首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geobarometric studies have documented that most of the metasedimentary wall rocks and plutons presently exposed in the southernmost Sierra Nevada batholith south of the Lake Isabella area were metamorphosed and emplaced at crustal levels significantly deeper (~15 to 30 km) than the batholithic rocks exposed to the north (depths of ~3 to 15 km). Field and geophysical studies have suggested that much of the southernmost part of the batholith is underlain along low-angle faults by the Rand Schist. The schist is composed mostly of metagraywacke that has been metamorphosed at relatively high pressures and moderate temperatures. NNW-trending compositional, age, and isotopic boundaries in the plutonic rocks of the central Sierra Nevada appear to be deflected westward in the southernmost part of the batholith. Based on these observations, in conjunction with the implicit assumption that the Sierra Nevada batholith formerly continued unbroken south of the Garlock fault, previous studies have inferred that the batholith was tectonically disrupted following its emplacement during the Cretaceous. Hypotheses to account for this disruption include intraplate oroctinal bending, W-vergent overthrusting, and gravitational collapse of overthickened crust. In this paper, new geologic data from the eastern Tehachapi Mountains, located adjacent to and north of the Garlock fault in the southernmost Sierra Nevada, are integrated with data from previous geologic studies in the region into a new view of the Late Cretaceous-Paleocene tectonic evolution of the region. The thesis of this paper is that part of the southernmost Sierra Nevada batholith was unroofed by extensional faulting in Late Cretaceous-Paleocene time. Unroofing occurred along a regional system of low-angle detachment faults. Remnants of the upper-plate rocks today are scattered across the southern Sierra Nevada region, from the Rand Mountains west to the San Emigdio Mountains, and across the San Andreas fault to the northern Salinian block.

Batholithic rocks in the upper plates of the Blackburn Canyon fault of the eastern Tehachapi Mountains, low-angle faults in the Rand Mountains and southeastern Sierra Nevada, and the Pastoria fault of the western Tehachapi Mountains are inferred to have been removed from a position structurally above rocks exposed in the southeastern Sierra Nevada and transported to their present locations along low-angle detachment faults. Some of the granitic and metamorphic rocks in the northern part of the Salinian block are suggested to have originated from a position structurally above deep-level rocks of the southwestern Sierra Nevada. The Paleocene-lower Eocene Goler Formation of the El Paso Mountains and the post-Late Cretaceous to pre-lower Miocene Witnet Formation in the southernmost Sierra Nevada are hypothesized to have been deposited in supradetachment basins that formed adjacent to some of the detachment faults.

Regional age constraints for this inferred tectonic unroofing and disaggregation of the southern Sierra Nevada batholith suggest that it occurred between ~90 to 85 Ma and ~55 to 50 Ma. Upper-plate rocks of the detachment system appear to have been rotated clockwise by as much as 90° based on differences in the orientation of foliation and contacts between inferred correlative hanging-wall and footwall rocks. Transport of the upper-plate rocks is proposed to have occurred in two stages. First, the upper crust in the southern Sierra Nevada extended in a south to southeast direction, and second, the allochthonous rocks were carried westward at the latitude of the Mojave Desert by a mechanism that may include W-vergent faulting and/or oroclinal bending. The Late Cretaceous NNW extension of the upper crust in the southernmost Sierra Nevada postulated in this study is similar to Late Cretaceous, generally NW-directed, crustal extension that has been recognized to the northeast in the Funeral, Panamint, and Inyo mountains by others. Extensional collapse of the upper crust in the southern Sierra Nevada batholith may be closely linked to the emplacement of Rand Schist beneath the batholith during Late Cretaceous time, as has been suggested in previous studies.  相似文献   

