首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
赵瑞 《地质科学》1983,(3):225-231
本文试图在Pinckney及Rafter(1972)工作的基础上讨论闪锌矿和方铅矿同时从铅锌-还原型硫热液系统中晶出时的硫同位素分馏规律。  相似文献   

2.
The Lower Palaeozoic system is a series of iron-bearing rocks consisting mainly of shallow sea-fades carbonates. On the basis of microfacies analysis of the carbonate rocks, the Lower Palaeozoic sedimentary sea basin is divided into two broad sedimentary-tectonic regions of four sedimentary facies and eight subfacies. The original iron-rich carbonates were deposited in saltlakes, lagoons, etc. of the restricted basins. Over the long geological history, the original iron formations were reconstructed to various extents by late tectonic processes. Geological observations and studies on the equilibrium mechanism of oxygen/sulfur isotopic fractionation and the composition and temperature of fluid inclusions in the minerals indicate that thermal brines played an important role in reworking of the original iron-rich carbonate rocks, which led to the formation of sedimentary-reworked strata-bound ore deposit.  相似文献   

3.
The isotopic composition and parameters for deuterium excess of brines, which were sampled in the Si-chuan Basin, show obvious regularities of distribution. The brine isotopic composition shows distinct two systems of marine and terrestrial deposits, with the Middle Triassic strata as the boundary. Brine hydrogen isotopic composition of marine deposits is lower while oxygen isotopic composition is higher than that of the SMOW, respectively, indicating that the brines were derived from seawater with different evaporating degrees at different times. From the Sinian strata, up to the Cambrian, Permian Maokou Formation and the Triassic Jialingjiang Formation, the δD values of brines tend to become relatively positive with the strata becoming younger. Brines of terrestrial deposits are considered to have been derived from precipitation and their isotopic composition is close to the globe meteoric water line (GMWL). Brines of transitional deposits between marine and terrestrial ones (the Upper Triassic Xujiahe Formation) have δD and δ18O values falling between the two end members of marine deposit brines and precipitation, indicating that the brines are a mixture of precipitation and vaporing seawater. Water samples from the brine-bearing strata of different ages show various deuterium excesses (d) with an evident decreasing trend as the age of strata gets older and older. Brine-bearing strata of the Triassic Leikoupo-Jialingjiang Formation, the Permian Maokou Formation, the Cambrian and Sinian strata are all carbonate rocks which have experienced intensive water/rock reaction and the deuterium excess essentially changes with time. All brine-bearing-strata surrounding the basin or faults, as well as those brine wells exploited for resources, have been obviously influenced by the precipitation supply. Therefore, the deuterium excesses of their brines have increased to different extents, depending on the amount of involvement of meteoric water. The variation and distribution of d values of the brines from different Triassic strata are related to the embedded depth of the strata. The deuterium excesses of brines become lower with increasing burial depth of the strata.  相似文献   

4.
The Niujiaotang zinc deposit in southeastern Guizhou, China, is a Mississippi Valley-type Zn deposit within Early Cambrian carbonate rocks. Sphalerite is enriched in cadmium (average 1.4 wt.% Cd), which occurs mostly as isomorphous impurities in the sphalerite lattice. Discrete cadmium minerals (greenockite and otavite) are rare and are found almost exclusively in the oxidation zone of the deposit, probably formed as secondary minerals during weathering–leaching processes. Geochemical data show that the sulfides are enriched in heavy sulfur, with δ34S ranging from +10.0‰ to +32.8‰ (mean +22.5‰). The consistent Pb isotopic compositions in different sulfide minerals are similar to that of Cambrian strata. The ore lead probably came from U- and Th-rich upper crustal rocks, such as the Lower Cambrian Wuxun Formation. The ore fluid is of low-temperature (101°C to 142°C) type, with a Na–Ca–Mg–Cl-dominant composition, and is interpreted as oil-field brine. The data indicate that the metals were mainly derived from the Early Cambrian strata (Qingxudong and Wuxun Formations), whereas sulfur is sourced from sulfate in Cambrian strata or oil-field brines of the Majiang petroleum paleoreservoir. The genetic model for the deposit invokes an Early Cambrian shallow-sea environment on the Yangtze Platform. Zinc and Cd in seawater were concentrated in abundant algae via unknown biological mechanisms, resulting in large amounts of Zn- and Cd-rich algal ooliths. During the Ordovician, concurrent with destruction of the Majiang petroleum paleoreservoir, oil-field brines migrated from the center of the basin to the margin leaching metals from the Cambrian strata. In the Niujiaotang area, preexisting Zn and Cd, particularly in the Qingxudong and Wuxun Formation, were further mobilized by hot brines rising along the Zaolou fault system, forming stratiform and generally conformable Zn–Cd orebodies in reactive carbonate lithologies.  相似文献   

