首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Four Precambrian metamorphic complexes in the vicinity of regional faults in the Transangarian region of the Yenisei Ridge were examined. Based on geothermobarometry and P-T path calculations, our geological and petrological studies showed that the Neoproterozoic medium-pressure metamorphism of the kyanite–sillimanite type overprinted regionally metamorphosed low-pressure andalusite-bearing rocks at about 850 Ma. A positive correlation between rock ages and P-T estimates for the kyanite-sillimanite metamorphism provide evidence of the regional structural and tectonic heterogeneity. The medium-pressure metamorphism was characterized by (1) the development of deformational structures and textures, and kyanite-bearing blastocataclasites (blastomylonites) with sillimanite, garnet, and staurolite after andalusite-bearing regional metamorphic rocks; (2) insignificant apparent thickness of the zone of medium-pressure zonal metamorphism (from 2.5 to 7 km), which was localized in the vicinity of the overthrusts; (3) a low metamorphic field gradient during metamorphism (from 1–7 to 12 °C/km); and (4) a gradual increase in lithostatic pressure towards the thrust faults. These specific features are typical of collisional metamorphism during overthrusting of continental blocks and are evidence for near-isothermal loading. This event was justified within the framework of the crustal tectonic thickening model via rapid overthrusting and subsequent rapid uplifting and erosion. The results obtained allowed us to consider medium-pressure kyanite-bearing metapelites as a product of collision metamorphism, formed either by unidirectional thrusting of rock blocks from Siberian craton onto the Yenisei Ridge in the zones of regional faults (Angara, Mayakon, and Chapa areas) or by opposite movements in the zone of splay faults of higher orders (Garevka area).  相似文献   

2.
Two successive phases of metamorphism can be recognized based on mineralogical and petrological observations coupled with geothermobarometric estimates for chemical zoning in Fe- and Al-rich metapelites from the Teya crystalline rocks of the Transangarian Yenisei Ridge. The first phase is marked by the formation of low-pressure regional metamorphic complexes of the andalusite-sillimanite type (P = 3.9–5.1 kbar; T = 510–640°C), which were most likely related to the Middle Riphean Grenville events. In the second phase, metapelitic rocks underwent Late Riphean medium-pressure collisional metamorphism of the kyanite-sillimanite type (P = 5.7–7.2 kbar, T = 660–700°C), which resulted locally in an increase in pressure in the vicinity of thrusts. These results suggest that medium-pressure kyanite-bearing metapelitic rocks were formed as a result of collision-related metamorphism caused by thrusting of the Siberian cratonal blocks onto the Yenisei Ridge in the vicinity of the Tatarka deep fault.  相似文献   

3.
Three complexes in the zones of the Ishimbinskii and Tatarka deep faults in the Transangarian part of the Yenisei Range were studied to reproduce their metamorphic evolution and elucidate distinctive features of regional geodynamic processes. The results of our geological and petrological studies with the application of geothermobarometry and P-T metamorphic paths indicate that the Neoproterozoic kyanite-sillimanite intermediate-pressure metamorphism overprinted regionally metamorphosed rocks of low pressure of Middle Riphean age. The kyanite-sillimanite metamorphism was characterized by (1) the development of deformational structures and textures and kyanite-bearing blastomylonites with sillimanite, garnet, and staurolite after andalusite-bearing regional-metamorphic mineral assemblages; (2) insignificant apparent thickness of the zone of intermediate-pressure zonal metamorphism (from 2.5 to 7 km), which was localized near overthrusts; (3) a low geothermal gradient during metamorphism (from 1–7 to 12°C/km); and (4) a gradual increase in the total metamorphic pressure from southwest to northeast with approaching the overthrusts. These features are typical of collisional metamorphism during the thrusting of continental blocks and testify that the rocks subsided nearly isothermally. The process is justified within the scope of a model for the tectonic thickening of the crust via rapid thrusting and subsequent rapid exhumation and erosion. The analysis of our results with regard for the northeastern dips of the thrusts allowed us to consider the intermediate-pressure metapelites as products of collision metamorphism, which were formed in the process of a single thrusting of ancient rock blocks from the Siberian Platform onto the Yenisei Range.  相似文献   

