首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intraplate volcanism during the Late Cenozoic in the Leiqiong area of southernmost China, with basaltic lava flows covering a total of more than 7000 km2, has been attributed to an underlying Hainan plume. To clarify detailed features of the Hainan plume, such as the morphology of its magmatic conduits, the depth of its magmatic pool in the upper mantle and the pattern of mantle upwelling, we determined tomographic images of the mantle down to a depth of 1100 km beneath southern China using 18,503 high-quality arrival-time data of 392 distant earthquakes recorded by a dense seismic array. Our results show a mushroom-like continuous low-velocity anomaly characterized by a columnar tail with a diameter of 200–300 km extending down to the lower mantle beneath north of the Hainan hotspot and a head spreading laterally in and around the mantle transition zone, indicating a magmatic pool in the upper mantle. Further upward, the plume head is decomposed into smaller patches, and when reaching the base of the lithosphere, a pancake-like anomaly has formed to feed the Hainan hotspot. This result challenges the classical model of a fixed thermal plume that rises vertically to the surface. Hence we propose a new layering-style model for the magmatic upwelling of the Hainan plume. Our results indicate spatial complexities and variations of mantle plumes probably due to heterogeneous compositions and thermochemical structures of the deep mantle.  相似文献   

2.
The Cape Verde hotspot, like many other Ocean Island Basalt provinces, demonstrates isotopic heterogeneity on a 100–200 km scale. The heterogeneity is represented by the appearance of an EM1-like component at several of the southern islands and with a HIMU-like component present throughout the archipelago. Where the EM1-like component is absent, a local DMM-like component replaces the EM1-like component. Various source lithologies, including peridotite, pyroxenite and eclogite have been suggested to contribute to generation of these heterogeneities; however, attempts to quantify such contributions have been limited. We apply the minor elements in olivine approach (Sobolev et al. in Nature 434:590–597, 2005; Science, doi: 10.1126/science.1138113, 2007), to determine and quantify the contributions of peridotite, pyroxenite and eclogite melts to the mantle heterogeneity observed at Cape Verde. Cores of olivine phenocrysts of the Cape Verde volcanics have low Mn/FeO and low Ni*FeO/MgO that deviate from the negative trend of the global array. The global array is defined by mixing between peridotite and pyroxenite, whereas the Cape Verde volcanics indicate contribution of an additional eclogite source. Eclogite melts escape reaction with peridotite either by efficient extraction in an area of poor mantle flow or by reaction of eclogite melts with peridotite, whereby an abundance of eclogite can seal off the melt from further reaction. Temporal trends of decreasing Mn/FeO indicate that the supply of eclogite melts is increasing. Modelling suggests the local DMM-like end-member is formed from a relatively peridotite-rich melt, while the EM1-like end-member has a closer affinity to a mixed peridotite–pyroxenite–eclogite melt. Notably the HIMU-like component ranges from pyroxenite–peridotite-rich melt to one with up to 77 % eclogite melt as a function of time, implying that sealing of melt pathways is becoming more effective.  相似文献   

3.
喜马拉雅东构造结岩石圈板片深俯冲的地球物理证据   总被引:4,自引:0,他引:4  
2009~2010年在南迦巴瓦地区进行了宽频带地震和大地电磁探测,分别处理获得东构造结及其邻区的地下300km以上的P波速度图像和两条大地电磁电阻率剖面。通过资料的对比和综合解释,发现电阻率分布与地震波速有较好的对应关系。研究结果表明:南迦巴瓦变质体的上地壳部分呈现明显高速高阻特征,为两侧的雅鲁藏布江缝合带所夹持;中下地壳具有不均匀性,且普遍呈低速低阻特征;印度板块在藏东南向欧亚板块的俯冲前缘越过嘉黎断裂,抵达班公湖-怒江缝合带;在拉萨地体的高速俯冲板片以下100km至200km深度范围内存在大规模的低速异常带,其上盘中下地壳也广泛发育低速高导体,指示青藏高原东南缘可能存在韧性易流动的物质向东、东南逃逸的通道,为印度板块在南迦巴瓦的深俯冲动力学模式提供了地球物理证据。  相似文献   