5.
四川盆地下、中三叠统硬石膏和盐卤水广布,通过对采集于不同地段不同层位各具代表性的硬石膏、石膏和盐卤水的244件样品的分析,可见其同层位硫同位素组成稳定,δ34S自下而上具阶梯状递减轻化的趋势,与已知全球海相三叠系硫同位素组成有明显差异。这种硫同位素分布规律对地层划分和对比、蒸发岩形成环境的判断、研究卤水产层和成因、掌握蒸发岩咸化发展方向及预测找钾工作等的意义不容忽视。  相似文献   

6.
We present the results of compound-specific sulfur isotope analyses performed on organic sulfur compounds (OSCs) isolated from sediments deposited in the euxinic Cariaco Basin, Venezuela. Individual OSCs (sulfurized highly branched isoprenoids and malabaricatriene) have sulfur isotope compositions of ca. −15‰, which is 34S enriched by 5-15‰ relative to coeval bulk organic and inorganic sulfur pools. These observed differences in the sulfur isotope composition of bulk organic sulfur in the kerogen and bitumen pools and individual OSCs demonstrate that there are multiple pathways of organic sulfur formation operating simultaneously in marine sediments. Comparison of our measured compound-specific sulfur isotope data with values predicted using simple isotopic mass balance assumptions suggests that the sulfurization process likely involves multiple sources of inorganic sulfur. Further, the isotopic composition of these various precursor inorganic sulfur species and the specific pathway of sulfur incorporation into organic matter (OM) impart distinct isotopic compositions to the resulting organic sulfur compounds. These data represent the first compound-specific sulfur isotope measurements made in marine sediments, and demonstrate the utility of compound-specific sulfur isotope analysis in identification of inorganic sulfur sources for OM sulfurization and tracking pathways of sulfur incorporation, which will lead to a more complete understanding of diagenetic sulfurization of OM.  相似文献   

7.
Multi-isotope (H, O, S, Sr, Pb) systems coupled with conventional (major and trace element) hydrogeochemical analysis were applied to determine the origin of water, to model water-rock-tailings interactions and for source apportionment of sulfur and associated toxic metals in the mining region of Taxco, Guerrero in southern Mexico. Oxygen and H isotopes indicate that meteoric water in the zone is rainwater undergoing varying degrees of isotopic fractionation by atmospheric evaporation whereas Sr isotopes trace the interaction of pristine water from volcanics of the regional recharge zone and subsequently flowing through sandstone and shale to spring points. Leachates form from two distinctive sources (spring water and surface water) having differential interactions with bedrocks prior to entering the tailings. Compared to pristine water, leachates are enriched in sulfate, metals (e.g. Fe, Mn, Pb and Zn) and metalloids (e.g. As). The sulfur isotopic composition of ore-sulfides, leachates, secondary precipitates, regional surface water and hypogenic sulfates is described in terms of a two-component mixing model with shale of Mexcala and limestone of Morelos formations representing the light and heavy end-members, respectively, whereas Sr isotopic composition is bracketed combining three lithogenic (Mexcala/Morelos, Tilzapotla and Taxco Schist) sources. Finally, leachates have a mixture of lead from ore-sulfides and Taxco Schist Formation (Family I) or from ore-sulfides alone (Family II). The application of multiple environmental isotopic techniques is an outstanding tool for elucidating complex interactions of water with bedrocks and tailings and for determining the source of sulfur and toxic metal from mining and other metal polluted environments.  相似文献   

