首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
新疆博乐喇嘛苏铜矿床地质特征和成因研究   总被引:13,自引:1,他引:12  
杨军臣  崔彬 《地质论评》1998,44(1):23-30
喇嘛苏铜矿床矿区地层铜背景为含量偏低,但矿区岩浆岩含铜较高,“I”型花岗岩类,成矿阶段划分为3个阶段,石英-氧化物阶段,硫化物阶段,晚期石英-硫化物阶段,硫,铅同位素证据表明,成矿物质主要来源于矿区岩浆岩,氢氧同位素证据表明在氧化物阶段成矿热液主要为岩浆水,硫化物阶段则已是大气降水与岩浆水的混合热液,结合黄铁矿的富硫特征,进一步论证喇嘛苏铜矿床典型夕卡岩型铜矿,并探讨其厚大似层状贫铜矿体内的富铜矿  相似文献   

2.
Dependences of magnetic susceptibility (MS) on the temperature of natural iron sulfide samples (pyrite, marcasite, greigite, chalcopyrite, arsenopyrite, pyrrhotite) from the deposits of northeastern Russia were studied. The thermal MS curves for pyrite and marcasite are the same: On heating, MS increases at 420–450 °C, and unstable magnetite (maghemite) and monoclinic pyrrhotite with a well-defined Hopkinson peak are produced. In oxygen-free media with carbon or nitrogen, magnetite formation is weak, whereas pyrrhotite generation is more significant. The heating curves for chalcopyrite are similar to those for pyrite. They show an increase in MS at the same temperatures (420–450 °C). However, stable magnetite is produced, whereas monoclinic pyrrhotite is absent. In contrast to that in pyrite, marcasite, and chalcopyrite, magnetite formation in arsenopyrite begins at > 500 °C. Arsenopyrite cooling is accompanied by the formation of magnetite (S-rich arsenopyrite) or maghemite (As-rich arsenopyrite) with a dramatic increase in MS. Arsenopyrite with an increased S content is characterized by insignificant pyrrhotite formation. Greigite is marked by a decrease in MS on the heating curves at 360–420 °C with the formation of unstable cation-deficient magnetite.Monoclinic pyrrhotite is characterized by a decrease in MS at ~ 320 °C, and hexagonal pyrrhotite, by a transition to a ferrimagnetic state at 210–260 °C. The addition of organic matter to monoclinic pyrrhotite stimulates the formation of hexagonal pyrrhotite, which transforms back into monoclinic pyrrhotite on repeated heating. The oxidation products of sulfides (greigite, chalcopyrite) show an increase in MS at 240–250 °C owing to lepidocrocite.  相似文献   

3.
铜厂铜-铁矿床在成矿时代、成矿物质来源及矿床成因等方面存在较大争议,限制了其成矿模式的建立以及进一步的找矿实践. 利用黄铜矿Re-Os同位素对该矿床进行定年,并利用LA-MC-ICP-MS技术对黄铜矿、黄铁矿及磁黄铁矿等硫化物开展原位硫同位素研究. 分析结果显示,5件黄铜矿Re-Os同位素等时线年龄为484±34 Ma(MSWD=8.7),表明铜厂铜-铁矿床形成于早古生代加里东期. 铜厂铜-铁矿床上部铜矿床中黄铜矿(+9.75‰~+13.1‰)和黄铁矿(+9.22‰~+13.9‰)的δ34S值略高于下部铁矿床中黄铜矿(+8.66‰~+10.9‰)、黄铁矿(+8.85‰~+11.0‰)和磁黄铁矿(+7.93‰~+9.28‰). 计算得到早期成矿热液的δ34S∑S值约为+10.6‰,晚期成矿热液的δ34S∑S值约为+12.3‰,说明矿床硫是地幔硫混染海水硫形成的,热化学还原在海水硫酸盐还原过程中起到关键作用. 铜厂铜-铁矿床的形成可分为两期:新元古代晋宁期,Rodinia超大陆裂解导致勉略宁地区发生海底火山喷发形成富含Fe、Cu的初始矿源层;早古生代加里东期,大陆边缘持续的裂解和裂陷形成勉略海槽并导致强烈的岩浆活动,富含挥发分及硫的岩浆热液混合海水硫,并从细碧岩中萃取Fe、Cu等成矿物质,早期成矿热液在铜厂地区深部形成铁矿床,随着磁铁矿和硫化物的沉淀,成矿热液演化到晚期阶段并沿断裂构造带向上运移,在铜厂地区浅部形成铜矿床.   相似文献   

