首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The dissolution of H2O and CO2 in structurally dense, nominally anhydrous and non-carbonate oxide matrices such as MgO and CaO is reviewed. H2O and CO2 are treated as gaseous oxide components which enter into solid solution with the refractory oxide hosts. They form anion complexes associated with cation vacancy sites. Evidence is presented that OH? pairs which derive from the dissolution of H2O are subject to a charge transfer (CT) conversion into peroxy moieties and molecular hydrogen, O 2 2? ... H2. Because the O 2 2? moiety is small (O?-O? distance ≈ 1.5 Å) high pressure probably favors the CT conversion. Mass spectroscopic studies show that molecular H2 may be lost from the solid which retains excess oxygen in the form of O 2 2? , leading to the release of atomic O. The dissociation of O 2 2? moieties into a vacancy-bound O? state and an unbound O? state can be followed by measuring the internal redox reactions involving transition metal impurities, the transient paramagnetism of the O? and their effect on the d.c. conductivity. Evidence is presented that CO2 molecules dissolve dissociatively in the structurally dense oxide matrix, as if they were first to dissociate into CO+O and then to form separate solute moieties CO 2 2? and O 2 2? , both associated with cation vacancy sites. In the CO 2 2? moiety (C-O? distance 1.2–1.3 Å, OCO angle ≈ 130°) the C atom probably sits off center. The transition of the C atom into interstitial sites is accompanied by dissociation of the CO 2 2? moiety into CO? and O?. This transition can be followed by infrared spectroscopy, using OH? as local probes. Further support derives from magnetic susceptibility, thermal expansion, low frequency dielectric loss and low temperature deformation measurements. The recently observed emission of O and Mg atoms besides a variety of molecules such as CO, CO2, CH4, HCN and other hydrocarbons during impact fracture of MgO single crystals is presented and discussed in the light of the other experimental data.  相似文献   

2.
Heterogeneous solid-state reactions in quasibinary oxide systems are analyzed. As long as local thermodynamic equilibrium prevails, diffusion processes through the reaction product are rate-controlling. The diffusion coefficients are governed by point-defect concentrations. Point-defect thermodynamics allow calculation of relative point-defect concentrations as a function of the relevant thermodynamic variables, if the disorder type of the crystalline product is known. Disorder types in ternary ionic crystals are introduced. On this basis, several reactions leading to simple silicates of the form A 2 BO 4 are discussed in terms of ion mobilities and Gibbs energies of formation, and the possible reaction mechanisms are analyzed. Finally some remarks are included on the influence of the gas atmosphere on the reaction rate, on powder reactions and on phase boundary-controlled reaction rates.  相似文献   

3.
The co-existing microphenocrysts of magnetite and ilmenite together with the ferromagnesian silicates in salic volcanic rocks have been analysed with the electron microprobe. The temperatures and oxygen fugacities of the oxide equilibration have been estimated from the curves of Buddington and Lindsley (1965). The co-existing ferromagnesian silicate phenocrysts are either iron-rich olivine, or orthopyroxene or biotite and amphibole; for each of these groups of phenocrysts, the oxide equilibration data are specific and fall on three distinct curves, parallel to experimental oxygen buffer curves. Many of the investigated rhyolites were quenched at temperatures near 900°C, which may represent liquidus temperatures for those with sparse phenocrysts, and also the intrusion temperature of water-undersaturated granites. The composition of the biotite phenocrysts, which are Al-poor and Ti-rich, taken in conjunction with the oxide data, suggest that two Lassen dacites precipitated biotite at a water fugacity of approximately 400 bars. The composition of the later crystallizing ferromagnesian silicates, particularly the pyroxenes which show a wide range in Fe/Mg ratio, is strongly influenced by the prior crystallization of the oxide phases. If the biotite phenocrysts are typical of acid liquids, then they are incapable of generating by fractionation a peraluminous residual liquid; rather they would tend to make a liquid peralkaline.  相似文献   