4.
The mineralogical, petrological, geochemical and geochronological data on the Garevka metamorphic complex (GMC) of the Yenisey Ridge were used to evaluate the age, nature, and provenance of their protoliths. The evolution of the GMC occurred in two stages with different ages, thermodynamic regimes, and metamorphic field gradients. The final emplacement of granitoids was marked by high-pressure (HP) amphibolite facies regional metamorphism (970 Ma). At the second stage, these rocks experienced Late Riphean (900–870 Ma) retrograde epidote-amphibolite facies metamorphism accompanied by the formation of blastomylonitic complexes within narrow zones of brittle-ductile deformation. The metamorphism of migmatites (850 Ma) is coeval with the collisional medium-pressure metamorphism of the kyanite-sillimanite type. The GMC is different from the other rock complexes of the Yenisey Ridge in the presence of rapakivi-type granites. The geochemistry of these rocks, which is characterized by stronger enrichment in K2O, FeO, Y, Th, U, Zr, Hf, Nb, Ta, and REE relative to the other mineral assemblages of the GMC, is typical of anorogenic (A-type) within-plate granites. Among other distinctive features of these rocks are the strong iron enrichment of the melanocratic minerals, the presence of ilmenite as the sole Fe-Ti oxide, and crystallization from higher temperature (T = 825°C vs. T = 750°C) water-poor magmas under reducing conditions below the FMQ buffer. Significant variations in the geochemical and petrological characteristics of the GMC rocks suggest that they could not be derived from a single source. The main volume of the high-K rocks varying in composition from A-type to S-type granites was generated by melting of mixed mantlecrustal sources. The products of melting of the Late Archean-Early Proterozoic infracrustal gneisses of the Siberian Craton could be a possible source for the least oxidized rocks.  相似文献   

5.
A study of gneisses and schists from the Yenisey regional shear zone (Garevka complex) at the western margin of the Siberian Craton has provided important constraints on the tectonothermal events and geodynamic processes in the Yenisey Ridge during the Riphean. In situ U-Th-Pb geochronology of monazite and xenotime from different garnet growth zones and the calculation of P-T path derived from chemical zoning pattern in garnet were used to distinguish three metamorphic events with different ages, thermodynamic regimes and metamorphic field gradients. The first stage occurred as a result of the Grenville orogeny during late Meso-early Neoproterozoic (1050–850 Ma) and was marked by low-pressure zoned metamorphism at ~4.8–5.0 kbar and 565–580°C and a metamorphic field gradient with dT/dH = 20–30°C/km typical of orogenic belts. At the second stage, the rocks experienced Late Riphean (801–793 Ma) collision-related medium-pressure metamorphism at ~7.7–7.9 kbar and 630°C with dT/dH ≤ 10°C/km. The final stage evolved as a syn-exhumation retrograde metamorphism (785–776 Ma) at ~4.8–5.4 kbar and 500°C with dT/dH ≤ 12°C/km and recorded a relatively fast uplift of the rocks to upper crustal levels in shear zones. The range of exhumation rates at the post-collisional stage (500–700 m/Ma) correlates with the duration of exhumation and the results of thermophysical numerical modeling of metamorphic rocks within orogenic belts. The final stages of collisional orogeny are marked by the development of rift-related bimodal dyke swarms associated with Neoproterozoic extension (797 ± 11 and 7.91 ± 6 Ma; U-Pb SHRIMP II zircon data) along the western margin of the Siberian craton and the beginning of the breakup of Rodinia. Post-Grenville metamorphic episodes of regional evolution are correlated with the synchronous succession and similar style of the later tectono-metamorphic events within the Valhalla orogen along the Arctic margin of Rodinia and support the spatial proximity of Siberia and North Atlantic cratons at about 800 Ma, as indicated by the latest paleomagnetic reconstructions.  相似文献   