8.
Twenty-four brine samples from the Heletz-Kokhav oilfield, Israel, have been analyzed for chemical composition and Li isotope ratios. The chemical composition of the brines, together with geological evidence, suggests derivation from (Messinian) seawater by evaporation that proceeded well into the gypsum stability field but failed to reach the stage of halite crystallization. The present salinity of the samples (18-47 g Cl/L) was achieved by dilution of the original evaporitic brine by local fresh waters. Like brines from other sedimentary basins, the Li/Cl ratios in the Heletz-Kokhav samples show a prominent Li enrichment (five-fold to eight-fold) relative to modern seawater. The isotopic ratios of Li, expressed in the δ 6Li notation, vary from −26.3 to −17.9‰, all values being significantly higher than that of modern seawater (−32‰) irrespective of their corresponding Li concentration (1.0-2.3 mg/L). The isotopic composition of Li and the Li/Cl ratio in the oilfield brines were acquired in two stages: (a) The original evaporated seawater gained isotopically light Li during the diagenetic interaction between the interstitial Messinian brine and the basin sediments. A parent brine with an elevated Li/Cl ratio was formed. The brine was later diluted in the oilfields. (b) The δ 6Li values of the final brines were determined during epigenetic interaction with the Heletz-Kokhav aquifer rocks. At the same time, the Li/Cl ratio inherited from stage (a) remained largely unchanged. This work represents the first use of lithium isotopic composition to elucidate the origin and evolution of formation waters in sedimentary basins.  相似文献   

9.
为了进一步理解华南下寒武统Ni-Mo-Se多金属层的物质来源及形成环境,文中分析了遵义中南村和张家界后坪两个Ni-Mo-Se矿层及其围岩的黄铁矿硫同位素和全岩的硒同位素组成。硫同位素组成显示两个Ni-Mo-Se矿层形成时的环境存在区域性差别,中南村矿层形成于间歇开放的海洋环境,而后坪矿层形成于封闭的缺氧(静海)环境。较大的硫同位素范围暗示硫酸盐还原菌控制硫同位素的分馏,而热液流体可能提供了大量金属元素,从而导致矿层富集大量的硫化物和稀有金属。硒同位素组成指示牛蹄塘组底部热液流体的Se可能重新经历了氧化还原循环,而Se的富集过程可能受有机质和粘土矿物吸附或类质同象过程控制。因此,控制多金属富集的因素主要为富集金属的热液流体的参与和缺氧环境下的自生沉积。  相似文献   

10.
The chemical and isotopic compositions of groundwaters in the crystalline rocks of the Canadian Shield reflect different degrees of rock-water interactions. The chemistry of the shallow, geochemically immature groundwaters and especially of the major cations is controlled by local rock compositions, whereby dissolution reactions dominate. Conservative constituents, such as chloride and bromide, however, are not entirely a result of such reactions but appear to be readily added from leachable salts during the initial stages of the geochemical evolution of these waters. Their concentration changes little as major cations increase, until concentrations of Total Dissolved Solids (TDS) reach 3000 to 5000 mg 1?1. The isotopic composition of these shallow waters reflects local, present day precipitations.In contrast to the shallow groundwaters, the isotopic and chemical compositions of the deep, saline waters and brines are determined by extensive, low-temperature rock-water interactions. This is documented in major ion chemistries, 18O contents and strontium isotopic compositions. These data indicate that the deep brines have been contained in hydrologically isolated “pockets”. The almost total loss of primary compositions make discussions on the origin of these brines very speculative. However, all brines from across the Canadian Shield have a very similar chemical composition, which probably reflects a common geochemical history. The concentrations of some major and most minor elements in these fluids appear to be governed by reactions with secondary mineral assemblages.  相似文献   

11.
《International Geology Review》2012,54(10):1429-1434
Enrichment of S32 in sulfidic sulfur and large variations in δS34 content of certain minerals are characteristic of the ores. It is possible therefore that their sulfur was derived from sedimentary rocks and that bacterial reduction of sedimentary sulfates had a part in the process. The isotopic composition of sulfidic sulfur in cupriferous sandstones and in the veinlets therein is about the same. Consequently, a borrowing a sulfur by the veinlets from the sandstones appears to be a reasonable assumption. A biogenic-sedimentary origin of the sulfides does not preclude accessions of copper and other metals from the magma. -- Author.  相似文献   