4.
Comparison of the patterns of fracture under tensile stress, indentation, and scratching of periclase. quartz, and corundum indicates that the properties relevant to dissolution of rock-forming oxides and of rock-forming non-layer silicates should be changed by mechanical comminution in essentially the same way as those of quartz. The changes are accomplished by brittle fracture under the tensile component of the stress field, which does not generate subsurface damage, and by microplastic behavior under local stresses with high net compressive and shear components, which does.Mechanical comminution should therefore affect the apparent rates of dissolution (rates calculated with respect to the initial interface area) of rock-forming oxides and of rock-forming non-layer silicates in essentially the same way in which it affects the apparent rate of dissolution of quartz. This is supported by the available evidence on the effect of dry grinding on the kinetics of dissolution of feldspars, pyroxenes, and olivines in aqueous solutions.Different effects of mechanical comminution on solubilities and dissolution rate constants can be related to certain measured or calculated properties of the considered minerals. Notably, the effect of grain size on the dissolution rate constant can be rigorously related to the Kelvin effect.The available evidence on the mechanical comminution at the bases of dry-based glaciers in highgradient segments of streams, in certain high-energy coastal and epeiric environments, and in sandy deserts indicates that such mechanical comminution should significantly affect the simultaneous or subsequent dissolution of the comminuted material.  相似文献   

5.
The effect of crystal structure relaxation in oxygen-based Cr3+-containing minerals on the crystal field stabilization energy (CFSE) is considered. It is shown that the dependence of \textCFSE\textCr 3+ {\text{CFSE}}_{{{\text{Cr}}^{ 3+ } }} , which is found from optical absorption spectra, on the average interatomic distances is described by the power function with a negative exponent c \mathord
/ \vphantom c [`(R)]n [`(R)]n {c \mathord{\left/ {\vphantom {c {\bar{R}^{n} }}} \right. \kern-\nulldelimiterspace} {\bar{R}^{n} }} , where n approaches 5, as predicted theoretically, for pure Cr3+ compounds, but decreases to 1.0–1.5 for Cr3+-containing oxide and silicate solid solutions. The deviation of the experimental dependence for solid solutions from the theoretical curve is due to structure relaxation, which tends to bring the local structure of Cr3+ ions closer to the structure in the pure Cr compound, thus producing changes in interatomic distances between the nearest neighbors with respect to those in the average structure determined by X-ray diffraction. As a consequence, the mixing enthalpy of Cr3+-bearing solid solutions can be represented by the sum of contributions from lattice strain and CFSE. The latter contribution is most often negative in sign and, therefore, brings the Al–Cr solid solutions close to an ideal solid solution. It is supposed that the increased Cr content in minerals from deep-seated mantle xenoliths and mineral inclusions in diamonds results from the effect of \textCFSE\textCr 3+ {\text{CFSE}}_{{{\text{Cr}}^{ 3+ } }} enhanced by high pressure.  相似文献   

6.
The dissolution of water does not stop at the OH stage but may proceed further towards H2 plus O formation. The discovery of atomic carbon dissolved in minerals suggests that, if CO2 enters oxides and silicates at high pressures and temperatures, not only [CO3]2– ions but also [CO 4 . ]4– complexes are formed via a charge transfer which produces O and essentially zero-valent, atomic carbon. Under P —T-conditions of the mantle, where the solubility for water and CO2 is high, the silicate phases formed may therefore consist to a large volume fraction of O ions which are much smaller than O2–ions and strongly cova-lently bonding. The implications for the crystal chemistry of high pressure phases, for the petrology of mantle rocks are outlined.  相似文献   