6.
Two metamorphic complexes of the Yenisei Ridge with contrasting composition are analyzed to unravel their tectonothermal evolution and geodynamic processes during the Riphean geologic history of the area. The structural, mineralogical, petrological, geochemical and geochronological data are used to distinguish two stages of the evolution with different ages, thermodynamic regimes, and metamorphic field gradients. Reaction textures, chemical zoning in minerals, shapes of the P-T paths, and isotope dates provide convincing evidence for a poly metamorphic history of the region. The first stage is marked by the formation of the ~ 970 Ma low-pressure zoned And-Sil rocks (P = 3.9-5.1 kbar, T = 510–640 °C) of the Teya aureole and a high metamorphic field gradient with dT/dH = 25–35 °C/km typical of many orogenic belts. At the second stage, these rocks experienced Late Riphean (853–849 Ma) collisional medium-pressure metamorphism of the kyanite-sillimanite type (P = 5.7-7.2 kbar, T = 660–700 °C) and a low metamorphic field gradient with dT/dH < 12 °C/km. This metamorphic event was almost coeval with the Late Riphean (862 Ma) contact metamorphism in the vicinity of the granitic plutons, which was accompanied by a high metamorphic field gradient with dT/dH > 100 °C/km. At the first stage, the deepest blocks of the Garevka complex in the vicinity of the Yenisei regional shear zone underwent high-pressure amphibolite-facies metamorphism within a narrow range of P = 7.1-8.7 kbar and T = 580–630 °C, suggesting the burial of rocks to mid-crustal depths at a metamorphic field gradient with dT/dH ~ 20–25 °C/km. At the second stage, these rocks experienced the Late Riphean (900–850 Ma) syn-exhumation dynamometamorphism under epidote-amphibolte facies conditions (P = 3.9-4.9 kbar, T = 460–550 °C) and a low gradient with dT/dH < 10 °C/km accompanied by the formation of blastomylonitic complexes in shear zones. All these deformation and metamorphic events identified on the western margin of the Siberian craton are correlated with the final episodes of the Late Grenville orogeny and provide supporting evidence for a close spatial connection between Siberia and Laurentia during early Neoproterozoic time, which is in good agreement with recent paleomagnetic reconstuctions.  相似文献   

7.
Chemical mapping and in situ dating of U-Th-rich minerals in zoned garnets from gneisses of the Garevka metamorphic complex were used to constrain multiple metamorphic events in the Transangarian Yenisei Ridge. The data provide supporting evidence for three distinct metamorphic stages. The first episode occurred as a result of the Grenville orogeny during the Late Mesozoic and Early Neoproterozoic (1050–850 Ma) and was marked by low-pressure zoned metamorphism and a metamorphic field gradient with dT/dH = 20?30°C/km typical of orogenic belts. At the second stage, the rocks experienced Late Riphean (801–793 Ma) syn-collisional medium-pressure metamorphism with a low metamorphic field gradient (dT/dH ≤ 10°C/km). The final stage evolved as a synexhumation dynamic metamorphism (785–776 Ma) with dT/dH ≤ 12°C/km and reflected rapid exhumation of rocks in shear zones. The sequence of collisional events within the western margin of the Siberian craton affected by the Valhalla orogen suggests that Siberia and cratons of the North Atlantic region were in close proximity to one another at about 800 Ma, which is supported by recent paleomagnetic reconstructions.  相似文献   

8.
东疆哈尔里克变质地带变质作用特征及形成构造环境研究   总被引:7,自引:1,他引:7  
本文通过对哈尔里克变质地带的变质岩石学、变质矿物及矿物包裹关系的研究,确定该变质带的形成曾经历了晚古生代中、晚石炭世的高温-低压型的区域热变质作和晚石炭世末期中温-中压型的断裂区域变质作用,且后者叠加改造了前者。前者温度为922℃~780 ℃,后者可划分出四个递增变质带,温压为450℃~670℃和2.3~4.1kb,这一研究反映丁哈尔里克泥盆纪火山岛弧经过了由拉伸作用到碰撞挤压造山引发的A型俯冲作用演变过程,并产生了上述相应的变质现象。  相似文献   