2.
The central Wassuk Range is ideally located to investigate the interplay of Basin and Range extension and Walker Lane dextral deformation along the western Nevada margin of the Basin and Range province. To elucidate the Cenozoic evolution of the range, the author conducted geologic mapping, structural data collection and analysis, geochemical analysis of igneous lithologies, and geochronology. This research delineates a three-stage deformational history for the range. A pulse of ENE–WSW-directed extension at high strain rates (~8.7 mm/yr) was initiated immediately after the eruption of ~15 Ma andesite flows; strain was accommodated by high-angle, closely spaced (1–2 km), east-dipping normal faults which rotated and remained active to low angles as extension continued. A post-12 Ma period of extension at low strain rates produced a second generation of normal faults and two prominent dextral strike–slip faults which strike NW, subparallel to the dextral faults of the Walker Lane at this latitude. A new pulse of ongoing extension began at ~4 Ma and has been accomodated primarily by the east-dipping range-bounding normal fault system. The increase in the rate of fault displacement has resulted in impressive topographic relief on the east flank of the range, and kinematic indicators support a shift in extension direction from ENE–WSW during the highest rates of Miocene extension to WNW–ESE today. The total extension accommodated across the central Wassuk Range since the middle Miocene is >200%, with only a brief period of dextral fault activity during the late Miocene. Data presented here suggest a local geologic evolution intimately connected to regional tectonics, from intra-arc extension in the middle Miocene, to late Miocene dextral deformation associated with the northward growth of the San Andreas Fault, to a Pliocene pulse of extension and magmatism likely influenced by both the northward passage of the Mendocino triple junction and possible delamination of the southern Sierra Nevada crustal root.  相似文献   

3.
Many bends or step-overs along strike–slip faults may evolve by propagation of the strike–slip fault on one side of the structure and progressive shut-off of the strike–slip fault on the other side. In such a process, new transverse structures form, and the bend or step-over region migrates with respect to materials that were once affected by it. This process is the progressive asymmetric development of a strike–slip duplex. Consequences of this type of step-over evolution include: (1) the amount of structural relief in the restraining step-over or bend region is less than expected; (2) pull-apart basin deposits are left outside of the active basin; and (3) local tectonic inversion occurs that is not linked to regional plate boundary kinematic changes. This type of evolution of step-overs and bends may be common along the dextral San Andreas fault system of California; we present evidence at different scales for the evolution of bends and step-overs along this fault system. Examples of pull-apart basin deposits related to migrating releasing (right) bends or step-overs are the Plio-Pleistocene Merced Formation (tens of km along strike), the Pleistocene Olema Creek Formation (several km along strike) along the San Andreas fault in the San Francisco Bay area, and an inverted colluvial graben exposed in a paleoseismic trench across the Miller Creek fault (meters to tens of meters along strike) in the eastern San Francisco Bay area. Examples of migrating restraining bends or step-overs include the transfer of slip from the Calaveras to Hayward fault, and the Greenville to the Concord fault (ten km or more along strike), the offshore San Gregorio fold and thrust belt (40 km along strike), and the progressive transfer of slip from the eastern faults of the San Andreas system to the migrating Mendocino triple junction (over 150 km along strike). Similar 4D evolution may characterize the evolution of other regions in the world, including the Dead Sea pull-apart, the Gulf of Paria pull-apart basin of northern Venezuela, and the Hanmer and Dagg basins of New Zealand.  相似文献   