7.
Experimental data for the standard Gibbs free energies of formation from the elements of a wide variety of metal sulfides and oxides, spinels, olivines and pyroxenes at 25°C and 1 bar define linear correlations, within about ±900 cal·mole?1, with the corresponding conventional standard partial molal Gibbs free energies of formation of the aqueous M2+ cations of the form ΔGf,mDZ0 = amDZΔGfM2+0+bMDZ where aMaZ and bMaZ are empirically determined constants characteristic of the structure MnZ. The only exceptions to correlations of this type are compounds of the heavy alkaline earths Ca, Sr and Ba, which appear to follow correlations with cation radius instead. The linear free energy correlations enable prediction of standard Gibbs free energies of formation of compositional end-members of a particular structure MnZ provided that aMaZ and bMaZ are known accurately. When only the free energy of the Mg end-member is known, the standard Gibbs free energy of formation at 25°C and 1 bar of the Fe endmember, and hence aMaZ and bMaZ Can be predicted from the temperature independence of aMaZaotivine and estimated entropies and heat capacities for the Fe end-member. Using this approach, the free energies of ferrosilite, hedenbergite and annite at 25°C and 1 bar were predicted to within ±1000 cal·mole?1 of the helgesonet al. (1978) values. Free energies of formation of talc (M3Si4O10(OH)2), clinchlore (M5Al2Si3O10(OH)8), and tremolite (Ca2M5(Si4O11)2(OH)2)-type compounds where M is Mg, Mn, Zn, Fe, Co, or Ni were then predicted at 25°C and 1 bar.Calculation of the equilibrium distribution of Mg, Zn and Sr between galena and hydrothermal solution, and Zn, Mg, Fe and Mn between chlorite and hydrothermal solution demonstrates: (1) that the Sr contents of low temperature galenas (e.g. Mississippi Valley-type) should be negligible (reported analyses of Sr content and Sr isotopic composition of such galenas are probably attributable to fluid inclusions or carbonate inclusions); and (2), that the Zn contents of hydrothermal chlorites in a model of the midoceanic ridge hydrothermal systems are sensitive to temperature, to complexing in the aqueous phase, and to the overall Fe/Mg ratio of the chlorite.  相似文献   

8.
The extensive evidence on the properties of ground quartz such as grain morphology and adherence and subsurface structural damage shows a consistent pattern, interpretable in terms of the competing processes of fracture and of local plastic deformation.The well-documented pattern of dissolution of ground quartz in aqueous solutions is also consistent. At large undersaturations and constant other environmental variables, the apparent dissolution rate of ground quartz decreases exponentially with the increasing thickness of the equivalent dissolved disturbed layer, and the rate of release of adherent tiny fragments shows roughly the same dependence on the latter. At small undersaturations distribution of solubilities also needs to be considered.  相似文献   

9.
《Chemical Geology》2003,193(1-2):43-57
Oxygen isotope compositions and fractionations between calcite (Cc) and magnetite (Mt), diopside-rich clinopyroxene (Di), monticellite (Mnt), kimzeyite-rich garnet (Gt), and biotite (Bt) were measured for carbonatites from Oka (Canada), Magnet Cove (USA), Jacupiranga (Brazil), and Essonville (Canada), to obtain crystallization temperatures and explore the crystallization history of carbonatites. The highest isotopic temperatures are obtained from Cc–Mt fractionations from Oka (745–770 °C) and Cc–Mnt fractionations from Magnet Cove (700 and 760 °C). Cc–Mt temperatures for very coarse-grained, euhedral magnetite phenocrysts and calcite from Jacupiranga are 700 °C. In samples that contain diopside and magnetite, the Cc–Mt temperatures are always higher than Cc–Di temperatures. This difference is consistent with crystallization of magnetite before diopside, minor retrograde resetting of magnetite isotopic compositions, and the order of crystallization inferred from inclusions of Mt in Di. Cc–Mt, Cc–Di, and Cc–Mnt fractionations are thus interpreted to represent those established during crystallization at rapid cooling rates (103–104 °C/my). Diffusion model calculations indicate that at slower post-crystallization cooling rates (10–102 °C/my), magnetite compositions should experience significant isotopic resetting by diffusional exchange with Cc, Bt, and apatite, and yield lower temperatures than Cc–Di. Cc–Bt fractionations correspond to the lowest temperatures (440–560 °C). Although some of these are relatively high isotopic temperatures for biotite, they most likely represent those established during subsolidus retrograde exchange between biotite and calcite during rapid subsolidus cooling.  相似文献   