4.
利用日本气象厅(JMA)以及日本国立大学联合地震观测台网(JUNEC)记录到的3218个地震事件的231918条P波到时资料,反演求得西南日本160km深度范围内的三维P波速度结构。研究表明,在九州地区,俯冲的菲律宾海板块以高速为主要特征,该海洋板块在30~60km深度处的脱水使得弧前地幔楔顶端的橄榄石蛇纹岩化,在120km深度处的脱水使得地幔楔中的岩石局部熔融,融体上升引起该区的火山活动。在本州西部地区大山火山之下,低速异常显著,并伴随低频地震活动,说明该火山可能是个潜在的活火山,将来有喷发的可能性。  相似文献   

5.
Seismic images under 60 hotspots: Search for mantle plumes   总被引:10,自引:0,他引:10  
Dapeng Zhao   《Gondwana Research》2007,12(4):335-355
The mantle plume hypothesis is now widely known to explain hotspot volcanoes, but direct evidence for actual plumes is weak, and seismic images are available for only a few hotspots. In this work, we present whole-mantle tomographic images under 60 major hotspots on Earth. The lateral resolution of the tomographic images is about 300 km under the continental hotspots and 400–600 under the oceanic hotspots. Twelve plume-like, continuous low-velocity (low-V) anomalies in both the upper and lower mantle are visible under Hawaii, Tahiti, Louisville, Iceland, Cape Verde, Reunion, Kerguelen, Amsterdam, Afar, Eifel, Hainan, and Cobb hotspots, suggesting that they may be 12 whole-mantle plumes originating from the core–mantle boundary (CMB). Clear upper-mantle low-V anomalies are visible under Easter, Azores, Vema, East Australia, and Erebus hotspots, which may be 5 upper-mantle plumes. A mid-mantle plume may exist under the San Felix hotspot. The active intra-plate volcanoes in Northeast Asia (e.g., Changbai, Wudalianchi, etc.) are related to the stagnant Pacific slab in the mantle transition zone. The Tengchong volcano in Southwest China is related to the subduction of the Burma microplate under the Eurasian plate. Although low-V anomalies are generally visible in some depth range in the mantle under other hotspots, their plume features are not clear, and their origins are still unknown. The 12 whole-mantle plumes show tilted images, suggesting that plumes are not fixed in the mantle but can be deflected by the mantle flow. In most cases, the seismic images under the hotspots are complex, particularly around the mantle transition zone. A thin low-V layer is visible right beneath the 660-km discontinuity under some hotspots, while under a few other hotspots, low-V anomalies spread laterally just above the 660-km discontinuity. These may reflect ponding of plume materials in the top part of the lower mantle or the bottom of the upper mantle. The variety of behaviors of the low-V anomalies under hotspots reflects strong lateral variations in temperature and viscosity of the mantle, which control the generation and ascending of mantle plumes as well as the flow pattern of mantle convection.  相似文献   

