首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《International Geology Review》2012,54(13):1575-1615
Salinia, as originally defined, is a fault-bounded terrane in westcentral California. As defined, Salinia lies between the Nacimiento fault on the west, and the Northern San Andreas fault (NSAF) and the main trace of the dextral SAF system on the east. This allochthonous terrane was translated from the southern part of the Sierra Nevada batholith and adjacent western Mojave Desert region by Neogene-Quaternary displacement along the SAF system. The Salina crystalline basement formed a westward promontory in the SW Cordilleran Cretaceous batholithic belt, relative to the Sierra Nevada batholith to the north and the Peninsular Ranges batholith to the south, making Salinia batholithic rocks susceptible to capture by the Pacific plate when the San Andreas transform system developed. Proper restoration of offsets on all branches of the San Andreas system is a critical factor in understanding the Salinia problem. When cumulative dextral slip of 171 km (106 mi) along the Hosgri–San Simeon–San Gregorio–Pilarcitos fault zone (S–N), or dextral slip of 200 km (124 mi) along the Hosgri–San Simeon–San Gregorio–Pilarcitos–northern San Andreas fault system, is added to the cumulative dextral slip of 315–322 km (196–200 mi) along the main trace of the SAF north of the San Emigdio–Tehachapi mountains, central California, there is a minimum amount of cumulative dextral slip of 486 km (302 mi) or a maximum amount of cumulative dextral slip of 522 km (324 mi) along the entire SAF system north of the Tehachapi Mountains. When these sums are compared with the offset distance (610–675 km or 379–420 mi) between the batholithic rocks associated with the Navarro structural discontinuity (NSD) in northern California, and those in the ‘tail’ of the southern Sierra Nevada granitic rocks in the San Emigdio–Tehachapi mountains, central California, a minimum deficit of from ~100 km (~62 mi) to a maximum deficit of ~189 km (~118 mi) is needed to restore the crystalline rocks associated with the NSD with the crystalline terranes within the San Emigdio and Tehachapi mountains – the enigma of Salinia. Two principal geologic models compete to explain the enigma (i.e. the discrepancy between measured dextral slip along traces of the SAF system and the amount of separation between the Sierra Nevada batholithic rocks near Point Arena in northern California and the Mesozoic and older crystalline rocks in the San Emigdio and Tehachapi mountains in southern California). (i) One model proposes pre-Neogene (>23 Ma), Late Cretaceous or Maastrichtian (<ca. 71 Ma) to early Palaeocene or Danian (ca. 66 Ma) sinistral slip of 500–600 km (311–373 mi) along the Nacimiento fault and of the western flank of Salinia from the eastern flank of the Peninsular Ranges (sinistral slip but in the opposite sense to later Neogene (<23 Ma) dextral slip along and within the SAF system. (ii) A second model proposes that the crystalline rocks of Salinia comprise a series of 100 km- (60 mi-) scale allochthonous (extensional) nappes that rode southwestward above the Rand schist–Sierra de Salinas (SdS) shear zone subduction extrusion channels. The allochthonous nappes are from NW–SE: (i) Farallon Islands–Santa Cruz Mountains–Montara Mountain, and adjacent batholithic fragments that appear to have been derived from the top of the deep-level Sierra Nevada batholith of the western San Emigdio–Tehachapi mountains; (ii) the Logan Quarry–Loma Prieta Peak fragments that appear to have been derived from the top of a buried detachment fault that forms the basement surface beneath the Maricopa sub-basin of the southernmost Great Valley; (iii) The Pastoria plate–Gabilan Range massif that appears to have been derived from the top of the deep-level SE Sierra Nevada batholith; and (iv) the Santa Lucia–SdS massif, which appears to be lower batholithic crust and underlying extruded schist that were breached westwards from the central to western Mojave Desert region. In this model, lower crustal batholithic blocks underwent ductile stretching above the extrusion channel schists, while mid- to upper-crustal level rocks rode southwestwards and westwards along trenchward dipping detachment faults. Salinian basement rocks of the Santa Lucia Range and the Big Sur area record the most complete geologic history of the displaced terrane. The