首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Strontium isotope stratigraphy was performed on oyster shells from the Late Jurassic of the Lusitanian Basin (central Portugal). This represents the first approach to obtain numerical ages for these strata. The new chronostratigraphic data provide a more precise age determination of several units. After a basin-wide hiatus sedimentation in the Late Jurassic is proven in the Cabo Mondego and Cabaços formations to resume as early as the Middle Oxfordian. The Alcobaça formation can be placed in the latest Late Oxfordian to Late Kimmeridgian, while data from the upper part of the Abadia Formation indicate an Early to Late Kimmeridgian age. The Farta Pao formation ranges from the latest Kimmeridgian to the latest Tithonian. The largely synchronous Sobral, Arranhó I, and Arranhó II members are overlain by the late Early to Late Tithonian Freixial Member. The brief, local carbonate incursion of the Arranhó I member marks the Kimmeridgian–Tithonian boundary. Oysters are shown once more to be suitable for strontium isotope studies. Their calcitic shells are often unaffected by diagenesis. In particular for marginal marine Jurassic and Cretaceous strata, where belemnites are usually absent, oysters may serve as a valuable tool for isotope stratigraphy.  相似文献   

2.
新的地层和古生物学研究结果表明,措勤盆地在晚古生代一早中生代不存在长达75Ma以上的沉积间断.其中,晚二叠世-晚三叠世诺利期都是海相碳酸盐岩地层,晚三叠世瑞替期-早中侏罗世为陆缘碎屑岩地层.两者之间为角度不整合接触.措勤盆地在晚二叠世-晚三叠世诺利期一直处于海相碳酸盐岩盆地中.晚三叠世瑞替期-早中侏罗世仍然是接受巨厚沉积的低洼地区。从宏观的油气勘探的战略评价角度看.措勤盆地在中二叠世栖霞期-晚三叠世诺利期的海相碳酸盐岩地层具有生油层的性质,上三叠统瑞替阶-中下侏罗统具有盖层的性质,两者之间的角度不整合具有储集层的性质。措勤盆地中二叠统-下侏罗统构成一个油气的有利勘探层系.称为古格层系。  相似文献   

3.
新的地层和古生物学研究结果表明,措勤盆地在晚古生代一早中生代不存在长达75Ma以上的沉积间断.其中,晚二叠世-晚三叠世诺利期都是海相碳酸盐岩地层,晚三叠世瑞替期-早中侏罗世为陆缘碎屑岩地层.两者之间为角度不整合接触.措勤盆地在晚二叠世-晚三叠世诺利期一直处于海相碳酸盐岩盆地中.晚三叠世瑞替期-早中侏罗世仍然是接受巨厚沉积的低洼地区。从宏观的油气勘探的战略评价角度看.措勤盆地在中二叠世栖霞期-晚三叠世诺利期的海相碳酸盐岩地层具有生油层的性质,上三叠统瑞替阶-中下侏罗统具有盖层的性质,两者之间的角度不整合具有储集层的性质。措勤盆地中二叠统-下侏罗统构成一个油气的有利勘探层系.称为古格层系。  相似文献   

4.
德国北部盆地上侏罗统广泛发育,但野外露头地层普遍出露不全。Hildesheimer Wald地区Wendhausen 6井和Süntel山地区Eulenflucht 1井完整钻遇了上侏罗统牛津阶和启莫里阶地层,为分析该区晚侏罗世沉积演化过程及其所反映的古环境变化规律提供了丰富的资料。通过岩心描述和岩石薄片镜下观察,根据不同层段的颗粒成分、生物组合特征、沉积结构和构造等特征,在2口井的岩心中共划分出14个岩石类型,分别形成于碳酸盐岩斜坡和三角洲环境。建立了该区牛津阶和启莫里阶垂向沉积演化序列,垂向上由Heersum组到Süntel组,沉积环境逐步由外陆棚、内陆棚、临滨过渡到了开阔台地、潮坪环境,表现出了相对海平面降低的进积过程。同时对不同沉积相中保存较好的以低镁方解石为主要成分的牡蛎壳进行原位Mg/Ca值(古温度指标)测试,得出该区牛津期至启莫里期总体表现出了古气候变暖的趋势,且共有3次气候变暖过程。这一古气候变化与由沉积相分析得出的古气候变化一致,且同苏格兰、俄罗斯台地古温度变化趋势有很好的对应关系,表明古气候是控制该区沉积演化的一个重要因素,且牡蛎壳Mg/Ca值可以做为一个古气候指示指标应用于其他地区的古气候分析中。  相似文献   