6.
Presented in this paper is a high resolution Sv-wave velocity and azimuthal anisotropy model for the upper mantle beneath the North Atlantic and surrounding region derived from the analysis of about 9000 fundamental and higher-mode Rayleigh waveforms. Much of the dataset comes from global and national digital seismic networks, but to improve the path coverage a number of instruments at coastal sites in northwest Europe, Iceland and eastern Greenland was deployed by us and a number of collaborators. The dense path coverage, the wide azimuthal distribution and the substantial higher-mode content of the dataset, as well as the relatively short path-lengths in the dataset have enabled us to build an upper mantle model with a horizontal resolution of a few hundred kilometers extending to 400 km depth. Low upper mantle velocities exist beneath three major hotspots: Iceland, the Azores and Eifel. The best depth resolution in the model occurs in NW Europe and in this area low Sv-velocities in the vicinity of the Eifel hotspot extend to about 400 km depth. Major negative velocity anomalies exist in the North Atlantic upper mantle beneath both Iceland and the Azores hotspots. Both anomalies are, above 200 km depth, 4–7% slow with respect to PREM and elongated along the mid-Atlantic Ridge. Low velocities extend to the south of Iceland beneath the Reykjanes Ridge where other geophysical and geochemical observations indicate the presence of hot plume material. The low velocities also extend beneath the Kolbeinsey Ridge north of Iceland, where there is also supporting geochemical evidence for the presence of hot plume material. The low-velocity upper mantle beneath the Kolbeinsey Ridge may also be associated with a plume beneath Jan Mayen. The anomaly associated with the Azores extends from about 25°N to 45°N along the ridge axis, which is in agreement with the area influenced by the Azores Plume, predicted from geophysical and geochemical observations. Compared to the anomaly associated with Iceland, the Azores anomaly is elongated further along the ridge, is shallower and decays more rapidly with depth. The fast propagation direction of horizontally propagating Sv-waves in the Atlantic south of Iceland correlates well with the east–west ridge-spreading direction at all depths and changes to a direction close to NS in the vicinity of Iceland.  相似文献   

7.
Jianshe Lei  Dapeng Zhao 《Tectonophysics》2005,397(3-4):281-295
We present the first seismic image of the upper mantle beneath the active intraplate Changbai volcano in Northeast Asia determined by teleseismic travel time tomography. The data are measured at a new seismic network consisting of 19 portable stations and 3 permanent stations. Our results show a columnar low-velocity anomaly extending to 400-km depth with a P-wave velocity reduction of up to 3%. High velocity anomalies are visible in the mantle transition zone, and deep-focus earthquakes occur at depths of 500–600 km under the region, suggesting that the subducting Pacific slab is stagnant in the transition zone, as imaged clearly by global tomography. These results suggest that the intraplate Changbai volcano is not a hotspot like Hawaii but a kind of back-arc volcano related to the deep subduction and stagnancy of the Pacific slab under Northeast Asia.  相似文献   

8.
通过中国及邻近陆海地区天然地震面波层析成像三维Vs速度结构的系统地质构造解析,笔者论述了中国及邻近陆海地区软流圈三维结构特征,发现该区软流圈内既有高速块体,又有低速异常体,显示软流圈内存在纵向与横向上的不均匀性,研究软流圈内低速异常体三维几何结构表明,南海低速异常体呈复蘑菇状,结合地幔体波层析成像研究显示,南海地区存在巨型复蘑菇状地幔低速柱头。笔者还探讨了软流圈对岩石圈结构的影响及其相互作用问题。  相似文献   

9.
The Cadamosto Seamount is an unusual volcanic centre from Cape Verde, characterised by dominantly evolved volcanics, in contrast to the typically mafic volcanic centres at Cape Verde that exhibit only minor volumes of evolved volcanics. The magmatic evolution of Cadamosto Seamount is investigated to quantify the role of magma-crust interaction and thus provide a perspective on evolved end-member volcanism of Cape Verde. The preservation of mantle source signatures by Nd–Pb isotopes despite extensive magmatic differentiation provides new insights into the spatial distribution of mantle heterogeneity in the Cape Verde archipelago. Magmatic differentiation from nephelinite to phonolite involves fractional crystallisation of clinopyroxene, titanite, apatite, biotite and feldspathoids, with extensive feldspathoid accumulation being recorded in some evolved samples. Clinopyroxene crystallisation pressures of 0.38–0.17 GPa for the nephelinites constrain this extensive fractional crystallisation to the oceanic lithosphere, where no crustal assimilants or rafts of subcontinental lithospheric mantle are available. In turn, magma-crust interaction has influenced the Sr, O and S isotopes of the groundmass and late crystallising feldspathoids, which formed at shallow crustal depths reflecting the availability of oceanic sediments and anhydrite precipitated in the ocean crust. The Nd–Pb isotopes have not been affected by these processes of magma-crust interaction and hence preserve the mantle source signature. The Cadamosto Seamount samples have high 206Pb/204Pb (>19.5), high εNd (+6 to +7) and negative Δ8/4Pb, showing affinity with the northern Cape Verde islands as opposed to the adjacent southern islands. Hence, the Cadamosto Seamount in the west is located spatially beyond the EM1-like component found further east. This heterogeneity is not encountered in the oceanic lithosphere beneath the Cadamosto Seamount despite greater extents of fractional crystallisation at oceanic lithospheric depths than the islands of Fogo and Santiago. Our data provide new evidence for the complex geometry of the chemically zoned Cape Verde mantle source.  相似文献   