oldest rocks consist of screens of Palaeozoic marine metasedimentary rocks (the Sur Series), including biotite gneiss and schist, quartzite, granulite gneiss, granofels, and marble. The Sur Series was intruded during Cretaceous high-flux batholithic magmatism by granodiorite, diorite, quartz diorite, and at deepest levels, charnockitic tonalite. Local nonconformable remnants of Campanian–Maastrichtian marine strata lie on the deep-level Salinia basement, and record deposition in an extensional setting. These Cretaceous strata are correlated with the middle to upper Campanian Pigeon Point (PiP) Formation south of San Francisco. The Upper Cretaceous strata, belonging to the Great Valley Sequence, include clasts of the basement rocks and felsic volcanic clasts that in Late Cretaceous time were brought to a coastal region by streams and rivers from Mesozoic felsic volcanic rocks in the Mojave Desert. The Rand and SdS schists of southern California were underplated beneath the southern Sierra Nevada batholith and the adjacent Salinia-Mojave region along a shallow segment of the subducting Farallon plate during Late Cretaceous time. The subduction trajectory of these schists concluded with an abrupt extrusion phase. During extrusion, the schists were transported to the SW from deep- to shallow-crustal levels as the low-angle subduction megathrust surface was transformed into a mylonitic low-angle normal fault system (i.e. Rand fault and Salinas shear zone). The upper batholithic plate(s) was(ere) partially coupled to the extrusion flow pattern, which resulted in 100 km-scale westward displacements of the upper plate(s). Structural stacking, temporal and metamorphic facies relations suggest that the Nacimiento (subduction megathrust) fault formed beneath the Rand-SdS extrusion channel. Metamorphic and structural relations in lower plate Franciscan rocks beneath the Nacimiento fault suggest a terminal phase of extrusion as well, during which the overlying Salinia underwent extension and subsidence to marine conditions. Westward extrusion of the subduction-underplated rocks and their upper batholithic plates rendered these Salinia rocks susceptible to subsequent capture by the SAF system. Evidence supporting the conclusion that the Nacimiento fault is principally a megathrust includes: (i) shear planes of the Nacimiento fault zone in the westcentral Coast Ranges locally dip NE at low angles. (ii) Klippen and/or faulted klippen are locally present along the trace of the Nacimiento fault zone from the Big Creek–Vicente Creek region south of Point Sur near Monterey, to east of San Simeon near San Luis Obispo in central California. Allochthonous detachment sheets and windows into their underplated schists comprise a composite Salinia terrane. The nappe complex forming the allochthon of Salinia was translated westward and northwestward ~100 km (~62 mi) above the Nacimiento megathrust or Franciscan subduction megathrust from SE California between ca. 66 and ca. 61 Ma (i.e. latest Cretaceous–earliest Palaeocene time). Much, or all, of the westward breaching of the Salinia batholithic rocks likely occurred above the extrusion channels of the Rand-SdS schists; following this event, the Franciscan Sur-Obispo terrane was thrust beneath the schists, perhaps during the final stages of extrusion in the upper channel. Later, the Sur-Obispo terrane was partially extruded from beneath the Salinia nappe terrane, during which time the upper plate(s) underwent extension and subsidence to marine conditions. Attenuation of the Salinia nappe sequence during the extrusion of the Franciscan Complex thinned the upper crust, making the upper plates susceptible to erosion from the top of the Franciscan Complex near San Simeon, where it is now exposed. In the San Emigdio Mountains, the relatively thin structural thickness of the upper batholithic plates made them susceptible to late Cenozoic flexural folding and disruption by high-angle dip–slip faults. The ~100 km (~62 mi) of westward and northwestward breaching of the Salinia batholithic rocks above the Rand-SdS channels, and the underlying Nacimiento fault followed by ~510 km (~320 mi) of dextral slip from ~23 Ma to Holocene time along the SAF system, allow for the palinspastic restoration of Salinia with the crystalline rocks of the San Emigdio–Tehachapi mountains and the Mojave terrane, resolving the enigma of Salinia.  相似文献   