10.
From considerations of relativeG-T surfaces inferred from publishedP-T data and the occurrence of replacement textures of Al2SiO5 polymorphs in rocks, the relative positions of curves representing the following equation in K+T — pH ispace on substituting Al2SiO5 different polymorphs are derived.3 Al2SiO5 + 3 SiO2 (quartz) + 2 K+ + 3 H2O 2 KAl2[AlSi3O10](OH)2 (muscovite)+ 2 H+. The curves are different because of the differentG-T values for the polymorphs which, in the field, is borne out by the observation that in a rock containing two or three Al2SiO5 polymorphs, in nearly all instances only one polymorph is replaced by white mica. Instances of textural relations showing the interpreted selective replacement of one Al2SiO5 polymorph by a white mica in the presence of one (or two) other Al2SiO5 polymorph(s) are cited both from the literature and various field examples. The selective replacement of kyanite if sillimanite and/or andalusite is/are present, and of andalusite if only sillimanite is present are interpreted to show that generally during the muscovitization reaction, the field of sillimanite in the above reaction (left hand side) at a particular pH (H+ concentration) and is larger in K+T space than that of andalusite which in turn is larger than that of kyanite. Theoretically it is shown that variations to this can exist but the field evidence suggests these only occur under rare geological conditions. Although this is not totally conclusive, the selectiveness of the replacement is interpreted to show that the fluid was buffered with respect to K+ and H+ on or near the curve of the polymorph showing the lowest stability field until that polymorph is totally consumed, after which the fluid composition moves to the next lowest curve for the remaining polymorph(s) present in the rock. The alteration of more than one polymorph by an apparently simultaneous process of alteration is rare and usually occurs at a low grade of metamorphism. This is interpreted to show that the buffering reaction could not keep pace with the influx of fluid and change the composition of this fluid (in most cases).  相似文献   

11.
Although many bioessential metals are scarce in natural water and rock systems, microbial secretion of high-affinity ligands for metal extraction from solid phases has only been documented for Fe. However, we have discovered that Mo is extracted from a silicate by a high-affinity ligand (a possible “molybdophore”) secreted by an N2-fixing soil bacterium. The putative molybdophore, aminochelin, is secreted as a siderophore under Fe-depleted conditions, but is also secreted under Fe-sufficient, Mo-depleted conditions. Presumably, molybdophore production facilitates uptake of Mo for use in Mo enzymes. In contrast, an Fe-requiring soil bacterium without a special Mo requirement only enhances the release of Fe from the silicate. Fractionation of Mo stable isotopes during uptake to cells may provide a “fingerprint” for the importance of chelating ligands in such systems. Many such metal-specific ligands secreted by prokaryotes for extraction of bioessential metals, their effects on Earth materials, and their possible utility in the recovery of economic metals remain to be discovered.  相似文献   

12.
The surface chemistry of natural wollastonite, diopside, enstatite, forsterite, and albite in aqueous solutions was characterized using both electrokinetic techniques and surface titrations performed for 20 min in batch reactors. Titrations performed in such reactors allow determination of both proton consumption and metal release from the mineral surface as a function of pH. The compositions, based on aqueous solution analysis, of all investigated surfaces vary dramatically with solution pH. Ca and Mg are preferentially released from the surfaces of all investigated divalent metal silicates at pH less than ∼8.5-10 but preferentially retained relative to silica at higher pH. As such, the surfaces of these minerals are Si-rich and divalent metal poor except in strongly alkaline solutions. The preferential removal of divalent cations from these surfaces is coupled to proton consumption. The number of protons consumed by the preferential removal of each divalent cation is pH independent but depends on the identity of the mineral; ∼1.5 protons are consumed by the preferential removal of each Ca atom from wollastonite, ∼3 protons are consumed by the preferential removal of each Mg or Ca atom from diopside or enstatite, and ∼4 protons are consumed by the preferential removal of each Mg from forsterite. These observations are interpreted to stem from the creation of additional ‘internal’ adsorption sites by the preferential removal of divalent metal cations which can be coupled to the condensation of partially detached Si. Similarly, Na and Al are preferentially removed from the albite surface at 2 > pH > 11; mass balance calculations suggest that three protons are consumed by the preferential removal of each Al atom from this surface over this entire pH range. Electrokinetic measurements on fresh mineral powders yield an isoelectric point (pHIEP) 2.6, 4.4, 3.0, 4.5, and <1, for wollastonite, diopside, enstatite, forsterite, and albite, respectively, consistent with the predominance of SiO2 in the surface layer of all of these multi-oxide silicates at acidic pH. Taken together, these observations suggest fundamental differences between the surface chemistry of simple versus multi-oxide minerals including (1) a dependency of the number and identity of multi-oxide silicate surface sites on the aqueous solution composition, and (2) the dominant role of metal-proton exchange reactions on the reactivity of multi-oxide mineral surfaces including their dissolution rate variation with aqueous solution composition.  相似文献   