10.
周华伟  林清良 《地学前缘》2002,9(4):285-292
文中介绍有关西藏—喜马拉雅碰撞带的一项地震层析成像研究。根据一个用天然地震数据产生的全球波速模型 ,印度板块有可能以近水平状俯冲于整个西藏高原之下至 16 5~ 2 6 0km深度。西藏岩石圈具有低波速地壳和高波速下岩石圈 (75~ 12 0km深 )。在 12 0~ 16 5km深度范围 ,西藏岩石圈与俯冲的印度板块之间有一层低速软流圈物质。高原中部从地表到 310km深处有一低速体 ,说明地幔物质有可能穿过俯冲板块的脆弱部位上隆。这些结果以及野外实测的地壳缩短值说明高原的抬升得助于印度板块的近水平俯冲。我们推论俯冲印度板块的升温上浮以及上覆软流层的存在是造成西藏高原高海拔抬升以及内部地表仍相对平坦的主要原因。2 0 0 1年 1月 2 6日在印度西部发生的毁灭性大地震有可能是俯冲应力在印度板块后缘薄弱处引发的岩石圈大断裂。  相似文献   

11.
利用冈底斯中-东部197个宽频带天然地震台站记录到的数据和远震P波走时层析成像方法,获得了该区域的P波速度扰动图像。层析成像结果显示研究区地壳和上地幔地震波速度结构存在着复杂的空间变化。首先,在藏南拆离系断层(STD)以北的特提斯喜马拉雅地壳中存在着较强的低速异常,但是该低速异常的北端在远离裂谷带的地方并没有明显越过雅鲁藏布江缝合线(YZS),这与前人的观测结果略有不同;在亚东-古露(YGR)和措美-桑日(CSR)裂谷带的下方存在低速异常,但异常强度都没有前者大;在两个裂谷带之间的拉萨地块中-南部,地壳表现为强高速特征。这些结果表明,影响青藏高原地壳构造演化的"地壳通道流(Crustal Channel Flow)"在藏南主要分布在特提斯喜马拉雅地区,在雅鲁藏布江缝合线以北的冈底斯地区,可能主要局限于沿裂谷带分布。其次,被解释为印度岩石圈地幔的上地幔高速异常,在研究区西部,抵达了雅鲁藏布江缝合线以北100km或更远的地方,而在研究区东部,并没有越过雅鲁藏布江缝合线,而是停留在缝合线以南~100km的高喜马拉雅下方,印证了前人给出的印度板块俯冲角度在研究区附近存在东西向变化的层析成像结果。此外,我们的层析成像结果还印证了冈底斯东南侧的上地幔低速异常根植于上地幔底部,我们认为该现象可能与巽他块体的顺时针旋转引起向东俯冲的缅甸弧向西后撤有关。  相似文献   