2.
The Cretaceous gabbroic to granitic intrusive rocks of the Tehachapi Mountains were emplaced at depths of 25–30 km and thus afford a view of deep processes in the Sierra Nevada batholith. They consist of the 115 Ma Tehachapi suite and the 100 Ma Bear Valley suite; new zircon U-Pb age data reveal the presence of the latter as far west as Grapevine Canyon. The Nd, Sr, Pb, and O isotopic whole-rock data and zircon Pb inheritance patterns for the bulk of the suites suggest an origin by mixing between depleted mantlederived magmas and metasedimentary material with a substantial component of old continental material. However, this mixing is not evident in variations between isotopic ratios and chemical and lithologic parameters. This implies that isotopic hybridization of magmas took place deeper than 30 km, and that fractionation processes are likely responsible for the bulk of the chemical variation in this part of the Sierra Nevada batholith. Consideration of the isotopic data in the context of the Sierra Nevada batholith as a whole suggests that the well-known east-to-west isotopic gradients in the batholith may reflect a change in the average isotopic character of the preintrusive frame-work rather than a change in amount of crustal component. On the other hand, the lack of areal gradients in Sr and Nd isotopic ratios in the main study area may indicate a lack of pronounced gradation at deep levels, at least within the western batholith.  相似文献   

3.
New U-Pb zircon ages for the Lamarck Granodiorite, associated synplutonic gabbro and diorite plutons, and two large mafic intrusive complexes that underlie them in the Sierra Nevada batholith are 92±1 Ma. These ages establish the Late Cretaceous as a period of extensive mafic-felsic magmatism in the central part of the batholith, and confirm the significance of mafic magmatism in the evolution of the voluminous silicic plutions in the Sierran arc. The lack of significant zircon inheritance in any of the units analyzed supports isotopic evidence that the Lamarck and other Late Cretaceous Sierran plutons were derived predominantly from young crust. Recognition of an extensive mafic-felsic magma system in the Sierra Nevada batholith emphasizes the importance of basaltic liquids in the evolution of continental crust in arc settings.  相似文献   

4.
Partial melting of mafic intrusions recently emplaced into the lower crust can produce voluminous silicic magmas with isotopic ratios similar to their mafic sources. Low-temperature (825 and 850°C) partial melts synthesized at 700 MPa in biotite-hornblende gabbros from the central Sierra Nevada batholith (Sisson et al. in Contrib Mineral Petrol 148:635–661, 2005) have major-element and modeled trace-element (REE, Rb, Ba, Sr, Th, U) compositions matching those of the Cretaceous El Capitan Granite, a prominent granite and silicic granodiorite pluton in the central part of the Sierra Nevada batholith (Yosemite, CA, USA) locally mingled with coeval, isotopically similar quartz diorite through gabbro intrusions (Ratajeski et al. in Geol Soc Am Bull 113:1486–1502, 2001). These results are evidence that the El Capitan Granite, and perhaps similar intrusions in the Sierra Nevada batholith with lithospheric-mantle-like isotopic values, were extracted from LILE-enriched, hydrous (hornblende-bearing) gabbroic rocks in the Sierran lower crust. Granitic partial melts derived by this process may also be silicic end members for mixing events leading to large-volume intermediate composition Sierran plutons such as the Cretaceous Lamarck Granodiorite. Voluminous gabbroic residues of partial melting may be lost to the mantle by their conversion to garnet-pyroxene assemblages during batholithic magmatic crustal thickening.  相似文献   

5.
We present evidence for a thick (∼100 km) sequence of cogenetic rocks which make up the root of the Sierra Nevada batholith of California. The Sierran magmatism produced tonalitic and granodioritic magmas which reside in the Sierra Nevada upper- to mid-crust, as well as deep eclogite facies crust/upper mantle mafic–ultramafic cumulates. Samples of the mafic–ultramafic sequence are preserved as xenoliths in Miocene volcanic rocks which erupted through the central part of the batholith. We have performed Rb-Sr and Sm-Nd mineral geochronologic analyses on seven fresh, cumulate textured, olivine-free mafic–ultramafic xenoliths with large grainsize, one garnet peridotite, and one high pressure metasedimentary rock. The garnet peridotite, which equilibrated at ∼130 km beneath the batholith, yields a Miocene (10 Ma) Nd age, indicating that in this sample, the Nd isotopes were maintained in equilibrium up to the time of entrainment. All other samples equilibrated between ∼35 and 100 km beneath the batholith and yield Sm-Nd mineral ages between 80 and 120 Ma, broadly coincident with the previously established period of most voluminous batholithic magmatism in the Sierra Nevada. The Rb-Sr ages are generally consistent with the Sm-Nd ages, but are more scattered. The 87Sr/86Sr and 143Nd/144Nd intercepts of the igneous-textured xenoliths are similar to the ratios published for rocks outcroping in the central Sierra Nevada. We interpret the mafic/ultramafic xenoliths to be magmatically related to the upper- and mid-crustal granitoids as cumulates and/or restites. This more complete view of the vertical dimension in a batholith indicates that there is a large mass of mafic–ultramafic rocks at depth which complement the granitic batholiths, as predicted by mass balance calculations and experimental studies. The Sierran magmatism was a large scale process responsible for segregating a column of ∼30 km thick granitoids from at least ∼70 km of mainly olivine free mafic–ultramafic residues/cumulates. These rocks have resided under the batholith as granulite and eclogite facies rocks for at least 70 million years. The presence of this thick mafic–ultramafic keel also calls into question the existence of a “flat” (i.e., shallowly subducted) slab at Central California latitudes during Late Cretaceous–Early Cenozoic, in contrast to the southernmost Sierra Nevada and Mojave regions. Received: 27 December 1997 / Accepted: 11 June 1998  相似文献   