4.
Quaternary sedimentary deposits along the structural depression of the San Andreas fault (SAF) zone north of San Francisco in Marin County provide an excellent record of rates and styles of neotectonic deformation in a location near where the greatest amount of horizontal offset was measured after the great 1906 San Francisco earthquake. A high-resolution gravity survey in the Olema Valley was used to determine the depth to bedrock and the thickness of sediment fill along and across the SAF valley. In the gravity profile across the SAF zone, Quaternary deposits are offset across the 1906 fault trace and truncated by the Western and Eastern Boundary faults, whose youthful activity was previously unknown. The gravity profile parallel to the fault valley shows a basement surface that slopes northward toward an area of present-day subsidence near the head of Tomales Bay. Surface and subsurface investigations of the late Pleistocene Olema Creek Formation (Qoc) indicate that this area of subsidence was located further south during deposition of the Qoc and that it has migrated northward since then. Localized subsidence has been replaced by localized contraction that has produced folding and uplift of the Qoc. This apparent alternation between transtension and transpression may be the result of a northward-diverging fault geometry of fault strands that includes the valley-bounding faults as well as the 1906 SAF trace. The Vedanta marsh is a smaller example of localized subsidence in the fault zone, between the 1906 SAF trace and the Western Boundary fault. Analyses of Holocene marsh sediments in cores and a paleoseismic trench indicate thickening, and probably tilting, toward the 1906 trace, consistent with coseismic deformation observed at the site following the 1906 earthquake.New age data and offset sedimentary and geomorphic features were used to calculate four late Quaternary slip rate estimates for the SAF at this latitude. Luminescence dates of 112–186 ka for the middle part of the Olema Creek Formation (Qoc), the oldest Quaternary deposit in this part of the valley, suggest a late Pleistocene slip rate of 17–35 mm/year, which replaces the unit to a position adjacent to its sediment source area. A younger alluvial fan deposit (Qqf; basal age 30 ka) is exposed in a quarry along the medial ridge of the fault valley. This fan deposit has been truncated on its western side by dextral SAF movement, and west-side-down vertical movement that has created the Vedanta marsh. Paleocurrent measurements, clast compositions, sediment facies distributions, and soil characteristics show that the Bear Valley Creek drainage, now located northwest of the site, supplied sediment to the fan, which is now being eroded. Restoration of the drainage to its previous location provides an estimated slip rate of 25 mm/year. Furthermore, the Bear Valley Creek drainage probably created a water gap located north of the Qqf deposit during the last glacial maximum 18 ka. The amount of offset between the drainage and the water gap yields an average slip rate of 21–30 mm/year. Finally, displacement of a 1000-year-old debris lobe approximately 20 m from its hillside hollow along the medial ridge indicates a minimum late Holocene slip rate of 21–25 mm/year. Similarity of the late Pleistocene rates to the Holocene slip rate, and to previous rates obtained in paleoseismic trenches in the area, indicates that the rates may not have changed over the past 30 ka, and perhaps the past 200–400 ka. Stratigraphic and structural observations also indicate that valley-bounding faults were active in the late Pleistocene and suggest the need for further study to evaluate their continued seismic potential.  相似文献   

5.
High-resolution magnetotelluric (MT) studies of the San Andreas fault (SAF) near Hollister, CA have imaged a zone of high fluid content flanking the San Andreas fault and extending to midcrustal depths. This zone, extending northeastward to the Calaveras fault, is imaged as several focused regions of high conductivity, believed to be the expression of tectonically bound fluid pockets separated by northeast dipping, impermeable fault seals. Furthermore, the spatial relationship between this zone and local seismicity suggests that where present, fluids inhibit seismicity within the upper crust (0–4 km). The correlation of coincident seismic and electromagnetic tomography models is used to sharply delineate geologic and tectonic boundaries. These studies show that the San Andreas fault plane is vertical below 2 km depth, bounding the southwest edge of the imaged fault-zone conductor (FZC). Thus, in the region of study, the San Andreas fault acts both as a conduit for along-strike fluid flow and a barrier for fluid flow across the fault. Combined with previous work, these results suggest that the geologic setting of the San Andreas fault gives rise to the observed distribution of fluids in and surrounding the fault, as well as the observed along-strike variation in seismicity.  相似文献   

6.
The San Emigdio and related Pelona, Orocopia, Rand and Sierra de Salinas schists of southern California were underplated beneath the southern Sierra Nevada batholith and adjacent southern California batholith along a shallow segment of the subducting Farallon plate in Late Cretaceous to early Tertiary time. These subduction accretion assemblages represent a regional, deeply exhumed, shallowly dipping domain from an ancient slab segmentation system and record the complete life cycle of the segmentation process from initial flattening and compression to final extensional collapse. An important unresolved question regarding shallow subduction zones concerns how the thermal structure evolves during the slab flattening process. New field relationships, thermobarometry, thermodynamic modelling and garnet diffusion modelling are presented that speak to this issue and elucidate the tectonics of underplating and exhumation of the San Emigdio Schist. We document an upsection increase in peak temperature (i.e. inverted metamorphism), from 590 to 700 °C, peak pressures ranging from 8.5 to 11.1 kbar, limited partial melting, microstructural evidence for large seismic events, rapid cooling (825–380 °C Myr?1) from peak conditions and an ‘out and back’P–T path. While inverted metamorphism is a characteristic feature of southern California schists, the presence of partial melt and high temperatures (>650 °C) are restricted to exposures with maximum depositional ages between 80 and 90 Ma. Progressive cooling and tectonic underplating beneath an initially hot upper plate following the onset of shallow subduction provide a working hypothesis explaining high temperatures and partial melting in San Emigdio and Sierra de Salinas schists, inverted metamorphism in the schist as a whole, and the observed P–T trajectory calculated from the San Emigdio body. Lower temperatures in Pelona, Orocopia and Rand schists are likewise explained in the context of this overarching model. These results are consistent with an inferred tectonic evolution from shallow subduction beneath the then recently active Late Cretaceous arc to exhumation by rapid trench‐directed channelized extrusion in the subducted schist.  相似文献   