12.
We present a new three-dimensional model of P-velocity anomalies in the upper mantle beneath the Circum-Arctic region based on tomographic inversion of global data from the catalogues of the International Seismological Center (ISC, 2007). We used travel times of seismic waves from events located in the study area which were recorded by the worldwide network, as well as data from remote events registered by stations in the study region. The obtained mantle seismic anomalies clearly correlate with the main lithosphere structures in the Circum-Arctic region. High-velocity anomalies down to 250–300 km depth correspond to Precambrian thick lithosphere plates, such as the East European Platform with the adjacent shelf areas, Siberian Plate, Canadian Shield, and Greenland. It should be noted that lithosphere beneath the central part of Greenland appears to be strongly thinned, which can be explained by the effect of the Iceland plume which passed under Greenland 50–60 million years ago. Beneath Chukotka, Yakutia, and Alaska we observe low-velocity anomalies which represent weak and relatively thin actively deformed lithosphere. Some of these low-velocity areas coincide with manifestations of Cenozoic volcanism. A high-velocity anomaly at 500–700 km depth beneath Chukotka may be a relic of the subduction zone which occurred here about 100 million years ago. In the oceanic areas, the tomography results are strongly inhomogeneous. Beneath the North Atlantic, we observe very strong low-velocity anomalies which indicate an important role of the Iceland plume and active rifting in the opening of the oceanic basin. On the contrary, beneath the central part of the Arctic Ocean, no significant anomalies are observed, which implies a passive character of rifting.  相似文献   

13.
长白山火山的起源和太平洋俯冲板块之间的关系   总被引:6,自引:0,他引:6  
近年来,尽管不同学科通过不同手段对长白山火山进行过广泛研究,然而,目前人们对它的起源仍不清楚。利用全球地震层析成像和区域层析成像结果,综合分析了长白山火山的起源。结果表明,它的起源既不同于夏威夷等板内热点火山,也不同于日本等岛弧火山,而是一种与太平洋俯冲板块在地幔转换带内的滞留和深部脱水等过程密切相 关的弧后板内火山。  相似文献   

14.
To better understand the lithosphere mantle collision tectonics between the India plate and Asia plate, we determine three dimensional P wave velocity structure beneath western Tibet using 27,439 arrival times from 2,174 teleseismic events recorded by 182 stations of Hi-CLIMB Project and 16 stations in the north of Hi-CLMB. Our tomographic images show the velocity structure significantly difference beneath northern and southern Qiangtang, which can further prove that the Longmu Co-Shuanghu ophiolitic belt is a significant tectonic boundary fault zone. There are two prominent high velocity anomalies and two prominent low velocity anomalies in our images. One obvious high velocity anomalies subduct beneath the Tibet at the long distance near 34°N, whereas it is broke off by an obvious low velocity anomaly under the IYS. We interpret them as northward subducting Indian lithosphere mantle and the low velocity anomanly under IYS likely reflects mantle material upwelling triggered by tearing of the northward subduction Indian lithosphere. The other prominent high velocity anomaly was imaged at a depth from 50 km to 200 km horizontal and up to the northern Qiangtang with its southern edge extending to about 34°N through Hoh Xil block. We infer it as the southward subducting Asia lithosphere mantle. The other widely low velocity anomaly beneath the Qiangtang block lies in the gap between the frontier of India plate and Asia plate, where is the channel of mantle material upwelling.  相似文献   

15.
We determine detailed 3-D Vp and Vs structures of the crust and uppermost mantle beneath the Kyushu Island, southwest Japan, using a large number of arrival times from local earthquakes. From the obtained Vp and Vs models, we further calculate Poisson’s ratio images beneath the study area. By using this large data set, we successfully image the 3-D seismic velocity and Poisson’s ratio structures beneath Kyushu down to a depth of 150 km with a more reliable spatial resolution than previous studies. Our results show very clear low Vp and low Vs anomalies in the crust and uppermost mantle beneath the northern volcanoes, such as Abu, Kujyu and Unzen. Low-velocity anomalies are seen in the mantle beneath most other volcanoes. In contrast, there are no significant low-velocity anomalies in the crust or in the upper mantle between Aso and Kirishima. The subducting Philippine Sea slab is imaged generally as a high-velocity anomaly down to a depth of 150 km with some patches of normal to low seismic wave velocities. The Poisson’s ratio is almost normal beneath most volcanoes. The crustal seismicity is distributed in both the high- and low-velocity zones, but most distinctly in the low Poisson’s ratio zone. A high Poisson’s ratio region is found in the forearc crustal wedge above the slab in the junction area with Shikoku and Honshu; this high Poisson’s ratio could be caused by fluid-filled cracks induced by dehydration from the Philippine Sea slab. The Poisson’s ratio is normal to low in the forearc mantle in middle-south Kyushu. This is consistent with the absence of low-frequency tremors, and may indicate that dehydration from the subducting crust is not vigorous in this region.  相似文献   

