 000 Ma年龄段锆石很少,这些锆石来自扬子板块,表明在三叠纪扬子克拉通和华北克拉通发生碰撞形成了秦岭造山带,阻断了来自扬子克拉通的物源。  相似文献   

11.
Age calibrated deformation histories established by detailed mapping and dating of key magmatic time markers are correlated across all tectono-metamorphic provinces in the Damara Orogenic System.Correlations across structural belts result in an internally consistent deformation framework with evidence of stress field rotations with similar timing,and switches between different deformation events.Horizontal principle compressive stress rotated clockwise ~180°in total during Kaoko Belt evolution,and~135° during Damara Belt evolution.At most stages,stress field variation is progressive and can be attributed to events within the Damara Orogenic System,caused by changes in relative trajectories of the interacting Rio De La Plata,Congo,and Kalahari Cratons.Kaokoan orogenesis occurred earliest and evolved from collision and obduction at ~590 Ma,involving E-W directed shortening,progressing through different transpressional states with ~45° rotation of the stress field to strike-slip shear under NW-SE shortening at ~550-530 Ma.Damaran orogenesis evolved from collision at ~555-550 Ma with NW-SE directed shortening in common with the Kaoko Belt,and subsequently evolved through ~90°rotation of the stress field to NE-SW shortening at ~512-508 Ma.Both Kaoko and Damara orogenic fronts were operating at the same time,with all three cratons being coaxially convergent during the 550-530 Ma period;Rio De La Plata directed SE against the Congo Craton margin,and both together over-riding the Kalahari Craton margin also towards the SE.Progressive stress field rotation was punctuated by rapid and significant switches at ~530-525 Ma,~508 Ma and ~505 Ma.These three events included:(1)Culmination of main phase orogenesis in the Damara Belt,coinciding with maximum burial and peak metamorphism at 530-525 Ma.This occurred at the same time as termination of transpression and initiation of transtensional reactivation of shear zones in the Kaoko Belt.Principle compressive stress switched from NW-SE to NNW-SSE shortening in both Kaoko and Damara Belts at this time.This marks the start of Congo-Kalahari stress field overwhelming the waning Rio De La Plata-Congo stress field,and from this time forward contraction across the Damara Belt generated the stress field governing subsequent low-strain events in the Kaoko Belt.(2)A sudden switch to E-W directed shortening at ~508 Ma is interpreted as a far-field effect imposed on the Damara Orogenic System,most plausibly from arc obduction along the orogenic margin of Gondwana(Ross-Delamerian Orogen).(3)This imposed stress field established a N-S extension direction exploited by decompression melts,switch to vertical shortening,and triggered gravitational collapse and extension of the thermally weakened hot orogen core at ~505 Ma,producing an extensional metamorphic core complex across the Central Zone.  相似文献   

12.
This paper conducts a petrogeochemical analysis of the Lower Cretaceous Laiyang Group’s sandstones, compares the results with the Neoproterozoic and Mesozoic intrusive rocks in the southern Sulu Orogen (also called the Jiaonan Orogen), and performs an LA-ICP-MS zircon geochronology analysis of the granitic gneisses in the conglomerates of the Laiyang Group and the intrusive rocks in the Jiaonan Orogen. The results show that the major element proportions of the Longwangzhuang Formation (LWZ Fm) and Qugezhuang Formation (QGZ Fm) of the Laiyang Group in the Zhucheng Basin are similar. The values of various indices for the LWZ Fm are similar to the average sandstone content of active continental margins, whereas, the values for the QGZ Fm are similar to those of continental island arcs. The comparison shows that the REE characteristics of the LWZ Fm and QGZ Fm of Laiyang Group are similar to those of the Neoproterozoic granitic gneisses in the Jiaonan Orogen but obviously different from those of the Early Cretaceous intrusive rocks. A tectonic setting discrimination diagram reveals that the provenance of the Laiyang Group includes features of active continental margins and continental island arcs. A number of indicators, e.g., the sandstone type, the Chemical Index of Alteration, the Chemical Index of Weathering, the Plagioclase Index of Alteration and the Index of Chemical Constituent Variation, indicated that the sandstones did not undergo intense weathering and were deposited near the source area. The zircon ages of the granitic gneiss material in the conglomerates at the base of the Laiyang Group are 790 ± 8.4 Ma, close to the ages of the Neoproterozoic granitic gneiss in the Jiaonan Orogen (739–819 Ma), and very different from the ages of the Early Cretaceous intrusive rocks. Combining with paleocurrent directions, geochemical character, the Neoproterozoic granitic gneisses in the Jiaonan Orogen may represent the primary provenance of the Laiyang Group in the Zhucheng Basin. During the depositional period of the Laiyang Group, the source rocks did not experience intense weathering, which indicated the Jiaonan Orogen experienced rapid uplift during this time, and coincided with the high exhumed rate of 2.0 km Ma ?1 from before ca. 128 to 123 Ma in Jiaonan Orogen. The rapid subsidence during the formation of the Laiyang Group in the Zhucheng Basin and the rapid uplift of the Jiaonan Orogen are the result of a single regional extensional event associated with the lithospheric thinning and destruction of North China and peripheral cratons.  相似文献   

