首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Chalcopyrite was reacted with covellite and with chalcocite, respectively, between 200°C and 500°C. The ensuing solid-state replacement of chalcopyrite by bornite was studied both texturally and chemically. The relatively oxidizing conditions of the reaction chalcopyrite+covellite result in massive replacement, lacking structural control, where bornite and pyrite form complex intergrowth textures in chalcopyrite. Bornite nucleates around growing pyrite aggregates because of the release of copper and a decrease in volume. Diffusion of sulphur along grain boundaries and fractures largely controls the textural development. Reaction under the relatively reducing conditions involving chalcopyrite+chalcocite results in replacement of chalcopyrite in the sequence where chalcopyrite is replaced by bornite, below about 355°C, and by intermediate solid solution (ISS) and later bornite, above 355°C. The textural development, changing from replacement, apparently uninfluenced by directional properties in the host, to semioriented replacement, is structurally controlled. This suggests that the process is governed by diffusion of copper and iron through a sulphur framework. It is suggested that the observed formation of oriented bornite lamellae in chalcopyrite and in ISS during the chalcopyrite+chalcocite reaction may be explained by replacement exsolution at constant temperature.  相似文献   

2.
The Mount Lyell copper deposits are located in the middle Cambrian Mount Read volcanic belt of western Tasmania and consist of more than 24 separate copper–gold–silver orebodies. The dominant copper mineralisation style is disseminated pyrite–chalcopyrite subvertical pipes with subordinate chalcopyrite–bornite ± other copper phases, massive pyrite and base metal sulfides. A zonation in mineralisation style within the pipes is defined from chalcopyrite–magnetite at depth to chalcopyrite–pyrite at intermediate levels, to chalcopyrite–bornite at the shallowest level. Alteration is developed broadly symmetrically around the ore zones and zoned from quartz–chlorite–phengite ± biotite at depth to quartz–muscovite at intermediate levels, and a quartz–muscovite–pyrophyllite–zunyite assemblage at the shallowest levels. This is interpreted to be a result of a fluid that evolved from hot, reduced and neutral conditions at depth to cool, oxidised and acidic conditions at the shallowest level. The chalcopyrite–bornite deposits occur at the top of the hydrothermal system and are associated with intensely silicified rock and muscovite/pyrophyllite alteration. The close relationship of these deposits with the top of the pipes suggests they are part of a single mineralising event. Where the chalcopyrite–bornite deposits are juxtaposed with the Owen Group, rather than a simple chalcopyrite–bornite mineralogy, there are numerous other copper phases, which represent higher oxidation states and collectively suggest variable and fluctuating fluid conditions during deposition. It is proposed that these deposits are formed by an interaction of the reduced hydrothermal fluid with an oxidised fluid generated at very shallow levels within and during deposition of the Owen Group. Mineralisation within the middle Owen Group sandstones and clasts of altered rock within the middle and upper Owen Group sediments marks the end of the hydrothermal system. Around the entire edge of the Mt Lyell field, there is a variation in the white mica composition from proximal muscovite to distal phengite that represents the neutralisation of the hydrothermal fluid by fluid–wall rock interaction.  相似文献   

3.
The porphyry Cu deposits at Waisoi in Namosi district, Viti Levu are separated into two deposits: the Waisoi East deposit and the Waisoi West deposit. In the Waisoi East deposit, quartz porphyry is exposed and in the Waisoi West deposit, diorite porphyry is sporadically exposed in addition to a small body of quartz porphyry. The mineralization in the Waisoi East deposit is characterized by the bornite–chalcopyrite–pyrite assemblage associated with traces of molybdenite and native gold. Polyphase fluid inclusions in stockwork quartz veinlets show homogenization temperatures ranging from 210 to >500°C. The high‐grade Cu mineralization in the Waisoi West deposit is characterized by the bornite–chalcopyrite–pyrite assemblage accompanied with sheeted and stockwork quartz veinlets. Polyphase fluid inclusions occasionally containing hematite flakes in quartz veinlets in the center of the Waisoi West deposit homogenize at temperatures ranging from 450°C to >500°C. However, fluid inclusions in stockwork quartz veinlets in the periphery, homogenize at lower temperatures around 210°C. Both in the Waisoi East and Waisoi West deposits, primary bornite–chalcopyrite–pyrite assemblage in the high Cu‐grade zone was deposited at the upper stability limit of chalcopyrite with respect to sulfur fugacity. Thus, the principal Cu mineralization at the Waisoi deposits occurred at a relatively high sulfur fugacity, that is, in a high‐sulfidation environment.  相似文献   