4.
During Tertiary regional metamorphism in the Western Hohe Tauern, reaching maximum P, T conditions around 6 kb, 550° C in calcareous metasediments, reaction of pyrite to pyrrhotite is suggested by regional distribution and textural relations. In rocks without graphite pyrite is common at all metamorphic grades. In graphite bearing rocks, however, the dominant Fe-sulfide is pyrite at lower grade and pyrrhotite at higher grade. Furthermore, in graphite bearing high grade rocks, pyrite is restricted to assemblages with Mg-rich silicates. Several factors control pyrite-pyrrhotite relations. Increase of temperature is most effective by increase of pyrrhotite vs. pyrite stability field, shift of silicate-sulfide reactions toward the stability field of pyrrhotite, creation of sulfur free fluids from devolatilization reactions, and increase in the proportions of sulfur bearing fluid species. Presence of graphite also favours progress of pyrite to pyrrhotite reaction, as shown by different -stabilities and changes in the amount of minerals and fluid during metamorphic heating of graphite bearing and graphite free assemblages. An opposite effect is shown by assemblages with low Fe-contents in Fe-Mg silicates, due to the enlarged stability field of such minerals with increasing Mg (and F) content. Another inhibition of pyrite to pyrrhotite reaction is suggested to be due to relatively high sulfur contents of H2O rich infiltrating fluids.  相似文献   

5.
长江中、下游地区块状硫化物矿床普遍受到燕山期岩浆及其热液的改造与叠加.本文以铜陵冬瓜山矿床为例,探讨这类矿床的成矿机制.该矿床主要由层状硫化物矿体组成,伴有矽卡岩型和斑岩型矿体.野外地质观察及室内矿相学的研究表明,冬瓜山层状矿体中矿石遭受了强烈的热变质作用及热液交代作用.进变质过程中形成的结构主要为黄铁矿受燕山期岩浆侵...  相似文献   

6.
The bulk composition, mineralogy and mineral chemistry of base-metal sulfides have been investigated in the Fe-Ni-(Cu) ore deposits of the Ivrea-Verbano basic complex.The sulfide ores mostly display textural evidence of having been primarily deposited as an immiscible melt. Bulk compositions of the ores indicate that considerably low Ni/Fe and Ni/Co ratios are found in deposits developed close to metasedimentary country rocks, possibly as a result of mixing with sedimentary sulfur.Phase relations of primary sulfides indicate that early crystallization of the ore was dominated by a monosulfide solid solution (Mss) with a pyrrhotite composition, from which pentlandite and chalcopyrite were formed through subsolidus exsolution. Pentlandite from contaminated ores is typically enriched in Co. Troilite and hexagonal intermediate pyrrhotite intergrowths frequently occur due to low-temperature equilibration of metal-rich pyrrhotites, suggesting a low S fugacity of the original sulfide melt.The sulfides may be locally mobilized and redeposited along shear zones within the same host rock, giving rise to fairly massive ores having a typical cemented-breccia texture. Bulk composition and assemblages suggest that mobilization occurred at various temperatures during the cooling history of the ore, when sulfides were still in the molten state or at a lower temperature under the influence of abundant deuteric fluids. In this last case, growth of pyrite is seen as being possibly due to sulfurization and/or oxidation.  相似文献   