9.
The Central Anatolian Crystalline Complex (CACC) is a microcontinent in the Alpine–Himalayan belt. It has previously been considered as a coherent structural entity, but, although the entire CACC is comprised of similar rocks (primarily metasedimentary rocks and granitoids), it consists of at least four tectonic blocks characterized by different PTt paths. These blocks are the K?r?ehir (north‐west), Akda? (north‐east), Ni?de (south) and Aksaray (west) massifs. The northern massifs experienced thrusting and folding during collision and were slowly exhumed by erosion; metamorphic rocks are characterized by clockwise PT paths at moderate PT and local low‐P–high‐T (LP–HT) overprinting in the highest grade rocks. Apatite fission track ages are Eocene to Oligocene (47–32 Ma). The Aksaray block represents the hot, shallow mid‐crust of a Late Cretaceous–early Tertiary arc. It is dominated by intrusions; rare metapelitic rocks record low‐P (< 4 kbar) regional metamorphism overprinted by LP–HT contact metamorphism. Apatite fission track ages are 50–45 Ma. The Ni?de massif is different from the other CACC blocks because it evolved as a core complex in a wrench‐dominated setting. It is characterized by clockwise PT paths at moderate PT followed by widespread LP–HT metamorphism. Apatite fission track ages are Miocene (12–9 Ma), significantly younger than those in the northern massifs. Ni?de rocks resided in the mid‐crust at a time when the rest of the CACC was at or near the Earth's surface. Variations in PTt and tectonic histories — especially timing of exhumation — between the northern and southern CACC reflect the difference between head‐on collision vs. mid‐crustal wrenching.  相似文献   

10.
The paper presents original authors’ data on aluminous schists in the Tsogt tectonic plate in the Southern Altai Metamorphic Belt. The nappe includes a medium-temperature/medium-pressure zonal metamorphic complex, whose metamorphic grade varies from the greenschist to epidote-amphibolite facies. The garnet and garnet–staurolite schists contain three garnet generations of different composition and morphology. The P–T metamorphic parameters estimated by mineralogical geothermometers and geobarometers and by numerical modeling with the PERPLEX 668 software provide evidence of two successive metamorphic episodes: high-gradient (of the andalusite–sillimanite type, geothermal gradient approximately 40–50°/km) and low-gradient (kyanite–sillimanite type, geothermal gradient approximately 27°/km). The P-T parameters of the older episode are T = 545–575°C and P = 3.1–3.7 kbar. Metamorphism during the younger episode was zonal, and its peak parameters were T = 560–565°C, P = 6.4–7.2 kbar for the garnet zone and T = 585–615°C, P = 7.1–7.8 kbar for the staurolite zone. The metamorphism evolved according to a clockwise P–T path: the pressure increased during the first episode at a practically constant temperature, and then during the second episode, the temperature increased at a nearly constant pressure. Such trends are typical of metamorphism related to collisional tectonic settings and may be explained by crustal thickening due to overthrusting. The regional crustal thickening reached at least 15–18 km.  相似文献   

11.
In the Transangarian region of the Yenisey Ridge in eastern Siberia (Russia), Fe‐ and Al‐rich metapelitic schists of the Korda plate show field and petrological evidence of two superimposed metamorphic events. An early middle Proterozoic event with age of c.1100 Ma produced low‐pressure, andalusite‐bearing assemblages at c. 3.5–4 kbar and 540–560 °C. During a subsequent late Proterozoic event at c. 850 Ma, a medium‐pressure, regional metamorphic overprint produced kyanite‐bearing mineral assemblages that replaced minerals formed in the low‐pressure event. Based on the results of geothermobarometry and PT path calculations it can be shown that pressure increased from 4.5 to 6.7 kbar at a relatively constant temperature of 540–600 °C towards a major suture zone called the Panimba thrust. In order to produce such nearly isothermal loading of 1–7 °C km ?1, we propose a model for the tectono‐metamorphic evolution of the study area based on crustal thickening caused by south‐westward thrusting of the 5–7 km‐thick upper‐plate metacarbonates over lower‐plate metapelites with velocity of c. 350 m Myr?1. A small temperature increase (up to 20 ± 15 °C) of the upper part of the overlapped plate is explained by specific behaviour of steady‐state geotherms calculated using lower radioactive heat production of metacarbonates as compared with metapelites. The suggested thermal‐mechanical model corresponds well with PT paths inferred from obtained thermobarometric data and correlates satisfactorily with PT trajectories predicted by other two‐dimensional thermal models for different crustal thickening and exhumation histories.  相似文献   