4.
李金春 《矿床地质》2009,28(4):473-480
天鹿铜矿床是古生代海相砂页岩型铜矿.其铜矿石主要为粉砂岩型,包括斑铜矿矿石、辉铜矿矿石、辉铜矿斑铜矿矿石、黄铜矿斑铜矿矿石、黄铜矿矿石、黄铁矿黄铜矿矿石等6种自然类型.矿石结构主要为结晶结构和交代结构,矿石构造以浸染状为主.主矿层中的矿化沿岩层垂向具有明显的分带性,从底部到顶板为:斑铜矿→辉铜矿→黄铜矿→黄铁矿,具有典型的化学沉积成因铜的硫化物排列组合特征.这些特点与中国及国外海相砂页岩型铜矿相一致.  相似文献   

5.
云南官房铜矿床矿石矿物特征及银的赋存状态   总被引:1,自引:0,他引:1  
通过显微镜鉴定、电子探针(EPMA)及扫描电镜能谱分析(SEM/EDS)等方法,首次对官房铜矿的矿物组合和银的赋存状态进行了研究。初步查明,矿石矿物为中-低温热液成因,并受火山机构及断裂构造的控制;银矿物主要为碲银矿和辉银矿。矿石中银与铜呈明显正相关关系,而方铅矿中不含银。银主要以类质同象的形式赋存于含铜矿物或黄铁矿中;银的独立矿物含量低,且多呈包裹体的形式存在于黄铜矿、斑铜矿及黄铁矿中,或以微细粒状赋存于矿物颗粒间和斑铜矿的表面。  相似文献   

6.
Ore mineralization and wall rock alteration of Crater Mountain gold deposit, Papua New Guinea, were investigated using ore and host rock samples from drill holes for ore and alteration mineralogical study. The host rocks of the deposit are quartz‐feldspar porphyry, feldspar‐hornblende porphyry, andesitic volcanics and pyroclastics, and basaltic‐andesitic tuff. The main ore minerals are pyrite, sphalerite, galena, chalcopyrite and moderate amounts of tetrahedrite, tennantite, pyrrhotite, bornite and enargite. Small amounts of enargite, tetradymite, altaite, heyrovskyite, bismuthinite, bornite, idaite, cubanite, native gold, CuPbS2, an unidentified Bi‐Te‐S mineral and argentopyrite occur as inclusions mainly in pyrite veins and grains. Native gold occurs significantly in the As‐rich pyrite veins in volcanic units, and coexists with Bi‐Te‐S mineral species and rarely with chalcopyrite and cubanite relics. Four mineralization stages were recognized based on the observations of ore textures. Stage I is characterized by quartz‐sericite‐calcite alteration with trace pyrite and chalcopyrite in the monomict diatreme breccias; Stage II is defined by the crystallization of pyrite and by weak quartz‐chlorite‐sericite‐calcite alteration; Stage III is a major ore formation episode where sulfides deposited as disseminated grains and veins that host native gold, and is divided into three sub‐stages; Stage IV is characterized by predominant carbonitization. Gold mineralization occurred in the sub‐stages 2 and 3 in Stage III. The fS2 is considered to have decreased from ~10?2 to 10?14 atm with decreasing temperature of fluid.  相似文献   