12.
Data on the sulfur isotopic composition of sulfides from gold-silver deposits of volcanoplutonic belts were systematized. The deposits differ in the variation range, character of distribution, and modal values of δ34S. It was shown that the sulfur isotopic composition is an integral parameter related to a combination of geologic factors. Based on the analysis of the compiled database, it was concluded that the sulfur isotopic composition of deposits evolves in time in an oscillatory manner, similar to the periodic variations in the isotopic composition of sulfide and sulfate sulfur in the Earth’s sedimentary shell.  相似文献   

13.
《Applied Geochemistry》1988,3(3):317-332
The chemistry and stable isotopes (18O, D) of highly concentrated chloride brines and minerals from the Asse salt mine in the north of the Federal Republic of Germany were studied. Chemical data indicate the occurrence of three types of brines: (a) Mg-Cl type, of carnallitite origin with Li < 30 mg/kg; (b) Na-Cl type brines, of rock salt origin, with Li > 100 mg/kg; and (c) almost pure MgCl2-type brines with Li > 100 mg/kg. The first group may be subdivided into brines with Li < 4.0 mg/kg and brines with Li between 18 and 30 mg/kg. Lithium is shown to be an efficient complementary tool in tracing the origin of the brines. The complex evolution of carnallitite-type brines is discussed in detail. Isotopic data of brines that were sampled directly from seepages (presumably unaltered) indicate that these brines are not a mixture with relatively fresh ground water from the overburden sediments. The stable isotope composition (18O and D) of hydration water in carnallite, kieserite and polyhalite sampled from the Asse mine were also studied. It is shown that water extracted from the so-called primary carnallite is isotopically different from water extracted from secondary carnallite. The isotopic fractionation factors for 18O and D between carnallite hydration water and mother solution were studied in the laboratory. Assuming that crystallization water of the so-called primary carnallite samples is not altered, the isotopic composition of the mother solution is evaluated.  相似文献   

14.
林兵 《现代地质》1991,5(3):300-306
甘肃西成铅锌矿田含有沉积—变质热液弱改造型和沉积—动力构造分异热液强改造型两类泥盆系层控铅锌矿床。对该矿田系统的铅同位素地球化学研究结果表明:(1)两类主要矿床的铅同位素组成有所不同。例如,沉积—变质热液弱改造型矿床的铅同位素组成变化相对较稳定;(2)矿床的铅平均单阶段模式年龄均不代表成矿年龄,而只反映铅质源区岩石的形成时代;(3)成矿金属物质主要取自下伏区域基底地层,而与含矿层和岩体无关;(4)成矿物质源区构造环境主要为造山带(岛弧),这种地质构造环境有利于富含金属热卤水的活动和成矿物质的富集成矿。  相似文献   

15.
沉积盆地卤水来源的非传统同位素示踪研究进展   总被引:1,自引:0,他引:1  
世界上大多数的沉积盆地内,在结晶基底或者沉积地层内都有矿化度较高的卤水,由于这些卤水通常携带或富含有钾、硼、锂、溴、碘、铷、铯、稀有气体及重金属元素,因此,它们是地学界的研究热点之一。随着测试技术的不断进步,非传统同位素的应用也日益广泛,但在沉积盆地卤水来源和演化方面的研究还十分薄弱,对卤水的来源和演化也还存在争议。文章回顾了硼、锂、碘和惰性气体氦、氩同位素在卤水来源研究方面的进展,并指出由于单一同位素在解释上的片面性,多种同位素相结合的示踪方法研究沉积盆地卤水的来源是国际趋势。  相似文献   

16.
The chemical composition and the isotopic characteristics of formation waters from the Siberian Platform are presented. The study involved samples of formation brines from depths ranging from 100 to ∼4000 m at five different sites covering a large area of the Siberian Platform. Four water types were identified. The two main water types that were found are: (1) Ca–Cl brines that are believed to be the residual of an evaporated paleoseawater; and (2) Na–Cl brines that are derived mainly from halite dissolution. The origin of a third group of highly saline samples was not determined. However, the chemical and isotopic characteristics of this group of samples suggest that they were produced by various complex scenarios such as metamorphism, water–rock interaction, permafrost freezing and mixing. The last group of samples represents fresh and brackish waters across the area.  相似文献   