6.
The Western Sonobari Complex in northwestern Mexico consists of metamorphosed rocks mostly derived from Palaeozoic (?) sedimentary and Mesozoic igneous protoliths. Rocks of this complex display amphibolite facies orogenic metamorphism, pervasive foliation, migmatization, and four folding phases. These features are ascribed to a contractional tectonic event with NNW–SSE shortening direction, which caused thrusting, thickening of the crust, and sinking of the lithological units. U–Pb geochronology of migmatitic leucosome bands indicates that peak metamorphic conditions were reached between ~93 and 89 Ma. Post-tectonic Late Cretaceous peraluminous aplite-pegmatite dikes transect the metamorphic foliation. Traditional thermobarometry in the metamorphic rocks yields average pressures and temperatures of 9.0–7.1 kbar and 745–663°C, typical of intermediate P/T Barrovian metamorphism. On the basis of its age and contractional character, the thickening event originating the metamorphism may be related to collision of the Alisitos island arc against crustal blocks of Mexico. Thermobarometric data of post-tectonic intrusives including Late Cretaceous granodiorite and Eocene gabbro indicate emplacement within an overthickened crust, while P-T conditions of post-tectonic dikes point towards an almost isothermal decompression path along the amphibolite facies field. Rock units of similar age and metamorphic character are discontinuously exposed from the Islas Marias offshore the Nayarit coast to the Peninsular Ranges batholith of Baja California, and even extend north into the Sierra Nevada batholith and the Sevier hinterland. This extensive belt of Barrovian metamorphic rocks thus provides a record of middle Cretaceous shortening and crustal thickening related to arc-continent collision followed by subduction resuming.  相似文献   

7.
A special metamorphic core complex underlain by a low-angle strike-slip ductile shear zone is present near Chifeng in eastern Inner Mongolia, northern China. The geology of the study area is similar to that of several Cordilleran metamorphic core complexes, but contrasts in significant ways as well. A major ESE-dipping normal fault, the Louzidian Range frontal fault, formed during Late Cretaceous extension. This fault separates a crystalline footwall locally containing mylonitic basement gneisses and granitic rocks (0 to >3 km thick) from a non-metamorphic hanging wall that is distended by normal faults. However, the shear sense of the underlying mylonitic shear zone, a low-angle strike-slip zone, is not compatible with the Louzidian fault. It may be related to a pre-Cretaceous regional sinistral strike-slip event rather than the Late Cretaceous regional crustal extension common throughout eastern China. Pre-existing mylonitic fabric anisotropy appears to have controlled the development of the Louzidian normal fault. Chloritic breccias locally developed along the fault indicate that it cut deeply into the crust of northern China.  相似文献   

8.
The Late Cretaceous was a period of extremely voluminous magmatism and rapid crustal growth in the western United States. From approximately 98 to 86 Ma, greater than 4000 km2 of exposed granodioritic to granitic crust, including the largest composite intrusive suites in the Sierra Nevada batholith, were emplaced in eastern California. Plutons intruded during this period include the highest peaks in the Sierra; we informally refer to this as the Sierra Crest magmatic event. Field, petrologic, geochemical, and geochronologic data indicate that, although they comprise an insignificant volume of exposed rocks (less than 100 km2), mafic magmas were intruded contemporaneously with each episode of intermediate and high-silica magmatism in the event. This observation attests to the fundamental importance of high-alumina basaltic magmas during crustal-growth episodes in continental arcs. Geochemical data for suites of coeval plutonic rocks of the Sierra Crest magmatic event, ranging in composition from basalt to high-silica rhyolite, demonstrate that recycling of pre-existing crust locally played a minor role in the growth of new crust. Thus, major chemical and isotopic characteristics of Sierra Crest plutons, such as variable isotopic compositions, were inherited from the mantle source of the high-alumina basalts and are not necessarily the result of interaction with the overlying crust. Consequently, we interpret isotopic boundaries in the western United States, such as the 87Sr/86Sr = 0.706 isopleth, to be largely features of the continental lithospheric mantle. Furthermore, isotopic data demonstrate that enrichment of the lithospheric mantle in the western United States probably occurred in the Precambrian during assembly of the North American craton. Geophysical and xenolith investigations by other workers support the hypothesis presented here that Cretaceous magmatism in the Sierra Nevada may have locally restructured most, if not all, of the crustal column. The timing of Sierra Crest magmatism correlates with voluminous magmatism elsewhere in the Cordilleran arc. We speculate that this intense episode of magmatism may have played a role in the global marine geochemical excursions and extinctions at the Cenomanian-Turonian boundary.  相似文献   