5.
It has been found that the section in Mount Pakhkal-Kaya consists of three structural units separated by almost bedding-plane faults presumably arranged in a normal stratigraphic succession: conglomerate succession (I, ?J3ox (Oxfordian)), carbonate succession (II, ?J3km(Kimmeridgian)-tt(Tithonian)), and a conglomerate-breccia unit) (III, J3km-tt). Each of these successions corresponds to a certain stage of basin evolution, viz., formation of a Gilbert-type delta and the accumulation of a carbonate platform rimmed with a shoal and destruction of the platform margin during its periodic exposures.  相似文献   

6.
East Siberia comprises three petroleum provinces—Lena-Tunguska, Lena-Vilyuy, and Yenisey-Anabar—that occupy the area of the Siberian craton. Petroleum has been generated and has accumulated in Precambrian rifts beneath the sedimentary basins and, more importantly, within the section of the basin itself. The platformal deposits of the basins extend beneath overthrusts on the east and south and are covered by sedimentary rocks of the West Siberian overthrusts on the east and south and are covered by sedimentary rocks of the West Siberian province on the west. Permafrost and gas hydrate deposits are present throughout most of East Siberia.

In the Lena-Tunguska province, rifts that developed during Riphean time are filled by thick sedimentary rocks, in which petroleum deposits have formed. In Early Cambrian time a barrier reef extended across the East Siberian craton from southeast to northwest. A lagoon to the west of this reef was the site of thick rhythmic salt deposits, which are the main seal for petroleum in the province. The sedimentary section of the platform cover ranges in age from Late Proterozoic to Permian. More than 25 oil and gas fields have been discovered in the province, all in Riphean through Lower Cambrian rocks.

The Lena-Vilyuy province includes the Vilyuy basin and the Cis-Verkhoyansk foredeep. During Middle Devonian time, a rift formed along the axis of what was to become the Vilyuy basin. This rift is filled by Upper Devonian and Lower Carboniferous basalt, elastics, carbonates, and evaporites. During this rift stage the region that was to become the Cis-Verkhoyansk foredeep was an open geosynclinal sea. The sedimentary cover consists of Permian, coal-bearing sedimentary rocks as well as elastics from the Lower Triassic, Lower Jurassic, Lower Cretaceous, and Upper Cretaceous, the latter only in the Vilyuy basin. In the Lena-Vilyuy petroleum province as many as nine gas and gas-condensate fields have been discovered.

The Yenisey-Anabar province is largely an extension of the West Siberian petroleum province. Permian sedimentary rocks are present only in the east, where they consist of elastics and some salt. The Triassic, Jurassic, and Cretaceous each are represented by thick clastic deposits. Total thickness of the sedimentary cover is up to 15 km on the west and 8 km on the east. Twelve gas and gas-condensate fields have been discovered in the western part of the province.  相似文献   