13.
This paper reports results from detrital zircon U–Pb geochronology, Hf isotopic geochemistry, sandstone modal analysis, and palaeocurrent analysis of the early Mesozoic strata within the Ningwu basin, China, with the aims of constraining the depositional ages and sedimentary provenances and shedding new light on the Mesozoic tectonic evolution of the northcentral North China Craton (NCC). The zircons from early Mesozoic sandstones are characterized by three major populations: Phanerozoic (late Palaeozoic and early Mesozoic), late Palaeoproterozoic (with a peak at approximately 1.8 Ga), and Neoarchaean (with a peak at approximately 2.5 Ga). Notably, three Phanerozoic zircons in the Early Triassic Liujiagou Formation were found to have positive εHf(t) values and characteristics typical of zircons from the Central Asian Orogenic Belt (CAOB). Therefore, the CAOB began to represent the provenance of sediment in the sedimentary basins in the northern NCC no later than the Early Triassic (261 Ma), implying that the final amalgamation of the NCC and CAOB occurred before the Early Triassic. The U–Pb geochronologic and Hf isotopic results show that the Lower Middle Triassic sediments were mainly sourced from the Yinshan–Yanshan Orogenic Belt (YYOB), and that a sudden change in provenances occurred, shifting from a mixed YYOB and CAOB source in the Middle Jurassic to a primarily YYOB source in the Late Jurassic. The results of the sandstone modal analysis suggest that the majority of the samples from the Lower Middle Jurassic rocks were derived from either Continental Block or Recycled Orogen sources, whereas all the samples from the Upper Jurassic rocks were derived from Mixed sources. The change in source might be ascribed to the southward subduction and closure of the Okhotsk Ocean and the resulting intense uplift of the YYOB during the Late Jurassic. This uplift likely represents the start of the Yanshan Orogeny.  相似文献   

14.
孟元库  李日辉  徐扬  侯方辉 《地球科学》2018,43(9):3302-3323
苏鲁造山带东缘的灵山岛上发育有早白垩世碎屑岩,目前人们对其沉积的精确时代、成因机制和大地构造环境仍然存在着广泛的争议.利用LA-ICP-MS的方法对灵山岛上两套碎屑岩进行了锆石U-Pb测年,并对特征年龄谱中的代表性碎屑锆石进行了Lu-Hf同位素分析.结果表明:(1)碎屑锆石U-Pb测年结果显示,莱阳群法家茔组和青山群八亩地组下部的碎屑岩沉积时代分别为127±3 Ma和128±4 Ma,表明两套碎屑岩都是早白垩世中晚期的沉积产物;(2)灵山岛上两套碎屑岩具有完全相似的年龄谱以及锆石Hf同位素组成,表明发育软沉积变形的粉砂岩、泥岩和上覆的含砾粗砂岩具有相似的物源,并且源区组成较为单一,主要以亲华北的胶北地体为主,其次的物源区为苏鲁造山带;(3)胶莱盆地下白垩统莱阳群和灵山岛下白垩统莱阳群的碎屑锆石年龄谱对比表明,灵山岛上的莱阳群碎屑岩明显不同于胶莱盆地的莱阳群,暗示在早白垩世时,灵山岛上的两套碎屑岩可能受到区域断裂的控制,沉积于一个相对独立的盆地.综合结果表明,灵山岛地区莱阳群法家茔组可能沉积于断陷湖盆的萎缩期,早期的沉积以湖相为主,晚期主要以河流相为主,在此期间遭受到了强烈的火山地震作用,诱发了下部的湖相的砂泥岩发生大规模的滑塌和软沉积变形.   相似文献   