13.
Energy gaps and electrical conductivities in the ferrous silicates, Fe2SiO4 and FeSiO3, depend primarily on Fe-O bonding and may be studied by ultraviolet and soft X-ray spectroscopy. We have measured FeLII–III X-ray band spectra under conditions of “minimal” (I4, at 4.0 keV) and “high” (I10, at 10.0 keV) self absorption to determine 3d orbital energy levels, to delineate d states in the valence band, and to construct band gap models. Absorption spectra, I4/I10, were computed to determine vacant orbital levels in the gap. A difference function (I4–I10) has been proposed to identify X-radiation at photon energies above the measured LIII absorption edge, including high-energy, double-vacancy satellites and radiative transitions involving the anti-parallel (spin-down) d 6 electron in the ground state. The proposed band gap model for Fe2SiO4 is consistent with that of Nitsan and Shankland (1976), including an intrinsic transition of 6.5 eV and an energy gap of 7.8 eV. The 3d orbital energy level electronic structures are in general agreement with levels computed by Tossell et al. (1974) for [FeO6]10? in FeO using an SCF Xα cluster MO method. A high-energy, double-vacancy satellite was found at ~710.7 eV, and is presumed to originate from an LIIIMII,III initial state. The intensity of these satellites for the ferrous silicates and other iron compounds, and corresponding Fe LII/LIII intensity ratios are correlated with differences in band gap magnitudes and gap structure. Fe LII/LIII intensity ratios are not well correlated with iron oxidation state.  相似文献   

14.
Drop calorimetry measurements made between 900 and 1800 K are reported for six MO-SiO2 liquids (M = Li2, K2, SrandBa) and two titanium alkalisilicate melts. These results, together with data from the literature, are used to derive a model for calculating the heat capacity of Al-free silicate melts as a function of temperature and chemical composition. Twenty-one major or minor oxides have been considered and, except for K2O-bearing melts, the available data do not indicate deviations of the heat capacities from an additive function of composition. Simple energy calculations show that large variations of the temperature of the liquids result in structural changes of a magnitude similar to those of crystal-liquid transitions. It is suggested that network-modifier cations play an important role in changing the configuration of the liquid in response to temperature variations. The specificity of the behavior of the cations is shown by the lack of a simple relationship between the heat capacities of the liquids and characteristics of the alkali and alkaline-earth cations such as ionic potential or field strength.  相似文献   

15.
The separation of anomalies from geochemical background is an important part of data analysis because lack of such identifications might have profound influence on or even distort the final analysis results. In this article, 1 672 geochemical analytical data of 11 elements, including Cu, Mo, Ag, Sn, and others, from a region within Tibet, South China, are used as one example. Together with the traditional anomaly recognition method of using the iterative mean ±2σ, local multifractality theory has been utilized to delineate the ranges of geochemical anomalies of the elements. To different degrees, on the basis of original data mapping, C-A fractal analysis and singularity exponents, Sn differs from the other 10 elements. Moreover, geochemical mapping results based on values of the multifractal asymmetry index for all elements delineate the highly anomalous area. Similar to other 10 elements, the anomalous areas of Sn delineated by the asymmetry index distribute along the main structure orientations. According to the asymmetry indexes, the 11 elements could be classified into 3 groups: (1) Ag and Au, (2) As-Sb-Cu-Pb-Zn-Mo, and (3) Sn-Bi-W.This paragenetic association of elements can be used to interpret possible origins of mineralization, which is in agreement with petrological analysis and field survey results.  相似文献   