7.
The ore mineralogy of the largest quartz vein, Osinovaya, at the Kedrovskoe gold deposit has been studied. Three stages of mineral formation, namely, marcasite–pyrrhotite–pyrite, gold–polysulfide, and hypergenic stages are identified. Native gold is attributed to the gold–polysulfide stage and is represented by two generations. The earlier high fineness generation (600–870, 780–820 prevails) cements the fragments of pyrite grains or forms inclusions in pyrite, and the later low fineness generation (520–580, 540–580 prevails) is associated with sphalerite–chalcopyrite–galena veinlets in pyrite. The disappearance of arsenious pyrite, the increase in iron content of sphalerite, and the change in pyrite to pyrrhotite with depth is recorded.  相似文献   

8.
南大西洋中脊的26°S热液区广泛发育多金属硫化物、底泥、枕状熔岩、非活动性烟囱体和活动性烟囱体。为了有效探索硫、铜等成矿物质的来源以及成矿作用过程,分别以玄武岩、烟囱体残片及块状多金属硫化物为研究对象,开展了熔融包裹体、硫同位素和铜同位素研究。结果显示:区内玄武岩新鲜未蚀变且斑晶中产出大量熔融包裹体;熔融包裹体气泡壁附着黄铜矿、黄铁矿及磁铁矿等子矿物,说明在岩浆作用过程中可从熔浆中分离出成矿所需的金属元素和硫,这些成矿元素随着岩浆去气作用进入挥发分中,并随着脱气作用迁移出来。通过对烟囱体残片及块状多金属硫化物中黄铁矿的硫同位素组成进行比对分析,发现26°S热液区内硫化物的硫同位素与大西洋各热液区硫化物的硫同位素变化范围相一致,但δ34SV-CDT值略低(3.0‰~3.9‰)。低的δ34SV-CDT值指示硫以岩浆硫源为主,海水硫酸盐还原硫占比低。黄铜矿呈现略微富铜重同位素特征且分馏程度较低,其δ65Cu值(0.171‰~0.477‰)趋近于大洋中脊玄武岩的铜同位素值(0)。综合硫同位素及铜同位素特征,表明热液流体经历了岩浆和海水的混合过程,成矿物质主要来自于岩浆热液,成矿作用过程中可能有少量海水混入。  相似文献   

9.
Sulfide minerals in amounts up to 3 vol% are found in basal, chilled marginal zones of two layered peridotite-pyroxenite-gabbro sills in the Early Precambrian Deer Lake Complex, northcentral Minnesota. The sulfides occur interstitially to silicate minerals, and consist of pyrrhotite with minor exsolved cobaltian pentlandite, chalcopyrite, gersdorffite, and marcasite±pyrite as an alteration product of pyrrhotite.The basal chilled units (3–6 m) of the sills are divisable into three zones based primarily on textures. The lowermost zone is an equigranular basalt, whereas the overlying zone is characterized by skeletal, spinifex-like actinolite after clinopyroxene. The upper zone of the basal margins contains elongate and swallow tail plagioclase, and is barren of sulfide minerals.Electron microprobe analyses of sulfide minerals and modal data suggest that sulfide bulk compositions at 1,100–1,000 ° C represent a pyrrhotite solid solution and a coexisting Cu-rich sulfide liquid. Cooling of the Cu-rich liquid and low temperature transformations are thought to have produced chalcopyrite or chalcopyrite plus pyrrhotite. The sulfide minerals have reequlibrated to temperatures near 300 ° C or less.Analyses of sulfur content and 34S values suggest that assimilation of sulfur from adjacent country rocks was the principal mechanism responsible for anomalous concentrations of sulfides in the basal chilled margins. The distribution of sulfides in the peridotite-pyroxenite-gabbro portions of the sills, and calculations of settling rate preclude an origin involving gravitational settling of immiscible droplets through the magma body.  相似文献   