9.
The San Emigdio and related Pelona, Orocopia, Rand and Sierra de Salinas schists of southern California were underplated beneath the southern Sierra Nevada batholith and adjacent southern California batholith along a shallow segment of the subducting Farallon plate in Late Cretaceous to early Tertiary time. These subduction accretion assemblages represent a regional, deeply exhumed, shallowly dipping domain from an ancient slab segmentation system and record the complete life cycle of the segmentation process from initial flattening and compression to final extensional collapse. An important unresolved question regarding shallow subduction zones concerns how the thermal structure evolves during the slab flattening process. New field relationships, thermobarometry, thermodynamic modelling and garnet diffusion modelling are presented that speak to this issue and elucidate the tectonics of underplating and exhumation of the San Emigdio Schist. We document an upsection increase in peak temperature (i.e. inverted metamorphism), from 590 to 700 °C, peak pressures ranging from 8.5 to 11.1 kbar, limited partial melting, microstructural evidence for large seismic events, rapid cooling (825–380 °C Myr?1) from peak conditions and an ‘out and back’P–T path. While inverted metamorphism is a characteristic feature of southern California schists, the presence of partial melt and high temperatures (>650 °C) are restricted to exposures with maximum depositional ages between 80 and 90 Ma. Progressive cooling and tectonic underplating beneath an initially hot upper plate following the onset of shallow subduction provide a working hypothesis explaining high temperatures and partial melting in San Emigdio and Sierra de Salinas schists, inverted metamorphism in the schist as a whole, and the observed P–T trajectory calculated from the San Emigdio body. Lower temperatures in Pelona, Orocopia and Rand schists are likewise explained in the context of this overarching model. These results are consistent with an inferred tectonic evolution from shallow subduction beneath the then recently active Late Cretaceous arc to exhumation by rapid trench‐directed channelized extrusion in the subducted schist.  相似文献   

10.
Twenty samples of hornblendes from rocks of 14 plutonic unitsin the central Sierra Nevada and Inyo Mountains, California,have been studied in detail. Optical, density, single-crystaland powder X-ray diffraction, and major and minor element chemicaldata are reported. The compositions of the hornblendes show only limited correlationwith the chemistry of the rocks in which they occurred. Hornblendesfrom granitic rocks of the eastern Sierra Nevada and Inyo Mountainshave a wide range of tetrahedral aluminum content which is oftenas low as three-quarters of an atom per formula unit, whereashornblendes from younger granitic rocks elsewhere in the SierraNevada batholith contain more than one atom of tetrahedral aluminumper formula unit. Because an increase of aluminum in tetrahedralco-ordination is considered indicative of higher temperaturesof crystallization, the observed differences in the hornblendessuggest that older plutonic rocks of the batholith may havebeen metamorphosed regionally or may have been affected by widespreadhydrothermal action prior to consolidation of later graniticrocks.  相似文献   

11.
龙门山中段山前带浅层冲断系统的结构、形成与演化   总被引:4,自引:0,他引:4  
本文依据断层相关褶皱几何学原理,对龙门山中段地震剖面进行了精细解释。研究发现,龙门山中段山前带浅层冲断系统存在多套滑脱层,具有上下分层变形特征。浅层滑脱层为上三叠统须家河组三段(T_3~x3)的碳质页岩夹煤层,其上发育双重构造和叠瓦构造;下三叠统嘉陵江组四、五段(T_1j~(4-5))的膏岩层,发育断层传播褶皱、冲起构造和构造楔;深层为下寒武统的泥页岩层,发育断层转折褶皱和滑脱褶皱。该区滑脱断层所控制的地层变形和缩短量各不相同,其中三叠系上统缩短量最大,大于30 km;三叠系下统至古生界地层缩短量约为14.5 km;侏罗系以上的地层缩短量则较小。研究区内的通济场断裂(F_3)为印支末期形成的一套逆冲断层组,其下部交于下寒武统滑脱层,深度约为10 km;关口断层(F_4)和彭县断裂(F_5)为晚侏罗世一早白垩世形成的逆冲断层,下部交与下三叠统嘉陵江组滑脱层,深度大约为8~10 km。这些断层以前展的方式破裂,并且长期活动。龙门山中段自中生代以来存在多期构造事件,主要发生诺利末期、印支晚幕、燕山期和喜马拉雅期。其中,燕山期和喜马拉雅期是龙门山活动最强烈的两个阶段,在龙门山中段山前带表现为大量断裂的长期活动,地壳缩短和龙门山快速隆升,并形成多种构造样式。  相似文献   