12.
During the Late Palaeozoic Variscan Orogeny, Cambro‐Ordovician and/or Neoproterozoic metasedimentary rocks of the Albera Massif (Eastern Pyrenees) were subject to low‐pressure/high‐temperature (LPHT) regional metamorphism, with the development of a sequence of prograde metamorphic zones (chlorite‐muscovite, biotite, andalusite‐cordierite, sillimanite and migmatite). LPHT metamorphism and magmatism occurred in a broadly compressional tectonic regime, which started with a phase of southward thrusting (D1) and ended with a wrench‐dominated dextral transpressional event (D2). D1 occurred under prograde metamorphic conditions. D2 started before the P–T metamorphic climax and continued during and after the metamorphic peak, and was associated with igneous activity. P–T estimates show that rocks from the biotite‐in isograd reached peak‐metamorphic conditions of 2.5 kbar, 400 °C; rocks in the low‐grade part of the andalusite‐cordierite zone reached peak metamorphic conditions of 2.8 kbar, 535 °C; rocks located at the transition between andalusite‐cordierite zone and the sillimanite zone reached peak metamorphic conditions of 3.3 kbar, 625 °C; rocks located at the beginning of the anatectic domain reached peak metamorphic conditions of 3.5 kbar, 655 °C; and rocks located at the bottom of the metamorphic series of the massif reached peak metamorphic conditions of 4.5 kbar, 730 °C. A clockwise P–T trajectory is inferred using a combination of reaction microstructures with appropriate P–T pseudosections. It is proposed that heat from asthenospheric material that rose to shallow mantle levels provided the ultimate heat source for the LPHT metamorphism and extensive lower crustal melting, generating various types of granitoid magmas. This thermal pulse occurred during an episode of transpression, and is interpreted to reflect breakoff of the underlying, downwarped mantle lithosphere during the final stages of oblique continental collision.  相似文献   

13.
北淮阳地区中生代逆冲推覆构造   总被引:26,自引:3,他引:26  
刘文灿  王果胜 《现代地质》1999,13(2):143-149
大别山北缘北淮阳地区中生代逆冲推覆构造作用使本区广泛发育的以下古生界为主体的中、浅变质构造地层,在数百公里的范围内向NE逆冲(掩)于石炭系和中侏罗统之上,形成一系列构造窗、飞来峰和逆冲(掩)断层带,其最小逆冲推覆距离平均为244km,形成时代介于J2—J3之间,其形成与大别造山带的碰撞挤压有关,是大别地块中生代向北仰冲作用的结果。  相似文献   

14.
The Laramie Mountains of south-eastern Wyoming contain two metamorphic domains that are separated by the 1.76 Ga. Laramie Peak shear zone (LPSZ). South of the LPSZ lies the Palmer Canyon block, where apatite U–Pb ages are c. 1745 Ma and the rocks have undergone Proterozoic kyanite-grade Barrovian metamorphism. In contrast, in the Laramie Peak block, north of the shear zone, the U–Pb apatite ages are 2.4–2.1 Ga, the granitic rocks are unmetamorphosed and supracrustal rocks record only low-T amphibolite facies metamorphism that is Archean in age. Peak mineral assemblages in the Palmer Canyon block include (a) quartz–biotite–plagioclase–garnet–staurolite–kyanite in the pelitic schists; (b) quartz–biotite–plagioclase–low-Ca amphiboles–kyanite in Mg–Al-rich schists, and locally (c) hornblende–plagioclase–garnet in amphibolites. All rock types show abundant textural evidence of decompression and retrograde re-equilibration. Notable among the texturally late minerals are cordierite and sapphirine, which occur in coronas around kyanite in Mg–Al-rich schists. Thermobarometry from texturally early and late assemblages for samples from different areas within the Palmer Canyon block define decompression from >7 kbar to <3 kbar. The high-pressure regional metamorphism is interpreted to be a response to thrusting associated with the Medicine Bow orogeny at c. 1.78–1.76 Ga. At this time, the north-central Laramie Range was tectonically thickened by as much as 12 km. This crustal thickening extended for more than 60 km north of the Cheyenne belt in southern Wyoming. Late in the orogenic cycle, rocks of the Palmer Canyon block were uplifted and unroofed as the result of transpression along the Laramie Peak shear zone to produce the widespread decompression textures. The Proterozoic tectonic history of the central Laramie Range is similar to exhumation that accompanied late-orogenic oblique convergence in many Phanerozoic orogenic belts.  相似文献   