7.
Electron probe micro-analysis(EPMA) and scanning electron microscopy(SEM) equipped with energy dispersive spectrometry(EDS) have been used to investigate the principal ore minerals and coexisting metallic mineral inclusions in polished thin sections from the Tiegelongnan deposit, which consists of a high-sulfidation epithermal system(HSES) and a porphyry system(PS). Molybdenite,chalcopyrite, bornite, tennantite, enargite, digenite, anilite, covellite, and tetrahedrite have been identified by EPMA. Intergrowth, cross-cutting and replacement relationships between the metallic minerals suggest that molybdenite formed first(stage 1),followed by chalcopyrite ± bornite ± hematite(stage 2),then bornite ± Cu-sulfides ± Cu-Fe-sulfoarsenides(stage 3),and lastly Cu-Fe-sulfoarsenides ±Cu-sulfides(stage 4). Pyrite is developed throughout all the stages. Droplet-like inclusions of Au-Te minerals commonly occur in tennantite but not in the other major sulfides(molybdenite, chalcopyrite and bornite),implying that tennantite is the most important Au telluride carrier. The pervasive binary equilibrium phases of calaverite and altaite constrain f_(Te2) in the range from ~-6.5 to ~-8 and f_(S2)-11.The intergrowth of bornite and chalcopyrite and the conversion from bornite to digenite suggest fluctuated and relatively low precipitation temperature conditions in the HSES relative to the PS.Contrastingly, the dominance of chalcopyrite in the PS, with minor bornite, suggests relatively high temperature conditions. These new results are important for further understanding the mineral formation processes superimposed by HSES and PS systems.  相似文献   

8.
矿床技术经济评价在地质勘查工作中占有重要地位。目前编写地质勘查报告都必须包括技术经济评价章节。但我国矿床技术经济评价的理论和方法还存在一些问题,某些评价方法和基本概念还不够统一。通过对投资回收期、净现值、总现值、销售成本、经营成本等参数的研究认为,矿床技术经济评价要进一步规范化。  相似文献   

9.
Minerals from deposits Chelopech, Elshitsa, Radka and Krasen have been studied and their gold contents determined by neutron-activation. In all deposits sulphide and sulphosalt minerals show a well-expressed ability to concentrate gold, although their role in individual deposits is not equal. The highest concentration of gold is in bornite, tennantite, enargite and the early generations of pyrite, chalcopyrite, galena and sphalerite. The low content of gold in the late generations of pyrite, chalcopyrite, galena and sphalerite is due to the process of recrystallization and redeposition. The data obtained show that gold has been extracted entirely from the solutions of the early quartz-pyrite stage mineralizations while during the later quartz-sulphosalt-sulphide and quartz-carbonite-sulphate stages it was only re-deposited and concentrated.  相似文献   