12.
In seismically active regions, active low-angle detachment faults are probably more frequent as is commonly thought and may play an important but still underestimated role in the evolution of landforms and basins. We investigate the tectonically active region of Attica (Greece) in the Aegean back arc as a model region to show how basins and mountain ranges commonly thought to be formed by movements on high-angle normal faults in fact reflect the surface expression of displacements on yet undetected, deep-seated, active low-angle normal detachment faults. Inferences are made based on an integrated study of Attica linking the petrology of clastic sediments with geomorphology and structures, and including few new palynological data. From the Miocene to Recent, three sets of normal detachment fault systems were successively active. Shear zones of the 1st (Early Miocene) stage emplaced rocks of the Attic Cycladic high-P metamorphic belt (AC-HP-belt) from depth corresponding to greeschist facies conditions in the brittle, upper crust. In the 2nd stage the WNW dipping Attica low-angle normal detachment fault system between the AC-HP-belt and the un- or weakly metamorphosed rocks of the sub-Pelagonian Zone (SPZ) was active. Clastic sedimentation started in the Late Miocene, during the 2nd stage. Late Miocene and Early Pliocene clastic sediments reveal that during the 2nd stage many areas that presently expose the AC-HP-belt were still covered by the overlying SPZ. Also, now uplifted areas such as the Parnitha mountain range that currently undergo strong erosion were then the sites of sedimentary sinks. The 3rd stage (Late Pliocene through Recent) is associated with dramatic changes in the morphology and recurring steepening of the relief. Reversal of the Parnitha area from the site of deposition into the site of erosion is associated with deposition of coarse conglomerates to the SE of the Parnitha Mt. and S of the Penteli Mt. Sediments of the 3rd stage reflect activity of the here newly described, SSE-dipping Penteli—Athens low-angle detachment fault (PADF) system formed at a high angle to the Attica detachment fault. The outcome of this study is that the present-day geomorphology is to a high degree related to the operation of the PADF system. Steep fault bounding the Athens and Mesogea basins as well as the mountain ranges (Parnitha, Penteli, Hymittos mounts) belongs to its breakaway zone or root into the PADF. Ongoing tectonic movements related to this fault system were responsible for the 1999 Athens (Mw = 6.0) earthquake. We particularly discuss how the PADF may continue into greater depth, the translation magnitude, and how the PADF fits into the wider kinematic framework of the Aegean region.  相似文献   

13.
《Geodinamica Acta》2013,26(2):131-144
An extensional event affected the southwest Margin of Iberia during Late Triassic to Early Cretaceous times, giving place to the Algarve basin. This basin was subjected to tectonic instability and it became infilled with siliciclastic and carbonate sequences with abundant interspersed volcanic rocks. Normal and strike-slip faults accommodated the deformation in the Algarve basin. The presence of a single flat or listric detachment surface is inferred from the study of hanging-wall structures. The dynamic and kinematic analyses of fault systems in the Spanish exposure of the Algarve basin allow us to establish three extensional phases. 1) A Late Triassic to Hettangian NE-SW directed extension associated with the initial breaking of Pangea and the opening of the Tethys in the eastern Mediterranean. 2) NW-SE extension from the Sinemurian to the Callovian, interpreted as a result of the activity as a sinistral fault of the Azores-Gibraltar transform boundary. 3) Finally, E-W extension during the Late Jurassic and Cretaceous, related to the North Atlantic rifting process.  相似文献   

14.
松辽盆地变质核杂岩和伸展断陷的构造特征及成因   总被引:18,自引:3,他引:15  
文中讨论了松辽盆地北部中央基底隆起变质核杂岩和徐家围子伸展断陷的构造特征、成因和演化 ,重点讨论了下列问题 :( 1)中央基底隆起变质核杂岩具有科迪勒拉变质核杂岩的许多特征 ;( 2 )识别出组成中央基底隆起变质核杂岩的多层次、低角度韧性拆离体系 ,它们是使中地壳的中深变质岩层抽拉至上地壳的主要原因 ;( 3)穹窿状火山岩台地于晚侏罗世 ( 145.7±6.2 )Ma形成 ,受顶部拆离断层控制的伸展断陷于早白垩世 ( 133~ 12 0Ma)形成 ,而邻近顶部拆离断层的糜棱岩年龄为 ( 12 6.7± 1.54)Ma。这表明变质核杂岩的形成始于晚侏罗世。早白垩世递进的伸展构造与变质核杂岩较深部的部分上拱至地表相伴生 ,推测该变质核杂岩的上拱和剥露、火山岩台地和伸展断陷盆地的形成可能是由伊泽奈奇和亚洲板块陆陆碰撞后的地幔拆沉作用、地幔的岩浆底侵作用以及伸展垮塌作用联合造成的。  相似文献   