15.
位于中国东部苏鲁造山带北侧的胶莱盆地发育早白垩世莱阳组,厚约2000m,为一套陆相碎屑沉积,包括砾岩、砂岩和页岩,以及少量泥灰岩、白云岩和凝灰岩。它可以分为4个岩性段,每个段大致形成一个向上变细的旋回。砾岩砾石成分主要为花岗片麻岩、黑云斜长片麻岩、混合花岗岩和大理岩,其次是黑云片岩、灰岩和沉积碎屑岩、火山岩和花岗岩等。莱阳组砂岩主要由岩屑长石砂岩以及岩屑砂岩组成,具有低的成分成熟度,Q/(F+L)平均为0.42(0.19~0.84)。石英主要由单晶石英组成,长石包括斜长石、微斜长石等,岩屑主要为火山岩和变质岩,其次为沉积岩。6个砂岩地球化学样品分析表明,砂岩的SiO2、Al2O3、TiO2、Fe2O3^T;、MnO、MgO、CaO、Na2O、K2O的平均含量分别为70.53%、13.10%、0.41%、3.09%、0.06%、1.23%、1.69%、3.38%和3.38%,类似于晚元古代造山带砂岩成分。莱阳组砂岩稀土元素分析表明,La含量为38.4×10^-6(28.0×10^-6-50.5×10^-6),Ce含量为69.3×10^-6(58.1×10^-6~81.3×10^-6),稀土总量为134×10^-6~197×10^-6,轻稀土明显富集,La/Yb为20.18(11.91~25.98),(La/Yb)。为13.60(8.03~17.52),有中等到弱的Eu负异常(δEu=0.58-0.88),Ce为弱的负异常(δCe=0.78~0.97)。Ce含量、稀土总量和Eu异常揭示源区岩石形成时的构造背景主要为大陆岛弧。砾石统计揭示,莱阳组物源区的剥蚀序列按时间顺序应该是花岗片麻岩、黑云斜长片麻岩-大理岩-脉石英、灰岩和碎屑岩-正长岩。砂岩点统计、F1-F2判别图、La—Th-Sc和Th—Sc—Zr/10判别图揭示,莱阳组砂岩主要源区属于大陆弧的长英质火成岩区,少许来自再循环造山带。砂岩Zr/Y比值揭示莱阳组砂岩与分布在山东荣成地区具有大陆弧构造背景的片麻岩具有亲缘性。这表明山东胶菜盆地莱阳组砂岩源区主要来自苏鲁造山带,其次有少许来自扬子陆块。造山带周缘盆地的陆源沉积物中,砂岩的碎屑组分以及地球化学特征具有源区构造背景的继承性,反映的是源岩形成的构造环境。  相似文献   