7.
The Oxfordian–Lower Hauterivian section of the Nordvik Peninsula (northern Central Siberia) is a reference for developing zonal scales for various fossil groups and improving the Boreal zonal standard. In the middle 1950s–late 1980s, it was studied extensively by geologists, stratigraphers, lithologists, and experts on various fossil groups. These studies yielded rich fossil and microfossil collections and a set of parallel zonal scales for various faunal groups. Recently, a new detailed ammonite zonation of the Oxfordian and Kimmeridgian units of this section has been proposed. These results contradict the previous biostratigraphic data on ammonites, foraminifers, and palynomorphs. In the present paper, all the biostratigraphic data on the Oxfordian and Kimmeridgian units of the Nordvik Peninsula (Cape Urdyuk-Khaya) and northern Central Siberia undergo a comprehensive analysis and comparison with those on the Boreal Realm. The ammonite-constrained stratigraphic position of the lower Upper Jurassic in the Cape Urdyuk-Khaya section is interpreted as Upper Oxfordian or Middle Oxfordian. In our view, this difference in the understanding is due to the misidentification of some Oxfordian ammonite forms. The zones based on other fossil groups (foraminifers, dinocysts) which were distinguished in the Upper Oxfordian and Kimmeridgian sections of the Nordvik Peninsula are well traceable circumarctically. Their stratigraphic position in various regions of the Northern Hemisphere is constrained by ammonites and bivalves. However, if we use the last alternative ammonite zonation of this section part, hardly explicable contradictions will appear in interregional foraminiferal and dinocyst correlations.  相似文献   

8.
Jurassic strata are widespread through Arctic Siberia and host oil and gas fields. However, in most cases, the geology of such vast areas still remains unexplored, and study of the Jurassic stratigraphy and reconstructions of geologic history are possible only through analysis of sediment cores. In this connection, there is a clear need for detailed studies of microfaunas (foraminifera, ostracods) and palynomorphs (dinocysts, spores, and pollen). The studied reference section of the Upper Jurassic and Lower Cretaceous is located on the left side of Anabar Bay of the Laptev Sea (Nordvik Peninsula, Cape Urdyuk-Khaya). An uninterrupted and continuous section from the Upper Oxfordian to the Lower Valanginian is exposed in coastal cliffs and consists mainly of silty clay deposits with abundant macro- and microfossils. Integrated field studies (biostratigraphy, lithostratigraphy, sedimentology) allow a more detailed characterization of the regional geologic framework. A detailed subdivision of the section is based on the systematic composition of ammonites from Upper Oxfordian and Kimmeridgian deposits. Several foraminiferal zones of the Upper Oxfordian and Lower Volgian are defined, and some of them are denfined for the first time. The distribution of ostracods in the section is analyzed for the first time. The section is also studied using palynological analysis, that results in its detailed subdivision on palynological data and recognition of two sequences of palynostratigraphic units. The integrated stratigraphy is used to establish the precise position of stage and substage boundaries. The continuity of the section is defined based on micropaleontological and palynological data.  相似文献   

9.
南天山和静县大山口剖面石炭系野云沟组发育齐全,出露完好,主要由碳酸盐岩及少量碎屑岩组成,总厚度为696.8 m.岩石类型以碳酸盐岩为主,主要包括砾屑灰岩、含陆源碎屑鲕粒灰岩、生物碎屑微晶灰岩、含陆源碎屑砂屑灰岩、微晶灰岩及泥晶灰岩等.野云沟组主要为斜坡相和盆地相沉积,少量为碳酸盐台地相沉积.斜坡相主要发育砾屑灰岩、薄层...  相似文献   

10.
西藏羌塘盆地东部中-上侏罗统沉积特征及沉积相划分   总被引:1,自引:2,他引:1  
详细野外剖面测量基础上,对羌塘盆地东部中-上侏罗统剖面主要岩类的宏观特征(颜色和构造)、物质组分、结构及磁化率等特征进行系统研究,研究区碎屑岩主要为砾岩、砂岩、粉砂岩和泥岩等岩类,磁化率值呈现低→高→低→高→低(雀莫错组→布曲组→夏里组→索瓦组→雪山组)的规律性变化。综合沉积特征显示雀莫错组和雪山组主要为河流相-河控三角洲相沉积,布曲组为碳酸盐缓坡相沉积为主,夏里组主要为潮坪-泻湖相沉积,索瓦组主要为混积陆棚-泻湖-潮坪相沉积,中-晚侏罗世羌塘盆地古水深在下降的总趋势中呈现浅→深→浅→深→浅的升降旋回,盆地沉积中心由东向西迁移,区域构造演化和全球海平面变化共同控制了盆地沉积面貌。  相似文献   