15.
The Rand thrust of the Rand Mountains in the northwestern Mojave Desert separates an upper plate of quartz monzonite and quartzofeldspathic to amphibolitic gneiss from a lower plate of metagraywacke and mafic schist (Rand Schist). The Rand thrust is considered part of the regionally extensive Vincent/Chocolate Mountain thrust system, which is commonly believed to represent a Late Cretaceous subduction zone. The initial direction of dip and sense of movement along the Vincent/Chocolate Mountain thrust are controversial. Microfabrics of mylonites and quartzites from the Rand Mountains were analyzed in an attempt to determine transport direction for this region, but the results are ambiguous. In addition, the southwestern portion of the Rand thrust was found to have been reactivated as a low-angle normal fault after subduction. Reactivation might have occurred shortly after subduction, in which case it could account for the preservation of high-pressure mineral assemblages in the Rand Schist, or it could be related to mid-Tertiary extension in the western United States. In either event, the reactivation might be responsible for the complicated nature of the microfabrics. The Rand Schist exhibits an inverted metamorphic zonation. Isograds in the schist are not significantly truncated by the reactivated segment of the Rand thrust. This indicates that other segments of the Vincent/Chocolate Mountain thrust should be re-evaluated for the possibility of late movement, even if they show an apparently undisturbed inverted metamorphic zonation.  相似文献   

16.
Mapping, lithostratigraphic, biostratigraphic and structural detailed analyses in Sierra Espuña area (Internal Betic Zone, SE Spain) have allowed us to reconstruct the Jurassic–Cretaceous evolution of the Westernmost Mesomediterranean Microplate palaeomargin and, by correlation with other sectors (Northern Rift, central and western Internal Betic Zone), to propose a geodynamic evolution for the Westernmost Tethys. Extension began from Late Toarcian, when listric normal faults activated; these faults are arranged in three categories: large-scale faults, separating hectometric cortical blocks; main faults, dividing the former blocks into some kilometre-length blocks; and secondary faults, affecting the kilometric blocks. This fault ensemble, actually outcropping, in the Sierra Espuña area, broke the palaeomargin allowing the westerly Tethyan Oceanic aperture with an extension at about 17.2%. Extension was not homogeneous in time, being the Late Toarcian to the Dogger–Malm boundary the period when blocks underwent the greatest movement (rifting phase), leading to the drowning of the area (8.2% extension). During the Malm (drifting phase) extension followed (5.7%), while during the Cretaceous a change to pelagic facies is recorded with an extension of about 3.3% (post-drift stage). This evolution in the Westernmost Tethys seems to be related to areas out of the limit of significant crustal extension in the hanging wall block of the main cortical low-angle fault of the rifting.  相似文献   

17.
Geologic mapping in the northern Sierra Los Ajos reveals new stratigraphic and structural data relevant to deciphering the Mesozoic–Cenozoic tectonic evolution of the range. The northern Sierra Los Ajos is cored by Proterozoic, Cambrian, Devonian, Mississippian, and Pennsylvanian strata, equivalent respectively to the Pinal Schist, Bolsa Quartzite and Abrigo Limestone, Martin Formation, Escabrosa Limestone, and Horquilla Limestone. The Proterozoic–Paleozoic sequence is mantled by Upper Cretaceous rocks partly equivalent to the Fort Crittenden and Salero Formations in Arizona, and the Cabullona Group in Sonora, Mexico.Absence of the Upper Jurassic–Lower Cretaceous Bisbee Group below the Upper Cretaceous rocks and above the Proterozoic–Paleozoic rocks indicates that the Sierra Los Ajos was part of the Cananea high, a topographic highland during the Late Jurassic and Early Cretaceous. Deposition of Upper Cretaceous rocks directly on Paleozoic and Proterozoic rocks indicates that the Sierra Los Ajos area had subsided as part of the Laramide Cabullona basin during Late Cretaceous time. Basal beds of the Upper Cretaceous sequence are clast-supported conglomerate composed locally of basement (Paleozoic) clasts. The conglomerate represents erosion of Paleozoic basement in the Sierra Los Ajos area coincident with development of the Cabullona basin.The present-day Sierra Los Ajos reaches elevations of greater than 2600 m, and was uplifted during Tertiary basin-and-range extension. Upper Cretaceous rocks are exposed at higher elevations in the northern Sierra Los Ajos and represent an uplifted part of the inverted Cabullona basin. Tertiary uplift of the Sierra Los Ajos was largely accommodated by vertical movement along the north-to-northwest-striking Sierra Los Ajos fault zone flanking the west side of the range. This fault zone structurally controls the configuration of the headwaters of the San Pedro River basin, an important bi-national water resource in the US-Mexico border region.  相似文献   