16.
Upper-mantle velocity structure of the lower Great Lakes region   总被引:1,自引:0,他引:1  
The lithospheric root beneath North America contains a prominent indentation beneath the lower Great Lakes region that is approximately aligned with the track of the New England seamounts. By combining data from the recently installed POLARIS network in southern Ontario, Canada with data acquired in 1996 during the Abitibi–Grenville teleseismic experiment, we have performed a tomographic inversion using 4543 P-wave traveltimes from 213 events (5.0 ≤ mb ≤ 6.6), and 1860 S-wave traveltimes from 98 events (5.0 ≤ mb ≤ 6.6), to obtain high-resolution images of the upper mantle beneath the lower Great Lakes. Two salient features of the 3-D models are: 1) a patchy, NNW-trending low-velocity region, and 2) a linear, NE-striking high-velocity anomaly. S-wave images show that the low-velocity anomaly changes from an arcuate feature at 400-km depth, to a NW-striking linear feature at 100-km depth beneath the Neoproterozoic Ottawa–Bonnechere graben. The linear high-velocity anomaly extends to at least 300-km depth and strikes parallel to surface geological belts and the Laurentian continental margin. We interpret the high-velocity anomaly as a possible relict slab associated with ca. 1.35–1.3 Ga subduction beneath the Composite Arc Belt, whereas the low-velocity anomaly is interpreted as a zone of alteration and metasomatism associated with the ascent of magmas that produced the Late Cretaceous Monteregian plutons. Our data support an interpretation of these plutons as melts generated by the passage of North America across a mantle plume, rather than a far-field response to opening of the North Atlantic.  相似文献   

17.
A dense nationwide seismic network recently constructed in Japan has resulted in the production of a large amount of high-quality data that have enabled the high-resolution imaging of deep seismic structures in the Japanese subduction zone. Seismic tomography, precise locations of earthquakes, and focal mechanism research have allowed the identification of the complex structure of subducting slabs beneath Japan, revealing that the subducting Philippine Sea slab underneath southwestern Japan has an undulatory configuration down to a depth of 60–200 km, and is continuous from Kanto to Kyushu without disruption or splitting, even within areas north of the Izu Peninsula. Analysis of the geometry of the Pacific and Philippine Sea slabs identified a broad contact zone beneath the Kanto Plain that causes anomalously deep interplate and intraslab earthquake activity. Seismic tomographic inversions using both teleseismic and local events provide a clear image of the deep aseismic portion of the Philippine Sea slab beneath the Japan Sea north of Chugoku and Kyushu, and beneath the East China Sea west of Kyushu down to a depth of ∼450 km. Seismic tomography also allowed the identification of an inclined sheet-like seismic low-velocity zone in the mantle wedge beneath Tohoku. A recent seismic tomography work further revealed clear images of similar inclined low-velocity zones in the mantle wedge for almost all other areas of Japan. The presence of the inclined low-velocity zones in the mantle wedge across the entirety of Japan suggests that it is a common feature to all subduction zones. These low-velocity zones may correspond to the upwelling flow portion of subduction-induced convection systems. These upwelling flows reach the Moho directly beneath active volcanic areas, suggesting a link between volcanism and upwelling.  相似文献   