11.
The closure of the western part of the Neotethys Ocean started in late Early Jurassic. The Middle to early Late Jurassic contraction is documented in the Berchtesgaden Alps by the migration of trench-like basins formed in front of a propagating thrust belt. Due to ophiolite obduction these basins propagated from the outer shelf area (=Hallstatt realm) to the interior continent (=Hauptdolomit/Dachstein platform realm). The basins were separated by nappe fronts forming structural highs. This scenario mirrors syn-orogenic erosion and deposition in an evolving thrust belt. Active basin formation and nappe thrusting ended around the Oxfordian/Kimmeridgian boundary, followed by the onset of carbonate platforms on structural highs. Starved basins remained between the platforms. Rapid deepening around the Early/Late Tithonian boundary was induced by extension due to mountain uplift and resulted in the reconfiguration of the platforms and basins. Erosion of the uplifted nappe stack including obducted ophiolites resulted in increased sediment supply into the basins and final drowning and demise of the platforms in the Berriasian. The remaining Early Cretaceous foreland basins were filled up by sediments including siliciclastics. The described Jurassic to Early Cretaceous history of the Northern Calcareous Alps accords with the history of the Western Carpathians, the Dinarides, and the Albanides, where (1) age dating of the metamorphic soles prove late Early to Middle Jurassic inneroceanic thrusting followed by late Middle to early Late Jurassic ophiolite obduction, (2) Kimmeridgian to Tithonian shallow-water platforms formed on top of the obducted ophiolites, and (3) latest Jurassic to Early Cretaceous sediments show postorogenic character.  相似文献   

12.
金玮  王成善  赵兵  李亚林 《西北地质》2006,39(3):97-105
羌塘盆地地处藏北高原,其南北界分别为班公错-怒江缝合带与拉竹龙-金沙江缝合带,盆地面积约180 000 km2.进一步可分为羌北坳陷、中央隆起带和羌南坳陷3个二级构造单元.双湖托纳木地区地处羌北坳陷与中央隆起带毗连地带,索瓦组分布于研究区北部大部分地区,根据地层层序及岩性组合特征,同时结合岩石、古生物、沉积旋回、接触关系等对地层进行了较系统的划分,将索瓦组划分为4个岩性段;索瓦组一段到四段自下而上反映出一个完整的海侵-海退序列,分别为碳酸盐台地-混积缓坡-混积碳酸盐台地-混积外滨浅水陆棚沉积环境;索瓦组三段礁灰岩和油页岩的发现对古环境的恢复以及油气的生储盖研究都具有重要意义;根据区内索瓦组的古生物地层分布和组合特征,建立了珊瑚组合带和双壳类组合带,确定索瓦组为上侏罗统,大致与Oxfordian-Kimmeridgian相当.  相似文献   

13.
The carbon isotope measurements, carried out on subsurface carbonate samples from Oxfordian Jaisalmer Formation, western India, yield positive d13C values up to +3.17%. The most positive Oxfordian C-isotope value corresponds to the carbon isotope excursion measured in samples from from other late Jurassic basins of world. The latest Oxfordian C-isotope values of Jaisalmer Basin fluctuate around 2% while the C-isotope values of 1.50% mark the base of Kimmeridgian. The Oxfordian C-isotope excursion appears to correspond to a time of overall increased organic carbon burial triggered by increased nutrient transfer from continents to oceans during a time of rising global sea level.  相似文献   

14.
北羌塘盆地中部上侏罗统研究新进展   总被引:8,自引:1,他引:7  
北羌塘盆地腹地自然条件恶劣 ,地层研究难度极大。经在北羌塘盆地腹地东湖、河湾山、长水河及半岛湖等地进行了详细的岩石地层及生物地层研究工作 ,依据岩石特征和生物化石特征 ,将上侏罗统二分 :下部灰岩层为索瓦组 ,含 L acunosella triobatiformis- Pentithyris vulgaris、Radulopecten fibrosus- Gervillella aviculoides组合 ,其时限为牛津期 ;上部灰岩、碎屑岩互层为白龙冰河组 ,具 Radulopecten scarburgensis、R.moondanensis、Cladophylliaqeibulaensis、Stylosmilia chaputi化石 ,其主体时限为基默里奇期—提塘期 ,顶部可能跨入早白垩世。白龙冰河组的确立 ,是北羌塘盆地上侏罗统岩石地层与生物地层研究上一个新进展  相似文献   