16.
Mafic dikes of mainly Early Cretaceous age (130–110 Ma) are widely developed on the Jiaodong Peninsula, China. Previous studies of the dikes, which have focused mainly on occurrences in the Jiaobei uplift and in the Sulu orogenic belt, have thoroughly examined their petrogenesis and geodynamic setting. This study identified four previously unknown mafic dikes (dolerite and lamprophyre) in southeastern Jiaolai basin (near Haiyang city), Jiaodong Peninsula. Detailed geochemical and geochronological analyses were conducted to determine the petrogenesis of the dikes and to infer their geodynamic setting. Zircon U–Pb dating by laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) indicates that the dikes were emplaced at ~126 Ma. The dikes are characterized by low SiO2 contents (44.3–52.3 wt.%), high contents of MgO (7.28–10.13 wt.%), Cr (267–652 ppm), and Ni (93–335 ppm), and high Mg# values (63–73); they are enriched in large ion lithophile elements (LILEs; Ba, K, and Sr), depleted in high field strength elements (HFSEs; Nb, Ta, P, and Ti), and are characterized by high (87Sr/86Sr)i isotope ratios (0.707226–0.708222), low εNd(t) values (?12.3 to ?13.6), and zircon εHf(t) values (?15.6 to ?23.6). These features suggest that the dikes were derived from enriched subcontinent lithospheric mantle (SCLM). The wide range of Rb/Sr (0.04–0.18) and Ba/Rb (5–34) ratios, and the low and limited range of Dy/Yb (1.93–2.52) and K/Yb (5.71–11.99) ratios of the dikes indicate that the magmas originated from a low degree of partial melting of an amphibole- and phlogopite-bearing lherzolite in the spinel–garnet transition zone. The parental magma might have experienced fractionation of olivine and clinopyroxene during its ascent without significant crustal contamination. Evident depletion of Nb–Ta and Zr–Hf, low and limited range of Th/Yb ratios, elevated Ba/La ratios, constant chondritic Zr/Hf ratios, and a large range of Hf/Sm ratios further indicate that the mantle sources of the dikes were altered by carbonate-related metasomatism from subducted slab-derived fluids, which were most likely related to subduction of the Palaeo-Pacific plate during the Mesozoic. The mafic dikes in the southeastern Jiaolai basin resemble the arc-like mafic dikes in the Jiaobei terrain and the Sulu orogenic belt, and possibly indicate lithospheric thinning induced by slab rollback of the Palaeo-Pacific plate.  相似文献   

17.
The Permo–Triassic collision of the North and South China blocks caused the development of the Dabie–Sulu Orogen in China and Songrim Orogen in the Korean Peninsula. Extension after this collision is known from the Dabie–Sulu Orogen, but post-orogenic extension is not well defined in the Korean Peninsula. Extensional deformation along the southern boundary of the Gyeonggi Massif in Korea is characterized by top–down-to-the-south ductile shearing and subsequent brittle normal faulting, and was predated by regional metamorphism and north-vergent contractional deformation. Extension occurred between ~220 and 185 Ma based on the ages of pre-extensional regional metamorphism and post-extensional pluton emplacement. 40Ar/39Ar dating of syn-extensional muscovite in quartz–mica mylonite yields an age of 187.8 ± 5.6 (2σ) Ma, in agreement with constraints from structural relationships. Together with the extensional deformation identified along the northern boundary of the Gyeonggi Massif (~226 Ma), the extension along the southern boundary is probably related to the exhumation of the massif during late-orogenic or post-orogenic extension associated with the Songrim Orogeny of the Korean Peninsula and forms an important event in the Phanerozoic crustal evolution of East Asia.  相似文献   

18.
The Tongbai orogenic belt has an overall antiformal geometry and the hinge of the antiform is sub-horizontal and trends NW–SE. The Tongbai complex (TBC) in the core of the antiform is bounded by the S-dipping Yindian–Malong shear zone in the south, the sub-horizontal Taibaiding shear zone at the top and the N-dipping Hongyihe–Tongbai shear zone in the north. The three shear zones have dextral, top-to-NW and sinistral movement, respectively. They are parts of a single shear zone, termed the Tongbai shear zone, that has a uniform top-to-NW sense of shear. Three samples of deformed granitoid (mylonite or protomylonite) from the shear zone have U–Pb zircon ages of 145 ± 6 Ma, 142 ± 2 Ma and 131 ± 6 Ma, respectively. An L-tectonite in the TBC yielded a metamorphic age of 137 ± 8 Ma and a migmatite an age of 137 ± 1 Ma. The Tongbai shear zone is intruded by undeformed Early Cretaceous granite and dykes and deformation in the shear zone is constrained to ca. 140–135 Ma, synchronous with metamorphism and migmatization in the TBC. Early Cretaceous magma emplacement and the associated uplift modified the TBC into a gentle antiform and the uplift may have continued to ca. 102–85 Ma. Similar geometry and kinematics have been documented in the Dabie orogenic belt to the east, which suggests that the Central Orogenic Belt in China probably experienced a uniform orogen-parallel extension and top-to-NW shearing in the ductile lithosphere in the Early Cretaceous.  相似文献   