10.
Akira Imai    Yuki Nagai 《Resource Geology》2009,59(3):231-243
The Batu Hijau deposit is the only porphyry type deposit in production in the Sunda‐Banda arc, Indonesia. This study discusses the reason for the localization of copper grade at the deep part of the deposit based on the observation of opaque mineral assemblage. In addition, the formation condition of quartz veins and opaque minerals is discussed on the basis of the fluid inclusion microthermometry. Samples were selected from drill holes SBD100, SBD168, SBD194, SBD254, and SBD257 to cover the wide vertical range. At the Batu Hijau deposit, quartz veins have been classified mainly into four types called A, B, C and D veins, and the A veins contain mainly bornite, often associated with digenite and chalcocite. In addition, magnetite occurs in A veins. However, at the deep part of the deposit, there are quartz veins associated with magnetite, but few copper sulfides such as bornite and chalcopyrite in quartz veins, as observed in SBD257. Quartz veins at depth in SBD257 have abundant magnetite and pyrite. Pyrite in quartz veins at depth in SBD257 mainly occur at the rim of magnetite grains or interstices between them. In quartz veins in SBD254, there are abundant copper sulfides such as bornite and chalcopyrite in spite of the depth. Bornite and chalcopyrite occur as inclusions in magnetite grains in quartz veins in SBD254. Pyrite which often occurs in low grade zone in quartz veins in SBD254 is also recognized at the rims of copper sulfides. This indicates that pyrite in SBD257 and SBD254 formed later than magnetite. On the other hand, blebs of bornite and chalcopyrite inclusions in magnetite grains, which are recognized in quartz veins in SBD168 at shallow high grade part, suggest that the hydrothermal fluid, from which magnetite was deposited also brought the copper sulfides such as bornite and chalcopyrite to the deep part of the Batu Hijau deposit. Therefore, it is concluded that initially the high grade ore zone extended to depth without localization. However due to the later overprinting hydrothermal activity, copper sulfides and magnetite were replaced or dissolved and pyrite was formed, resulting the low grade zone at the deep part of the deposit. Dissolution temperatures (Td) of halite obtained by from fluid inclusion microthermometry show significant differences between SBD168 and other drill holes. The high Td obtained in SBD168 may indicate larger volume of NaCl crystals in hydrothermal fluid at the time of entrapment of the fluid inclusions and formation of other opaque minerals such as magnetite and copper‐iron sulfides. It suggests that the ratio of vapor to brine is also higher at the shallow part of the deposit. The higher vapor to brine ratio may suggest a higher degree of boiling. Removal of vapor phase separated from brine during boiling increases the concentration of substances dissolved in the brine, and this will result in saturation, as evidenced by the salinity and NaCl saturation. The higher degree of boiling suggested by the higher vapor to brine ratio at shallow part may have increased the copper concentration in the brine that may have lead the saturation, resulted in the deposition of copper‐bearing minerals.  相似文献   

11.
Thermal Stability of Assemblages in the Cu--Fe--S System   总被引:1,自引:0,他引:1  
The phase relations in the Cu-Fe-S system were determined from700 C to approximately 200 C in most portions of the systemand below 100 C in restricted areas. Approximate solid solutionlimits for bornite, chalcopyrite, and pyrrhotite were determinedat elevated temperatures. At low temperatures emphasis was placedon establishing the stable assemblages and less on determiningthe compositions of coexisting phases. At 700 C two extensiveternary solid solutions dominate the phase relations in thissystem. One of these solid solutions (bornite) includes thecompositions Cu2S, Cu18S, and Cu5FeS4and the other (chalcopyrite)lies with in the area bounded by the compositions CuFeS2 CuFe2S3,and CU3Fe4S4. The two fields are separated by approximately10 weight per cent copper at 700 C. The chalcopyrite volume,as seen in a trigonal prism representing temperature and composition,is intersected by a miscibility gap below approximately 600C.Below this temperature the two one-phase volumes are referredto as chalcopyrite and cubanite. Chalcopyrite is tetragonalat low temperature but isometric above approximately 550C.The temperature of the transformation is a function of composition.Cubanite is isometric above 252C, tetragonal from 252 to atleast 213C, and orthorhombic at lower temperature. The temperatureof the second transformation is unknown because the tetragonal-to-orthorhombictransformation has not been achieved in the laboratory. Borniteand pyrite become stable together at 568C and coexist downto 228C. Covellite appears with lowering temperature at 507C,and idaite at 501C. Idaite—pyrite and idaite—borniteare stable assemblages below 501 C. The composition of bornitecoexisting with idaite changes gradually towards digenite withdecreasing temperature, thus permitting the change from thebornite—pyrite tie-line to the digenite—chalcopyritetie-line at 228C. Other major tie-line changes are bornite—ironto pyrrhotite—copper below 475C and cubanite—pyriteto chalcopyrite—pyrrhotite below 334C. A new syntheticphase, x-bornite, which has a composition close to bornite (Cu5FeS4)but contains about 04 weight per cent more sulfur, forms whensulfur-rich bornite synthesized at high temperature is annealedbetween 62 and 140C. Optically this new phase is very similarto bornite, and their X-ray powder diffraction patterns aregiven for comparison. o The determined phase relations are applicable to numerous deposits.The tie-line changes involving bornitepyrite reacting to producedigenitechalcopyrite below 228 C and cubanite (isometric)pyritegoing to chalcopyritepyrrhotite below 334 C are of considerablegeological interest. The rates of these reactions are sufficientlyslow to allow the higher temperature assemblages to be observedin some ores. The cubic—tetragonal inversion in chalcopyriteis often deduced in ores by inversion twins. However, twinningis also commonly produced through deformation. Geological applicationof the inversion therefore depends on correct interpretationof the twinning. Because of the considerable solubility of copperin pyrrhotite the pyrrhotite—pyrite solvus of the pureFe—S system cannot be applied indiscriminately to oresthat also contain chalcopyrite or cubanite, or both. The newx-bornite phase was identified with the natural ‘anomalousbornites’, which when heated exsolve chalcopyrite and,depending on their composition, also digenite. The experimental results indicate that the mineral commonlyidentified as chalcopyrrhotite is in reality tetragonal or evenisometric cubanite. Experimental evidence could not be obtainedfor the existence of a phase of Cu2Fe4S7 or Cu2Fe4S7 composition,the older formulae given foor valleriite. The thermal breakdownof natural material supports the idea that valleriite is a low-temperaturepolymorph of chalcopyrite. The relatively uncommon occurrenceof idaite in comparison to covellite is attributed to the greaterdifficulty in nucleating idaite. The possibility of stable coexistenceof chalcocite and pyrite was investigated but was found to beprohibited by tie-lines between bornite and digenite even aslow as 100 C.  相似文献   