15.
邵磊  李文厚 《沉积学报》1999,17(3):435-442
吐鲁番-哈密盆地从晚二叠世到晚第三纪经历了复杂的,多旋回的沉积构造演化历史,造成主要地层间均以不整合为界。盆地内沉积相类型丰富,沉积环境随时间的推移而发生改变。在晚石炭世,盆地北部为浅海环境;到晚二叠世,沉积环境由海相转变为陆相,并在上二叠统下部形成大量冲积相或河流相粗碎屑沉积;在三叠纪,沉积物主要形成于冲积相或河流-湖泊环境中,古气候则由干旱转为温暖湿润。早、中侏罗世,沉积环境以湖泊-沼泽相为主;到晚侏罗世,则以辫状河流相为主及干旱气候为特征。在白垩纪,盆地的沉积范围大为缩小,以湖泊环境为主;第三纪,沉积范围则扩大到整个盆地,沉积相以辫状河流及冲积相为特征,沉积气候干旱,局部地区接受了盐类沉积。古流向分析显示,吐-哈盆地具有复杂的沉积搬运体系。在盆地南侧,沉积物搬运方向总是由南向北,表明觉罗塔格山是盆地的主要物源区;而在盆地北侧,博格达山自晚侏罗世开始隆起,构成盆地的另一新的物源区,沉积物搬运方向由北向南。在白垩及第三纪,博格达山成为盆地的主要物源区。  相似文献   

16.
The paper presents results of the lithological study of Upper Jurassic limestones, flyschoids and limestone breccias on the southern side of the Baidar Valley in the Crimean Mountains. Study of the microfacies revealed that the limestones are represented by deposits on lagoons, platform edge shoals, reefs, and forereef aprons on the carbonate platform slope. Flyschoids include deposits in the distributive turbidite channels and hemipelagic sediments in the deep-water part of the basin. Limestone breccias were formed by gravitation flows on the carbonate platform toe-of-slope and slope. The presence of gravitation deposits in the Upper Jurassic carbonate complexes of the Crimean Mountains can testify to the primary clinoform structure of this sedimentary sequence. Comparison of the obtained sedimentological data made it possible to reconstruct the facies model of the Crimean carbonate platform and main episodes of its formation. Development of the carbonate shelf was related to two transgressive-regressive cycles. A dome-shaped reef was formed away from the coast at the initial (Oxfordian) stage. The carbonate platform was formed at the early Kimmeridgian lowstand stage when sediments were deposited in the internal part of the platform adjacent to land. In the late Kimmeridgian and early Tithonian, configuration of the carbonate platform profile resembled a distally steepened ramp, and its active progradation and shelf expansion took place in the course of transgression. Regression in the late Tithonian–early Berriasian led to regressive transformation of the ramp into platform with a flattened shallow-water shelf. Tectonic deformations at the Jurassic/Cretaceous transition promoted the formation of megabreccias on the carbonate platform foreslope. The tectonically reworked rock sequence of the “extinct” carbonate platform was overlapped transgressively by the upper Berriasian or lower Valanginian, relatively deep-water deposits of the Cretaceous platform cover.  相似文献   