18.
High-precision Pb isotope data and Sr–Nd–Hf isotope data are presented together with major and trace element data for samples spanning the 4.6 Ma history of volcanism at Santiago, in the southern Cape Verde islands. Pb isotope data confirm the positive Δ8/4 signature of the southern islands indicating that the north–south compositional heterogeneity in the Cape Verde archipelago has persisted for at least 4.6 Ma. The Santiago volcanics show distinct compositional differences between the old, intermediate and young volcanics, and suggest greater involvement of an enriched mantle (EM1)-like source over time. Isotopic variations in the Santiago volcanics indicate convergence towards a homogeneous EM1-like end-member and distinct temporal variations in the FOZO-like end-member. Santiago and Santo Antão (a northern island, Holm et al. 2006), show a simultaneous decrease in 208Pb/204Pb of the high 206Pb/204Pb FOZO-like source with time. Such systematic archipelago-wide variations in the FOZO-like component suggest that this component is more likely to be present as a coherent package of recycled ocean crust rather than as multiple small heterogeneities dispersed in the upwelling mantle. The temporal variations in 208Pb/204Pb reflect minor lateral variations in Th/U of this recycled ocean crust package entering the melting zone beneath the islands. The location of the EM1-like component is more equivocal. A shallow lithospheric location is possible, but this would require a coincidence between spatial compositional variations in the lithosphere (EM1 is spatially restricted to the southern islands) and flow lines in the upwelling mantle revealed by seismic anisotropy. Therefore, we favour a deeper asthenospheric mantle source for the EM1-like source.  相似文献   

19.
《Tectonophysics》1987,140(1):29-47
Several long-range seismic profiles, obtained during the last ten years in Siberia, show the complicated lithospheric structure of the Siberian platforms. The three component observations, conducted at distances up to 3000 km, made it possible to obtain information on P- and S-velocities in the crust, on P-velocity and Q-factor for the upper mantle, and on the seismic boundaries responsible for reflected, refracted and converted waves down to a depth of 400–700 km.The crustal models are typical of old platforms of Eurasia: the average thickness of 40 km, three layers with P-velocities 6.2, 6.5, 7.0 km/s and thicknesses of 10–15 km are distinguished. The depth to the M discontinuity varies from 45–50 km beneath the old Tunguss depression, to 35–40 km beneath the younger Vilyui basin. The most complicated Moho structure is observed in the boundary between the West Siberian and the Siberian platforms.A strong inhomogeneity of P-velocity models was revealed for the upper mantle. The horizontal inhomogeneities are more larger in the uppermost mantle to depths of 80–100 km, where P-velocities vary from 8.0–8.2 km/s beneath the young West Siberian plate to 8.4–8.6 km/s beneath some blocks of the Siberian craton. The fine vertical inhomogeneity was studied with reflections correlated after computer processing of seismograms. They outlined several low-velocity layers 20–50 km thick. The layers were characterized by low Q as well.Intensive waves were recorded from the transition zone between the upper and lower mantle. The top of the zone is nearly horizontal in the area; its depth is 400 ± 25 km. The bottom of the zone lies at about 700 km.  相似文献   

20.
2013年12月16日三峡库区巴东发生Ms5.1地震.根据eigen-6c2模型研究了巴东地区的8-638阶卫星重力异常, 结果表明: 该地区场源深度为10 km的地壳为局部重力低异常, 反映了该处物质密度较周围偏低, 形成低密度层.同时, 研究了该地区速度结构剖面, 结果表明: 巴东地区地壳5~9 km及10~15 km深处存在上下两个低速层, 上部低速层与水库渗水有关, 下部低速层与地幔热流体的上涌有关.低密度层和低速层的确定为韧性流变层的存在提供了证据.巴东地震是地壳深部能量的长期集聚与突发释放, 属构造地震.然而, 库水下渗引起的上部低速异常降低了断层活动的阈值, 震前库水载荷的变化对此次巴东地震的发生起到了触发作用.通过对比次声波和地震波, 我们得出次声波仪记录到的异常信号为本地次声波.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号