17.
The isotopic composition and mass balances of sources and sinks of sulfur are used to constrain the limnological–hydrological evolution of the last glacial Lake Lisan (70–14 ka BP) and the Holocene Dead Sea. Lake Lisan deposited large amounts of primary gypsum during discrete episodes of lake level decline. This gypsum, which appears in massive or laminated forms, displays δ34S values in the range of 14–28‰. In addition, Lake Lisan’s deposits (the Lisan Formation) contain thinly laminated and disseminated gypsum as well as native sulfur which display significantly lower δ34S values (−26 to 1‰ and −20 to −10‰, respectively). The calculated bulk isotopic compositions of sulfur in the sources and sinks of Lake Lisan lacustrine system are similar (δ34S ≈ 10‰), indicating that freshwater sulfate was the main source of sulfur to the lake. The large range in δ34S found within the Lisan Formation (−26 to +28‰) is the result of bacterial sulfate reduction (BSR) within the anoxic lower water body (the monimolimnion) and bottom sediments of the lake.

Precipitation of primary gypsum from the Ca-chloride solution of Lake Lisan is limited by sulfate concentration, which could not exceed 3000 mg/l. The Upper Gypsum Unit, deposited before ca. 17–15 ka, is the thickest gypsum unit in the section and displays the highest δ34S values (25–28‰). Yet, our calculations indicate that no more than a third of this Unit could have precipitated directly from the water column. This implies that during the lake level decline that instigated the precipitation of the Upper Gypsum Unit, significant amounts of dissolved sulfate had to reach the lake from external sources. We propose a mechanism that operated during cycles of high-low stands of the lakes that occupied the Dead Sea basin during the late Pleistocene. During high-stand intervals (i.e., Marine Isotopic Stages 2 and 4), lake brine underwent BSR and infiltrated the lake’s margins and adjacent strata. As lake level dropped, these brines, carrying 34S-enriched sulfate, were flushed back to the shrinking lake and replenished the water column with sulfate, thereby promoting massive gypsum precipitation.

The Holocene Dead Sea precipitated relatively small amounts of primary gypsum, mainly in the form of thin laminae. δ34S values of these laminae and disseminated gypsum are relatively constant (15 ± 0.7‰) and are close to present-day lake composition. This reflects the lower supply of freshwater to the lake and the limited BSR activity during the arid Holocene time and possibly during former arid interglacials in the Levant.  相似文献   


18.
Based on the sulfur isotopic composition of sulfide minerals, gold deposits in terrigenous successions were systematized and grouped by variation ranges, intervals of modal values, and distribution of δ34S. It was concluded that the evolution of the sulfur isotopic composition of deposits depends on the character of changes in sulfur isotopes in the host rocks of the continental crust.  相似文献   

19.
New data on the geochemistry and isotopic composition of chloride brines of the Siberian Platform are presented. The distribution of stable isotopes (2H, 18O, and 37Cl) in brines of the Tunguska, Angara-Lena, western part of the Yakutian and Olenek artesian basins and 87Sr/86Sr in brines of the western part of the Olenek artesian basin was studied in the context of the problem of genesis of highly mineralized groundwaters. Results of the study and comparative analysis of the geochemical and isotopic peculiarities of the Siberian Platform brines conform to the theory of brine formation through the interaction of connate waters with enclosing rocks.  相似文献   

20.
《International Geology Review》2012,54(10):1405-1417
Striking preponderance of the light isotopes and a very wide range of variation (δS34 from +13.5 to -21.8) are typical of the isotopic composition of sulfidic sulfur in copper ore deposits of the area, even as they are in the case of analogous ore deposits elsewhere. Fluctuations in the isotopic composition of sulfur in profiles of cupriferous rocks and parts thereof are explainable by specificities in physicochemical environments of the sediment-water-organic substance system. -- Authors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号