17.
The Plassen carbonate platform (Kimmeridgian to Early Berriasian) developed above the Callovian to Tithonian carbonate clastic radiolaritic flysch basins of the Northern Calcareous Alps during a tectonically active period in a convergent regime. Remnants of the drowning sequence of the Plassen Formation have been discovered at Mount Plassen in the Austrian Salzkammergut. It is represented by calpionellid-radiolaria wacke- to packstones that, due to the occurrence of Calpionellopsis oblonga (Cadisch), are of Late Berriasian age (oblonga Subzone). Thus, the Plassen Formation at its type-locality shows the most complete profile presently known, documenting the carbonate platform evolution from the initial shallowing upward evolution in the Kimmeridgian until the final Berriasian drowning. The shift from neritic to pelagic sedimentation took place during Berriasian times. A siliciclastic-influenced drowning sequence sealed the highly differentiated Plassen carbonate platform. The former interpretation of a Late Jurassic carbonate platform formed under conditions of tectonic quiescence cannot be confirmed. The onset, evolution and drowning of the Plassen carbonate platform took place at an active continental margin. The tectonic evolution of the Northern Calcareous Alps during the Kimmeridgian to Berriasian time span and the reasons for the final drowning of the Plassen carbonate platform are to be seen in connection with further tectonic shortening after the closure of the Tethys Ocean.  相似文献   

18.
四川黑水-平武地区位于扬子地块北西缘之可可西里-松潘前陆盆地之松潘边缘海成锰盆地,系四川省重要铁锰成矿带之一。研究区内的三叠系菠茨沟组中已发现了一批大、中型锰矿床。研究区菠茨沟组具有碎屑岩型与碳酸盐型两种沉积类型,锰矿层均产在钙质岩石与碎屑岩交替变化部位。研究表明,陆棚浅海及水下洼地为锰矿沉积的有利环境,极薄层状钙质岩石与碎屑岩沉积相的频繁演替是野外重要的找矿标志。黑水县下口地区和平武县虎牙地区为研究区最有利的锰矿找矿预测靶区。  相似文献   

19.
A series of significant geological changes indicated by deformation, magmatic–metallogenic systems, and the climate and environment occurred in East Asia during Late Jurassic to Early Cretaceous time, but the timing and development of the ‘Yanshan movement’ on the north margin of the North China Craton has not been well-established. Based on the evidence of tectonic deformation and magmatic activity, previous studies resulted in two views of the beginning of the Yanshan movement: Early Jurassic vs. late Middle Jurassic. In this work, the timing of the initial Yanshan movement was investigated by examining the Jurassic Chenjiabangou section in the Ningwu–Jingle basin overlying the north-central part of the North China Craton. The timing of the initial Yanshan movement was constrained by restoration of stream flow directions, determination of boundaries of sedimentary cycles, identification of heavy mineral assemblages in clastic rocks, quantification of changes in chemical compositions, and zircon U–Pb isotope dating. The results indicate that the basal conglomerates of the Middle Jurassic Yungang Formation (Bathonian) mark the beginning of the Yanshan movements. Evidence supporting this conclusion includes the following. (1) The switch from transgressive lacustrine deposition to regressive lacustrine deposition in the Yungang Formation sedimentary succession indicates a change from extension to compression, possibly reflecting uplift. (2) Early-stage clastic rocks rich in quartz and feldspar are replaced by feldspar detritus in late-stage clastic rocks; the heavy mineral assemblage dominated by zircon at the early stages changed to garnet-dominated assemblage upsection. Moreover, the concentrations of CaO, MgO, CO2, and Fe2O3 + FeO and the Fe2O3/FeO ratio changed abruptly near the basal conglomerates of the Middle Jurassic Yungang Formation, suggesting increased denudation. (3) Conglomerates at the bottom of the Middle Jurassic Yungang Formation were deposited approximately 168 million years ago, as inferred from the age of zircons in tuffaceous micrite (160.6 ± 0.55 Ma) at the bottom of the Upper Jurassic Tianchihe Formation (Oxfordian) and the age of zircons in pyroclastic rocks (179.2 ± 0.79 Ma) in the Lower Jurassic Yongdingzhuang Formation (Toarcian). These lines of evidence indicate that initial Jurassic Yanshan movement began 168 million years ago during Middle Jurassic time.  相似文献   

20.
BASIN-RANGE TRANSITION AND GENETIC TYPES OF SEQUENCE BOUNDARY OF THE QIANGTANG BASIN IN NORTHERN TIBET  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号