10.
T. Kawakami  D.J. Ellis  A.G. Christy 《Lithos》2006,92(3-4):431-446
The high-temperature (HT) to ultrahigh-temperature (UHT) metamorphic rocks from Lützow–Holm Complex, East Antarctica show a systematic difference between sulfide assemblages in the rock matrix and those found as inclusions in the silicates stable in high-temperatures. Matrix sulfides are commonly pyrite with or without pentlandite and chalcopyrite. On the other hand, inclusion sulfides are pyrrhotite with or without pentlandite and chalcopyrite lamellae. When recalculated into integrated single-phase sulfide compositions, inclusion sulfides from the UHT region showed a wider range of solid–solution composition than the inclusion sulfides from the HT region. The host minerals of the sulfides with extreme solid–solution compositions are those stable at the peak of metamorphism such as orthopyroxene and garnet. One of the most extreme ones is included in orthopyroxene coexisting with sillimanite ± quartz, which is the diagnostic mineral assemblage of UHT metamorphism. These observations suggest that sulfide inclusions preserve their peak metamorphic compositions. Pyrrhotite did not revert to pyrite because of the closed system behavior of sulfur in inclusion sulfides. On the other hand, in the rock matrix where the open system behavior of sulfur is permitted, original sulfides were partly to completely altered by the later fluid activity.  相似文献   

11.
Reactions between sulfides of heavy metals and solutions of hexavalent uranium sulfate at pH about 2, in the range of 200-360°C, led to replacement of pyrrhotite by marcasite-pyrite aggregate, development of bornite and pyrite after chalcopyrite, growth of regenerated chalcopyrite on the periphery of uranium oxides, replacement of chalcopyrite by bornite (with the accompanying complications, fig. 3), redepositions of chalcocite and native copper, and, in experiments with pyrite-galena and galena-marmatite pairs, redepositions of the minerals with the corresponding growth of pyrite. —V.P. Sokoloff.  相似文献   

12.
Karavansalija ore zone is situated in the Serbian part of the Serbo‐Macedonian magmatic and metallogenic belt. The Cu–Au mineralization is hosted mainly by garnet–pyroxene–epidote skarns and shifts to lesser presence towards the nearby quartz–epidotized rocks and the overlying volcanic tuffs. Within the epidosites the sulfide mineralogy is represented by disseminated cobalt‐nickel sulfides from the gersdorfite‐krutovite mineral series and cobaltite, and pyrite–marcasite–chalcopyrite–base metal aggregates. The skarn sulfide mineralization is characterized by chalcopyrite, pyrite, pyrrhotite, bismuth‐phases (bismuthinite and cosalite), arsenopyrite, gersdorffite, and sphalerite. The sulfides can be observed in several types of massive aggregates, depending on the predominant sulfide phases: pyrrhotite‐chalcopyrite aggregates with lesser amount of arsenopyrite and traces of sphalerite, arsenopyrite–bismuthinite–cosalite aggregates with subordinate sphalerite and sphalerite veins with bismuthinite, pyrite and arsenopyrite. In the overlying volcanoclastics, the studied sulfide mineralization is represented mainly by arsenopyrite aggregates with subordinate amounts of pyrite and chalcopyrite. Gold is present rarely as visible aggregate of native gold and also as invisible element included in arsenopyrite. The fluid inclusion microthermometry data suggest homogenization temperature in the range of roughly 150–400°C. Salinities vary in the ranges of 0.5–8.5 wt% NaCl eq for two‐phase low density fluid inclusions and 15–41 wt% NaCl eq for two‐phase high‐salinity and three‐phase high‐salinity fluid inclusions. The broad range of salinity values and the different types of fluid inclusions co‐existing in the same crystals suggest that at least two fluids with different salinities contributed to the formation of the Cu–Au mineralization. Geothermometry, based on EPMA data of arsenopyrite co‐existing with pyrite and pyrrhotite, suggests a temperature range of 240–360°C for the formation of the arsenopyrite, which overlaps well with the data for the formation temperature obtained through fluid inclusion microthermometry. The sulfur isotope data on arsenopyrite, chalcopyrite, pyrite and marcasite from the different sulfide assemblages (ranging from 0.4‰ to +3.9‰ δ34SCDT with average of 2.29 δ34SCDT and standard deviation of 1.34 δ34SCDT) indicates a magmatic source of sulfur for all of the investigated phases. The narrow range of the data points to a common source for all of the investigated sulfides, regardless of the host rock and the paragenesis. The sulfur isotope data shows good overlap with that from nearby base‐metal deposits; therefore the Cu–Au mineralization and the emblematic base‐metal sulfide mineralization from this metallogenic belt likely share same fluid source.  相似文献   