12.
Mesozoic and Cenozoic sandstone-hosted copper deposits in South China are confined to the variegated rock formation of the faulted basins, the intermontane basins and piedmont basins around a copper-bearing old land. The variegated rock formation is generally of fluviolacustrine delta facies, shore facies and shore-cauce facies. The ore bodies are stratiform, occurring in the light-coloured beds of the variegated rock formation. The mineralization comprises chalcocite, bornite, chalcopyrite, native copper, covellite, pyrite and hematite, showing obvious zonation. The associated profitable elements in the ore are mainly silver, lead, zinc, molybdenum, selenium and uranium. The copper deposits are believed to have been formed through three processes of enrichment, i.e. weathering (copper-bearing weathered crust was formed as a result), deposition (source bed formed) and diagenesis (ore body formed). The variegated rocks with Cu, Ag, Pb, Zn, U, Mo, Cl and organic carbon anormalies and a great deal of pyrite, distributed in the faulted basins around the Cu-bearing old land, are recognized as the most favourable area for copper ore exploration.  相似文献   

13.
The several-hundred-m-thick Miocene Upper Red Formation in northwestern Iran hosts stratiform and fault-controlled copper mineralization. Copper enrichment in the percent range occurs in dm-thick carbonaceous sandstone and shale units within the clastic redbed sequence and consists of fine-grained disseminated copper sulfides (chalcopyrite, bornite, chalcocite) and supergene alteration minerals (covellite, malachite and azurite). The copper mineralization formed after calcite cementation of the primary rock permeability. Copper sulfides occur mainly as replacement of diagenetic pyrite, which, in turn, replaced organic matter. Electron microprobe analysis on bornite, chalcocite and covellite identifies elevated silver contents in these minerals (up to 0.12, 0.72 and 1.21 wt%, respectively), whereas chalcopyrite and pyrite have only trace amounts of silver (<0.26 and 0.06 wt%, respectively). Microthermometric data on fluid inclusions in authigenic quartz and calcite indicate that the Cu mineralization is related to a diagenetic fluid of moderate-to low temperature (Th = 96–160 °C) but high salinity (25–38 wt% CaCl2 equiv.). The range of δ34S in pyrite is −41.9 to −16.4‰ (average −31.4‰), where framboidal pyrite shows the most negative values between −41.9 and −31.8‰, and fine-grained pyrite has relatively heavier δ34S values (−29.2 to −16.4‰), consistent with a bacteriogenic derivation of the sulfur. The Cu-sulfides (chalcopyrite, bornite and chalcocite) show slightly heavier values from −14.6 to −9.0‰, and their sulfur sources may be both the precursor pyrite-S and the bacterial reduction of sulfate-bearing basinal brines. Carbonates related to the ore stage show isotopically light values of δ13CV-PDB from −8.2 to −5.1‰ and δ18OV-PDB from −10.3 to −7.2‰, indicating a mixed source of oxidation of organic carbon (ca. −20‰) and HCO3 from seawater/porewater (ca. 0‰). The copper mineralization is mainly controlled by organic matter content and paleopermeability (intragranular space to large fracture patterns), enhanced by feldspar and calcite dissolution. The Cheshmeh-Konan deposit can be classified as a redbed-type sediment-hosted stratiform copper (SSC) deposit.  相似文献   