18.
The Canavese Zone(CZ)in the Western Alps represents the remnant of the distal passive margin of the Adria microplate,which was stretched and thinned during the Jurassic opening of the Alpine Tethys.Through detailed geological mapping,stratigraphic and structural analyses,we document that the continental break-up of Pangea and tectonic dismemberment of the Adria distal margin,up to mantle rocks exhumation and oceanization,did not simply result from the syn-rift Jurassic extension but was strongly favored by older structu ral inheritances(the Proto-Canavese Shear Zone),which controlled earlier lithospheric weakness.Our findings allowed to redefine in detail(i)the tectono-stratigraphic setting of the Variscan metamorphic basement and the Late Carbonife rous to Early Cretaceous CZ succession,(ii)the role played by inherited Late Carboniferous to Early Triassic structures and(iii)the significance of the CZ in the geodynamic evolution of the Alpine Tethys.The large amount of extensional displacement and crustal thinning occurred during different pulses of Late Carbonife rous-Early Triassic strike-slip tectonics is wellconsistent with the role played by long-lived regional-scale wrench faults(e.g.,the East-Variscan Shear Zone),suggesting a re-discussion of models of mantle exhumation driven by low-angle detachment faults as unique efficient mechanism in stretching and thinning continental crust.  相似文献   

19.
A belt of low-angle normal (or detachment) faults ~250 km long extends from the northern end of the Salton Trough, California to southern Laguna Salada, Baja California, Mexico. The detachment system is divided into two principal segments. The northern segment, here termed the “west Salton detachment system,” comprises top-to-the-east detachment faults along the eastern Peninsular Ranges that root under the Salton Trough. The southern segment, here termed the Laguna Salada detachment system, comprises top-to-the-west detachment faults in northeastern Baja California and the Yuha Desert region of the southwesternmost Salton Trough. Detachments of that system root under Laguna Salada and the Peninsular Ranges of northern Baja California. Both of these systems experienced a major episode of activity in late Miocene to Pleistocene time, synchronous with deposition of the Imperial and Palm Spring formations, and the Laguna Salada detachment system may still be active. Thus, their activity temporally overlapped, partly or completely, with activity on dextral faults of the San Andreas boundary between the Pacific and North American plates, and with accretion of new transitional crust. Some of the detachment faults in the northern segment may have had mid-Miocene normal slip and/or Cretaceous thrust or normal slip as well, although compelling evidence for either is lacking. These detachment faults are distinctly younger than detachments east of the San Andreas fault, which generally ceased activity by middle or late Miocene time and are overlapped by marine or lacustrine rocks (Bouse Formation); these units are equivalent in age to the syntectonic strata of the Salton Trough but are much thinner and essentially undeformed.  相似文献   

20.
U-Pb isotopic measurements on zircons from some granitic rocks of the Salinian block indicate emplacement and crystallization of these rocks about 104 m.y. ago (mid-Cretaceous). The relatively radiogenic nature of initial Sr and common Pb in these rocks, and the presence of an inherited component of zircon in some of them strongly suggest the involvement of continental crust in the genesis of the magmas. Possibly the magmas were generated in a zone of melting that overlapped the boundary between the mantle and the continental crust. U-Pb measurements on sphene, apatite, and feldspar from the plutons, along with previously published K-Ar and fission-track ages shed light on the post-emplacement thermal histories of the plutons. Most of the samples from the northern part of the Salinian block (Bodega Head, Point Reyes) show relatively simple thermal histories. Evidently these plutons were emplaced at moderate levels in the crust, crystallized, and cooled to moderate temperatures over an interval of about 10–15 m.y. Plutons from the central Salinian block (Santa Lucia Range) show more complex and prolonged thermal histories. These plutons evidently were emplaced at greater depths in the crust than were the plutons from the northern Salinian block. They remained at elevated temperatures for ca. 25 m.y., then cooled fairly rapidly, probably as a result of rapid uplift and erosion. One sample from the northern Salinian block shows an even longer span of time between emplacement and cooling. The thermal evolution of the Salinian plutonic rocks predates major offset along the San Andreas fault zone and thus reflects the thermal evolution of the undisrupted source terrane of the Salinian block. Isotopic measurements of the type reported here might therefore prove valuable in correlations across the San Andreas fault zone. Moreover, detailed study of thermal evolution within the Salinian block could shed light on major offsets within the block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号