13.
It is of great importance to understand the origin of UG2 chromitite reefs and reasons why some chromitite reefs contain relatively high contents of platinum group elements(PGEs: Os, Ir, Ru, Rh,Pt, Pd) or highly siderophile elements(HSEs: Au, Re, PGE). This paper documents sulphide-silicate assemblages enclosed in chromite grains from the UG2 chromitite. These are formed as a result of crystallisation of sulphide and silicate melts that are trapped during chromite crystallisation. The inclusions display negative crystal shapes ranging from several micrometres to 100 μm in size.Interstitial sulphide assemblages lack pyrrhotite and consist of chalcopyrite, pentlandite and some pyrite. The electron microprobe data of these sulphides show that the pentlandite grains present in some of the sulphide inclusions have a significantly higher iron(Fe) and lower nickel(Ni) content than the pentlandite in the rock matrix. Pyrite and chalcopyrite show no difference. The contrast in composition between inter-cumulus plagioclase(An_(68)) and plagioclase enclosed in chromite(An_(13)), as well as the presence of quartz, is consistent with the existence of a felsic melt at the time of chromite saturation.Detailed studies of HSE distribution in the sulphides and chromite were conducted by LA-ICP-MS(laser ablation-inductively coupled plasma-mass spectrometry), which showed the following.(Ⅰ) Chromite contained no detectable HSE in solid solution.(Ⅱ) HSE distribution in sulphide assemblages interstitial to chromite was variable. In general, Pd, Rh, Ru and Ir occurred dominantly in pentlandite, whereas Os,Pt and Au were detected only in matrix sulphide grains and were clearly associated with Bi and Te.(Ⅲ)In the sulphide inclusions,(a) pyrrhotite did not contain any significant amount of HSE,(b) chalcopyrite contained only some Rh compared to the other sulphides,(c) pentlandite was the main host for Pd,(d)pyrite contained most of the Ru, Os, Ir and Re,(e) Pt and Rh were closely associated with Bi forming a continuous rim between pyrite and pentlandite and(f) no Au was detected. These results show that the use of ArF excimer laser to produce high-resolution trace element maps provides information that cannot be obtained by conventional(spot) LA-ICP-MS analysis or trace element maps that use relatively large beam diameters.  相似文献   

14.
天马山硫金矿床金的赋存状肪及分布规律   总被引:2,自引:3,他引:2       下载免费PDF全文
矿床中金主要以独立矿物相存在,少数为细粒分散相,金的载体矿物主要有黄铜矿,毒砂,黄铁矿,综合脉石和磁黄铁矿等,金矿物主要为自然金,银金矿,平均成色745.57,金的嵌布类型有粒间金,包裹金,裂隙金3种,金在矿石中及不同矿体中的分布不均匀,金与流,金与砷的相关性因矿体类型及矿石类型的不同而有差异。  相似文献   

15.
Fractionation of sulfur isotopes and selenium was measured between coexisting pyrite and chalcopyrite and between coexisting pyrrhotite and chalcopyrite from the Besshi deposit of Kieslager-type, Central Shikoku, Japan. In all the pyrite-chalcopyrite pairs studied, 34S is enriched in pyrite relative to chalcopyrite, while selenium is enriched conversely in chalcopyrite relative to pyrite. The mean 34Spy-cp value is +0.53±0.36 per mil, and the mean value of the distribution coefficient of selenium, Dcp-py, is 2.58±0.64. In all the pyrrhotite-chalcopyrite pairs studied, the two minerals are very close to each other both in sulfur isotope and Se/S ratios. The mean 34Spo-cp value is –0.08±0.16 per mil and the mean Dcp-po value is 0.99±0.05. The results have been discussed in comparison with similar data obtained for the Hitachi deposits of Kieslager-type, Japan (Yamamoto et al. 1983).  相似文献   