19.
We report SHRIMP U–Th–Pb monazite, conventional U–Pb titanite, Sm–Nd garnet and Rb–Sr muscovite and biotite ages for metamorphic rocks from the Danba Domal Metamorphic Terrane in the eastern Songpan‐Garzê Orogenic Belt (eastern Tibet Plateau). These ages are used to determine the timing of polyphase metamorphic events and the subsequent cooling history. The oldest U–Th–Pb monazite and Sm–Nd garnet ages constrain an early Barrovian metamorphism (M1) in the interval c. 204–190 Ma, coincident with extensive Indosinian granitic magmatism throughout the Songpan‐Garzê Orogenic Belt. A second, higher‐grade sillimanite‐grade metamorphic event (M2), recorded only in the northern part of the Danba terrane, was dated at c. 168–158 Ma by a combination of U–Th–Pb monazite and titanite and Sm–Nd garnet ages. It is suggested that M1 was a thermal event that affected the entire orogenic belt while M2 may represent a local thermal perturbation. Rb–Sr muscovite ages range from c. 138–100 Ma, whereas Rb–Sr biotite ages cluster at c. 34–24 Ma. These ages document regional cooling at rates of c. 2–3 °C Myr?1 following the M1 peak for most of the terrane. However, those parts of the terrane affected by the higher‐temperature M2 event (e.g. the migmatite zone) experienced initially more rapid (c. 8 °C Myr?1) cooling after peak M2 before joining the regional slow cooling path defined by the rest of the terrane at c. 138 Ma. Regional slow cooling between c. 138 and c. 30 Ma is thought to be the result of post‐tectonic isostatic uplift after extensive crustal thickening caused by collision of the South and North China Blocks. The clustering of biotite Rb–Sr ages marks the onset of rapid uplift across the entire terrane commencing at c. 30–20 Ma. This cooling history is shared with many other regions of the Tibet Plateau, suggesting that uplift of the Tibet Plateau (including the Songpan‐Garzê Orogenic Belt) occurred predominantly in the last c. 30 Myr as a response to the continuing northwards collision of India with Eurasia.  相似文献   

20.
《Gondwana Research》2013,24(4):1342-1364
Based mainly on field geological observation and geochronologic data, six tectonic units have been recognized in western Inner Mongolia (China), including, from south to north: North China Craton (NCC), Southern Orogenic Belt (SOB), Hunshandake Block (HB), Northern Orogenic Belt (NOB), South Mongolia microcontinent (SMM), and Southern margin of Ergun Block (SME), suggesting that the tectonic framework of the CAOB in western Inner Mongolia is characterized by an accretion of different blocks and orogenic belts. The SOB includes, from north to south, fold belt, mélange, arc-pluton belt, and retroarc foreland basin, representing a southern subduction–collision system between the NCC and HB blocks during 500–440 Ma. The NOB consists also of four units: arc-pluton belt, mélange, foreland molasse basin, and fold belt, from north to south, representing a northern subduction–collision system between the HB and SMM blocks during 500–380 Ma. From the early Paleozoic, the Paleo-Asian oceanic domains subducted to the north and the south, resulting in the forming of the SOB and the NOB in 410 Ma and 380 Ma, respectively. This convergent orogenic system, therefore, constrained the consumption process of the Paleo-Asian Ocean in western Inner Mongolia. A double subduction–collision accretionary process is the dominant geodynamic feature for the eastern part of the CAOB during the early to middle Paleozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号