14.
Tuwu is the largest porphyry copper deposit discovered in the Eastern Tianshan Mountains, Xinjiang, China. A newly recognized volcanic complex in the Early Carboniferous Qi’eshan Group at Tuwu consists of basalt, andesite, and diorite porphyry. The plagiogranite porphyry was emplaced into this complex at 332.8±2.5 Ma (U–Pb zircon SIMS determination). Whole-rock element geochemistry shows that the volcanic complex and plagiogranite porphyry formed in the same island arc, although the complex was derived by partial melting of the mantle wedge and the plagiogranite porphyry by partial melting of a subducting slab. The diorite and the plagiogranite porphyries have both been subjected to intense hydrothermal alteration and associated mineralization, but the productive porphyry is the plagiogranite porphyry. Three alteration and mineralization stages, including pre-, syn- and post-ore stages, have been recognized. The pre-ore stage formed a barren propylitic alteration which is widespread in the volcanic complex. The syn-ore stage is divided into three sub-stages: Stage 1 is characterized by potassic alteration with chalcopyrite + bornite + chalcocite; Stage 2 is marked by chlorite–sericite–albite alteration with chalcopyrite ± pyrite ± bornite; Stage 3 is represented by phyllic alteration with chalcopyrite + pyrite ± molybdenite. The post-ore stage produced a barren argillic alteration limited to the diorite porphyry. A specific feature of the Tuwu deposit is that the productive porphyry was emplaced into a very mafic package, and reaction of the resulting fluids with the ferrous iron-rich hostrocks was a likely reason that Tuwu is the largest porphyry in the district.  相似文献   

15.
我国是世界上最大的铜精矿进口国,研究不同产地铜精矿的矿物学特征,能支撑铜精矿原产地分析及相关固体废物属性鉴定.本文研究对象为来自8个国家12个矿区的进口铜精矿样品,采用X射线荧光光谱(XRF)、X射线粉晶衍射(XRD)以及偏光显微镜进行综合分析,探寻这些矿区铜精矿的元素组成、矿物组合特征,探讨不同成因类型铜精矿的矿物学...  相似文献   

16.
长江中、下游地区块状硫化物矿床普遍受到燕山期岩浆及其热液的改造与叠加.本文以铜陵冬瓜山矿床为例,探讨这类矿床的成矿机制.该矿床主要由层状硫化物矿体组成,伴有矽卡岩型和斑岩型矿体.野外地质观察及室内矿相学的研究表明,冬瓜山层状矿体中矿石遭受了强烈的热变质作用及热液交代作用.进变质过程中形成的结构主要为黄铁矿受燕山期岩浆侵...  相似文献   