16.
哈萨克斯坦萨亚克大型铜矿田中, 矽卡岩型矿床的矿体赋存于石炭系灰岩与花岗岩类的接触带上, 矿体及其周围发育大量矽卡岩。矽卡岩矿物主要由石榴子石、辉石、绿帘石、绿泥石等组成, 矿石矿物主要发育黄铜矿、斑铜矿、黄铁矿、磁黄铁矿、辉钴矿等。萨亚克矽卡岩型矿床成矿作用分为5个阶段: 透辉石-石榴子石矽卡岩阶段、石榴子石矽卡岩阶段、绿帘石-磁铁矿阶段、石英-硫化物阶段和碳酸盐阶段。电子探针分析结果表明, 矿区矽卡岩属典型的钙质矽卡岩。 其中石榴子石发育3种类型, 均属钙铝-钙铁榴石固溶体系列, 自早期透辉石-石榴子石矽卡岩阶段至晚期石榴子石矽卡岩阶段, 由钙铁榴石向钙铝-钙铁榴石转变, 并且钙铁-钙铝榴石与矿化关系最为密切。其中具环带结构的石榴子石中钙铁与钙铝含量随环带呈韵律性变化, 表明生长过程中成分具震荡性变化, 形成于不完全封闭的平衡条件, 指示流体的多期次多阶段性; 辉石以透辉石为主; 绿帘石属绿帘石族中绿帘石范畴; 磁铁矿TFeO含量高, 与其他氧化物成分呈负相关关系。石英硫化物阶段早期发育黄铜矿-黄铁矿-磁黄铁矿-白铁矿、黄铜矿-辉钴矿矿物组合; 晚期为主要矿化阶段, 发育大量致密块状黄铜矿。黄铜矿显示贫硫富铜、铁特征; 黄铁矿为亏硫型; 磁黄铁矿属贫钴富镍型。矽卡岩矿物共生组合及石榴子石成分演化等矿物学特征显示, 成矿过程中随着温度及氧逸度的降低, 成矿热液由弱碱性向酸性演化, 伴随热液在接触带的中和作用, 以黄铜矿为主的金属硫化物富集沉淀。  相似文献   

17.
辉石巨晶中的硫化物及其成因   总被引:8,自引:1,他引:8  
我国一些地区玄武岩辉石巨晶中的硫化物球泡(0.02-0.05mm)呈点阵式、散布式、定向带状或微裂隙羽状分布。硫化矿物组合是磁黄铁矿-镍黄铁矿-黄铜矿,其中以磁黄铁矿为主(~90%)。根据硫化物的规则排布以及高温矿物组合推测点阵式、散布式硫化物形成于地幔。是由溶解了~1%S的硅酸盐熔体在减压上升过程中析出过饱和的硫所致。  相似文献   