15.
The metamorphic belt in the Dongjiu area is located in the eastern segment of the Lhasa terrane in South Tibet. The Dongjiu metamorphic rocks are primarily composed of schist and gneiss, with minor amounts of marble, and the protoliths are sedimentary rocks with Precambrian and early Palaeozoic zircons probably deposited during the Palaeozoic or late Neoproterozoic. On the basis of petrology and phase equilibria modelling, this study shows that the Dongjiu metamorphic belt has experienced a kyanite-grade metamorphism, which is characterized by a decompressional vector with slight cooling from a peak of 9.6 kbar and 745°C to medium-pressure amphibolite-facies metamorphic overprinting at 5–6 kbar and 600–630°C. This P–T path was well recorded and recovered by garnet zoning profiles. Laser ablation inductively coupled plasma mass spectrometry in situ U–Pb analyses on metamorphic zircons and zircon rims yielded concordant 206Pb/238U ages of c. 194–192 Ma, suggesting that the Dongjiu metamorphic rocks were formed during the Early Jurassic. Therefore, the Dongjiu metamorphic belt, together with the western Nyainqentanglha, Basongco, and Zhala metamorphic belts, constitutes a nearly continuous tectonic unit with an E–W extension of at least 500 km between the northern and southern Lhasa terranes. The metamorphic ages of these belts, ranging from 230 to 192 Ma, show a younger trend from west to east, indicating that the central segment of the Lhasa terrane experienced an eastward asynchronous collisional orogeny during the Late Triassic to Early Jurassic.  相似文献   

16.
The Garevka metamorphic complex (GMC), located at the junction of the Central Angara and Isakovka terranes (western part of the Transangarian Yenisei Ridge), was studied in terms of its tectonometamorphic evolution and geodynamic processes in the Neoproterozoic history of the region. Geological, structural, geochronological, and petrological data permitted the recognition of two stages in the GMC evolution, which differ in thermodynamic regimes and metamorphic field gradients. These stages were related to crustal contraction and extension within the Yenisei regional shear zone, a large lineament structure in the region. Stage 1 was marked by the formation of metamorphic complexes in the middle to upper amphibolite facies moderate-pressure regional metamorphic settings at ~ 960 Ma, P = 7.7–8.6 kbar, and T = 582–631 °C. This suggests subsidence of the area to the middle continental crust with dT/dH = 20–25 °C/km. During stage 2, the rocks experienced Late Riphean (~ 880 Ma, SHRIMP II U–Pb and 40Ar–39Ar dating) dynamic metamorphism under epidote-amphibolite facies conditions (P = 3.9–4.9 kbar; T = 461–547 °C), indicating a metamorphic field gradient of dT/dH no greater than 10 °C/km, with the formation of blastomylonites in narrow zones of ductile and brittle deformations. In these zones, high-grade GMC blocks were exhumed to the upper continental crust and underwent low-temperature metamorphism. Comparison of the structural, geologic, and other evolutionary features (nearly identical age constraints in view of exhumation rate, similar PT-paths, and different types of metamorphism associated with different geodynamic settings, etc.) of the Garevka and Teya complexes suggests that they constitute a single polymetamorphic complex.  相似文献   

17.
Abstract

Variscan convergence produced two-sided (bivergent) crustal-scale thrusting in the Vosges Mountains. In the northern Vosges the central polymetamorphic crystallines were thrust to the NW over Cambrian to Silurian low-grade and very low-grade metamorphic clastics. Synorogenic upper Devonian - lower Carboniferous turbidites and volcanics were folded into NW-vergent structures which display SE-dipping slaty cleavage. The entire sequence shows increasing metamorphism and deformation from NW to SE. Late right-lateral strike-slip faulting along the Lalaye-Lubine fault zone outlasted thrusting. In the southern Vosges a lower Carboniferous turbiditic basin that was fringed on the south by a volcanic arc was tectonically shortened by south-directed tectonic imbrication of slivers of varied rocks including ultramafics, gneissic basement, and synorogenic elastics. The increasing degree of deformation and metamorphism towards the north suggests a thrust contact with the polymetamorphic gneisses of the central Vosges. The final stages of Variscan convergence were accompanied by voluminous granitic plutonism and by faulting along NNE-SSW and E-W-trending strike-slip faults. The tectonic evolution reflects progressive Variscan closure of a previously extended basinal crust in a high-temperature regime.  相似文献   