17.
《International Geology Review》2012,54(10):1212-1238
The Barrigão re-mobilized copper vein deposit, Iberian Pyrite Belt, southern Portugal, is located about 60 km south of Beja and 10 km southeast of the Neves Corvo ore deposit, in Alentejo Province. The deposit is structurally associated with a NE–SW striking fault zone inferred to have developed during late Variscan deformation. The copper ore itself is a breccia-type ore, characterized by up to four ore-forming stages, with the late stages showing evidence of fluid-driven element re-mobilization. The ore is dominated by chalcopyrite?+?tennantite-tetrahedrite, with minor arsenopyrite, pyrite, and löllingite. The supergene paragenesis is composed mainly of bornite, covellite, and digenite. Whole-rock analyses show anomalous tin and germanium contents, with averages of 320 and 61 ppm, respectively. Electron microprobe analysis of Barrigão ores revealed the germanium and tin to be restricted to chalcopyrite, which underwent late-stage hydrothermal fluid overprint along distinct vein-like zones. The measured zonal enrichment of tin and germanium is related to limited element re-mobilization associated with mineral replacement, which resulted in distinctive mineral disequilibrium. Fluid-driven element zoning affected chalcopyrite and tennantite coevally. The average contents of germanium and tin in chalcopyrite are of 0.19 and 0.55 wt.%, respectively, as confirmed through additional micro-proton-induced X-ray emission (micro-PIXE) analysis. The distribution of tin and germanium in chalcopyrite correlates strongly with iron. Tin and germanium covary. Minute sub-microscopic inclusions of an unknown Cu–Sn–Ge sulphide phase have been detected in chalcopyrite and in small vugs therein. These inclusions hint at a stanniferous sulphide as the most possible host for tin and germanium in chalcopyrite, although the idea of limited incorporation of these two elements through element substitution cannot be completely excluded.  相似文献   

18.
The Ni-Co-Cu ores of Pevkos and Lakxia tou Mavrou, Limassol Forest, Cyprus, have been investigated microscopically and by electron microprobe analysis. At Pevkos, the mineral association consists of pyrrhotite, pentlandite, maucherite, chalcopyrite, cubanite, magnetite, chromite and valleriite with minor amounts of westerveldite, bornite, neodigenite, covellite and cobaltite. The mineralization at Lakxia tou Mavrou comprises pyrrhotite, pentlandite, löllingite, chalcopyrite, cubanite and chromite with traces of magnetite, pyrite, maucherite and valleriite. Paragenetic, compositional and textural features suggest a nonmagmatic origin for the sulfides and arsenides; they were deposited during serpentinization of the ultramafic host rocks. A conceptual model for mineralization linked to decreasing temperatures in a hydrothermal system is presented.  相似文献   

19.
The supergene Au in weathering crusts of both the Suzdal and Raygorodok deposits is characterized by enhanced fineness, grain size, crystallinity, and the appearance of botryoidal aggregates of crystals. In the weathering crust of the Suzdal deposit, the exogenous Au is associated primarily with scorodite and carbonates; for Raygorodok, with chalcocite, bornite, hydrocarbonates and Cu hydrosulfates. The difference in the mineral associations of supergene Au at the deposits is determined by the occurrence of various mineral concentrators of Au in the primary endogenous substrate: arsenopyrite and pyrite at the Suzdal deposit and chalcopyrite with pyrite at the Raygorodok deposit. Due to the much greater mobility of Ag in the supergene zone, the weathering crusts are likely to contain submicron microinclusions of Ag minerals beyond the zones of Au concentration.  相似文献   

20.
四川拉拉铜矿床成因研究   总被引:18,自引:0,他引:18  
四川拉拉铜矿产于古元古宇河口群落凼组 ,成矿围岩为一套细碧角斑质火山岩及以硅质岩、条带状钠长岩和萤石化黑云母岩为主的喷气岩 ,矿体呈似层状、透镜状。矿石呈条带状、浸染状 ,部分呈角砾状 .。矿石矿物呈他形粒状以填隙方式产出 ,并见交代溶蚀结构和黄铁矿的胶状结构。矿石矿物主要为黄铜矿、黄铁矿及少量斑铜矿、辉钼矿。黄铁矿的常量元素、Co/Ni、S/Se均显示火山喷流 -沉积矿床的特征。铅同位素及硫同位素资料表明 ,铜铁等金属物质主要来源于围岩 ,而硫以深源为主 ,并有海水硫酸盐参与。矿床属火山喷流-沉积型硫化物矿床。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号