16.
Geochemical anomaly separation using the concentration–area method as applied to two different geological settings in Portugal is investigated. Soil geochemistry data sets were used in both settings. Geochemical surveys were conducted for the exploration of gold mineralisations in quartz veins associated with major shear zones (Arouca, NW Portugal). Similar surveys were also undertaken for V and Ti exploration related to the accumulation of oxide minerals in gabbroic rocks belonging to an exotic oceanic terrane (Mombeja) and to a late calc-alkaline igneous complex (Odivelas), both in SE Portugal. Results have been interpreted using the extensive information available for each area, which includes detailed geological mapping, structural information, whole-rock chemical analysis, and mineralogical data. Anomalous thresholds for each area were computed and compared mainly with whole-rock chemical analyses and mineral chemistry data. In the Arouca area, anomalies at the local scale were identified for Au (630 ppb), As (912 ppm), and Sb (630 ppm), and at a regional scale for As (96 ppm). In the Mombeja area, anomalies at a regional scale were identified for V (88 ppm), Cr (232 ppm), and Ni (76 ppm), and the available results for Odivelas area suggest the existence of local scale V anomalies, whose magnitude is generally above 400 ppm. In the Arouca area, the correlation between these threshold values and grades in rocks is clearly shown, especially by discriminating two different mineralising events. The second, and most important mineralising event is responsible for grades above 1 ppm for Au in the mineralised structures, contrasting with grades below 500 ppb from the first event. The anomalies identified in Mombeja reflect mainly a regional distribution of the outcropping rock types, mainly metagabbros and serpentinised peridotites, with special emphasis on the correlation between V and the gabbroic rocks. The thresholds obtained for each element are always lower than their mean content in the rocks. The Odivelas area shows threshold values for V clearly above the mean rock content, being a consequence of the occurrence of anomalous accumulations of oxide minerals within the gabbroic rocks. In order to overcome data scarcity, a scheme to super-sampling the population by using estimated values with ordinary kriging in the computation of the anomalous thresholds was essayed. These results, albeit needing further validation, gave some indicative references to the economic potential of this area for V mineralisations.  相似文献   

17.
The paper presents a new method for visualizing multidimensional numeric fields. The method consists in a special way of projecting analytical tests from the multidimensional space of attributes onto a single chart plane. The suggested technique proved to be efficient in interpreting geochemical data.  相似文献   

18.
Order-disorder theory has been used to treat ion-exchange equilibrium for ions of A and B on a uniform group of exchange sites more numerous than the number of monovalent cations required for electrical neutrality. The method allowed consideration of the effects of extra relaxation energy terms arising from one, two or three of the pairs AA, AB and BB on two nearest neighbour sites. These energies are additional to the energies of 2(OA), (OA + OB) and 2(OB) respectively where O denotes an empty site. Isotherms and thermodynamic equilibrium constants have been compared for different site co-ordination numbers, ion valences, and choices of the three extra energies and of the ratio, n, of the total number of sites to the number of cationic charges needed for electrical neutrality. Miscibility gaps in the isotherms occurred less readily the larger the value of n and the smaller the co-ordination number. Such gaps were also less in evidence when the two exchange ions carried different charges. The model has been considered in relation to the random interstratification of cation layers sometimes observed in clay minerals.  相似文献   

19.
Characteristic patterns in the preferential replacement of Al2SiO5 polymorphs by white mica have been interpreted by Kwak (1971) as indicating that, for alkali equilibria, the fields in order of decreasing stability are: kyanite + soln < andalusite + soln < sillimanite + soln Alternatively, preferential replacement patterns may be interpreted as reflecting the repetition of certain types of Pressure-Temperature-time paths in various metamorphic episodes.I am grateful to J. S. Fox for commenting on this comment.  相似文献   

20.
Observation of major bands seen in infrared spectra of 26 phyllosilicates (23 of which were produced in the laboratory) are reported for wave numbers from 50 to 280 cm?1. Substitutions in the various structural sites (interlayer, tetrahedral and octahedral) permit one to identify the ions which contribute to the vibrations which give rise to bands in the infrared spectra. No attempt is made to assign vibrational modes or specific vibrational types. Using the following ion substitutions, OH-OD; Na-K-Sr-Mg-Ca; Si-Ge; Al-Ga; Mg-Co-Ni-Fe, it is apparent that in the 7 Å chlorite (amesite and chrysotile), kaolinite, pyrophyllite, aluminous dioctahedral mica, aluminous smectites and trioctahedral micas it is not possible to attribute any low frequency bands as being dominated by interlayer ion stretch vibrations (alkali ions). The cations which participate in the vibrators responsible for the dominant modes observed then seem to be Si and Al. This does not exclude the existence of interlayer ion stretch modes in these spectral regions, however they could not be identified. In the materials studied only a few bands can be attributed to hydroxyl-related vibrations and little influence is seen for octahedrally coordinated ions in dioctahedral minerals. It is important to note that the lowest frequency bands (80–140 cm?1) are apparently dominated by vibrations in the network and especially to the Si-O part of the structure. Low frequency bands are however most apparent in charged layer structures, i.e. micas and smectites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号