18.
A combined study of petrology and geochemistry was carried out for granulites from the Tongbai orogen in central China. The results reveal the tectonic evolution from collisional thickening to extensional thinning of the lithosphere at the convergent plate boundary. Petrographic observations, zircon U–Pb dating, and pseudosection calculations indicate that the granulites underwent four metamorphic stages, which are categorized into two cycles. The first cycle occurred at 490–450 Ma and involves high-P (HP) metamorphism (M1) at 785–815°C and 10–14 kbar followed by decompressional heating to 840–880°C and 8–9 kbar for medium-pressure granulite facies metamorphism (M2), defining a clockwise PT path. The high pressure is indicated by the occurrence of inclusions of rutile+kyanite+K-feldspar in the garnet mantle. The second cycle occurred at c. 440 Ma and shows an anticlockwise PT path with continuous heating to ultrahigh-temperature (UHT) metamorphism (M3) at 890–980°C and 9–11 kbar, followed by decompressional cooling to 740–880°C and 7–9 kbar (M4) till 405 Ma. The HP metamorphism is synchronous with the ultrahigh-pressure eclogite facies metamorphism in the Qinling orogen, indicating its relevance to the continental collision in the Cambrian. The UHT metamorphism took place at reduced pressures, indicating thinning of the collision-thickened orogenic lithosphere. Therefore, the Tongbai orogen was initially thickened by the collisional orogeny and then thinned, possibly as a result of foundering of the orogenic root. Such tectonic evolution may be common in collisional orogens where compression during continental collision switched to extension during continental rifting.  相似文献   

19.
The tectono‐metamorphic evolution of the Hercynian intermediate–upper crust outcropping in eastern Sila (Calabria, Italy) has been reconstructed, integrating microstructural analysis, P–T pseudosections, mineral isopleths and geochronological data. The studied rocks belong to a nearly complete crustal section that comprises granulite facies metamorphic rocks at the base and granitoids in the intermediate levels. Clockwise P–T paths have been constrained for metapelites of the basal level of the intermediate–upper crust (Umbriatico area). These rocks show noticeable porphyroblastic textures documenting the progressive change from medium‐P metamorphic assemblages (garnet‐ and staurolite‐bearing assemblages) towards low‐P/high‐T metamorphic assemblages (fibrolite‐ and cordierite‐bearing assemblages). Peak‐metamorphic conditions of ~590 °C and 0.35 GPa are estimated by integrating microstructural observations with P–T pseudosections calculated for bulk‐rock and reaction‐domain compositions. The top level of the intermediate–upper crust (Campana area) recorded only the major heating phase at low‐P (~550 °C and 0.25 GPa), as documented by the static growth of biotite spots and of cordierite and andalusite porphyroblasts in metapelites. In situ U–Th–Pb dating of monazite from schists containing low‐P/high‐T metamorphic assemblages gave a weighted mean U–Pb concordia age of 299 ± 3 Ma, which has been interpreted as the timing of peak metamorphism. In the framework of the whole Hercynian crustal section the peak of low‐P/high‐T metamorphism in the intermediate‐to‐upper crust took place concurrently with granulite facies metamorphism in the lower crust and with emplacement of the granitoids in the intermediate levels. In addition, decompression is a distinctive trait of the P–T evolution both in the lower and upper crust. It is proposed that post–collisional extension, together with exhumation, is the most suitable tectonic setting in which magmatic and metamorphic processes can be active simultaneously in different levels of the continental crust.  相似文献   

20.
大别山超高压变质带的构造背景   总被引:8,自引:4,他引:8  
江来利  徐树桐 《地质论评》1995,41(3):229-237
大别山南部的超高压变质带具有特征的榴辉岩相矿物组合,榴辉岩的岩石化学及稀土元素特征及其伴生的岩石组合,表明这个带是以陆壳成分为主混有少量上地幔及洋壳成分的混杂岩,榴辉岩相围岩和大别群具有不同的变质和变形特征。超高压变质带形成于扬子和中朝板块大陆碰撞的构造环境,是扬子板块陆壳向北俯冲到一定深度的变质产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号