18.
Concentrations of platinum group elements (PGE), Ag, As, Au, Bi, Cd, Co, Mo, Pb, Re, Sb, Se, Sn, Te, and Zn, have been determined in base metal sulfide (BMS) minerals from the western branch (402 Trough orebodies) of the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada. The sulfide assemblage is dominated by pyrrhotite, with minor pentlandite, chalcopyrite, and pyrite, and they represent monosulfide solid solution (MSS) cumulates. The aim of this study was to establish the distribution of the PGE among the BMS and platinum group minerals (PGM) in order to understand better the petrogenesis of the deposit. Mass balance calculations show that the BMS host all of the Co and Se, a significant proportion (40–90%) of Os, Pd, Ru, Cd, Sn, and Zn, but very little (<35%) of the Ag, Au, Bi, Ir, Mo, Pb, Pt, Rh, Re, Sb, and Te. Osmium and Ru are concentrated in equal proportions in pyrrhotite, pentlandite, and pyrite. Cobalt and Pd (∼1 ppm) are concentrated in pentlandite. Silver, Cd, Sn, Zn, and in rare cases Au and Te, are concentrated in chalcopyrite. Selenium is present in equal proportions in all three BMS. Iridium, Rh, and Pt are present in euhedrally zoned PGE sulfarsenides, which comprise irarsite (IrAsS), hollingworthite (RhAsS), PGE-Ni-rich cobaltite (CoAsS), and subordinate sperrylite (PtAs2), all of which are hosted predominantly in pyrrhotite and pentlandite. Silver, Au, Bi, Mo, Pb, Re, Sb, and Te are found predominantly in discrete accessory minerals such as electrum (Au–Ag alloy), hessite (Ag2Te), michenerite (PdBiTe), and rhenium sulfides. The enrichment of Os, Ru, Ni, and Co in pyrrhotite, pentlandite, and pyrite and Ag, Au, Cd, Sn, Te, and Zn in chalcopyrite can be explained by fractional crystallization of MSS from a sulfide liquid followed by exsolution of the sulfides. The early crystallization of the PGE sulfarsenides from the sulfide melt depleted the MSS in Ir and Rh. The bulk of Pd in pentlandite cannot be explained by sulfide fractionation alone because Pd should have partitioned into the residual Cu-rich liquid and be in chalcopyrite or in PGM around chalcopyrite. The variation of Pd among different pentlandite textures provides evidence that Pd diffuses into pentlandite during its exsolution from MSS. The source of Pd was from the small quantity of Pd that partitioned originally into the MSS and a larger quantity of Pd in the nearby Cu-rich portion (intermediate solid solution and/or Pd-bearing PGM). The source of Pd became depleted during the diffusion process, thus later-forming pentlandite (rims of coarse-granular, veinlets, and exsolution flames) contains less Pd than early-forming pentlandite (cores of coarse-granular).  相似文献   

19.
In the North Cascade Mountains, Washington, rocks that underwent friction melting commonly contained sulfide minerals, mostly pyrrhotite and pyrite. During pseudotachylyte melt formation, sulfides melted to form immiscible sulfide droplets present in five distinct textural settings. The largest droplets formed through melting of lithic clasts, whereas micron-scale sulfide droplets are common in many of the pseudotachylytes veins.Microprobe analysis indicates that nearly all droplets are pyrrhotite. The disappearance of pyrite indicates that melt temperatures must have exceeded 750 °C, but other indications suggest that the melt temperature must have been much higher. The extremely common presence of pyrrhotite droplets suggests that pyrrhotite from the protolith melted, requiring a minimum melt temperature of 1200 °C. In some samples, evidence for fluid-rich bubbles, and possible silicate spherules indicates three coexisting immiscible phases within the silicate melt. The presence of sulfide droplets appears to be common, especially in relatively low oxygen-fugacity melts that formed at shallow crustal levels. This can provide a good textural marker of melting and therefore of pseudotachylyte formation, especially where other indications of melting (i.e., high temperature microlites, vesicles, etc.) are lacking, and illustrates the extreme temperatures possible along frictionally sliding surfaces during seismic events.  相似文献   

20.
青海东昆仑乌兰乌珠尔铜矿金属矿物特征及意义   总被引:1,自引:0,他引:1  
通过详细的光、薄片研究,认为乌兰乌珠尔铜矿主要金属矿物有黄铁矿、黄铜矿、磁铁矿、磁黄铁矿、毒砂、闪锌矿、黑钨矿和锡石等.进一步通过金属矿物组合及其成分分析和流体包裹研究,推断乌兰乌珠尔铜矿的金属矿物主要是在高硫逸度较还原环境下形成的,其形成作用可划分为锡石-多金属和黄铜矿-多金属两个成矿阶段.结合乌兰乌珠尔区域地质和矿床地质的研究,确定该矿床为中高温热液Cu矿床.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号