7.
郯庐断裂带的延伸与切割深度   总被引:24,自引:0,他引:24  
万天丰 《现代地质》1996,10(4):518-525
摘要:采用地质 地球化学 地球物理相结合的方法,系统研究了中生代以来郯庐断裂带的延伸长度与切割深度。250~208Ma期间,郯庐断裂带开始形成,延展长度不超过1500km,切割深度在15~20km,是以左行走滑活动为主的基底断裂。135~52Ma时期,该断裂带大幅度地扩展了长度(达3500km),切割深度在30~40km之间,为略具右行平移活动的正断层,属地壳断裂。233Ma以来,断裂带以向下深切为主,深度从50km左右逐渐加深到80~100km,终于形成岩石圈断裂  相似文献   

8.
The question of whether or not the Altyn Tagh fault is a large-scale extrusion boundary is critical for understanding the role of lateral extrusion in accommodating the Indo-Asian convergence and in building the Tibetan Plateau. Oligocene conglomerate clasts in the eastern Xorkol basin are low-grade slate, phyllite, sandstone, dacite and carbonate, and associated paleocurrent indicators evince sediment derivation from the opposing side of the Altyn Tagh fault. Matching these clasts with similar basement rocks in the North Qilian and Tuolainanshan terranes requires post-Oligocene left-lateral offset of 380 ± 60 km on the eastern segment of the Altyn Tagh fault, suggesting large-scale extrusion along the fault in the Cenozoic (Yue, Y.J., Ritts, B.D., Graham, S.A., 2001b. Initiation and long-term slip history of the Altyn Tagh fault. International Geological Review 43, 1087–1094.). In order to further define this piercing point, the detrital zircon pattern of Oligocene sandstone from the Xorkol basin and the zircon ages of basement on the southern side of the fault were established by ion microprobe dating. Characterized by strong peaks between 850 and 950 Ma and the absence of Paleozoic and Mesozoic ages, the detrital zircon age pattern of the Oligocene sandstone matches the age distribution of zircon-bearing rocks of the Tuolainanshan terrane. This match requires 360 ± 40 km of post-Oligocene left-lateral displacement on the eastern segment of the Altyn Tagh fault, supporting as well as refining the previously reported lithology-based cross-fault match. At least one of the following three extrusion scenarios must have existed to accommodate this large offset: (1) northeastward extrusion along the Altyn Tagh–Alxa–East Mongolia fault, (2) eastward extrusion along the Altyn Tagh–North Qilian–Haiyuan fault, and (3) northeastward extrusion of northern Tibet as a Himalaya-scale thrust sheet along the North Qilian–Haiyuan fault. We prefer the first scenario inasmuch as rapidly growing evidence for Cenozoic strike-slip activity on the Alxa–East Mongolia fault and mid-Miocene exhumation of northern Tibet supports it.  相似文献   

9.
The Denali fault system forms an arc, convex to the north, across southern Alaska. In the central Alaska Range, the system consists of a northern Hines Creek strand and a southern McKinley strand, up to 30 km apart. The Hines Creek fault may preserve a record of the early history of the fault system. Strong contrasts between juxtaposed lower Paleozoic rocks appear to require large dextral strike-slip or a combination of dipslip and strike-slip displacements along this fault. Thus the fault system may mark a reactivated suture zone between continental rocks to the north and a late Paleozoic island arc to the south, as suggested by Richter and Jones (1973). Major movements on the Hines Creek fault ceased by the Late Cretaceous, but local dip-slip movements continued into the Cenozoic.The McKinley fault is an active dextral strike-slip fault with a mean Holocene displacement rate of 1–2 cm/y. Post-Late Cretaceous dextral offset on this fault is probably at least 30 km and possibly as great as 400 km. Patterns of early Tertiary folding and reverse faulting indicate that the McKinley fault was active at that time and suggest that this fault developed shortly after strike-slip activity ceased on the Hines Creek fault. Oligocene — middle Miocene tectonic stability and late Miocene—Pliocene uplift of crustal blocks may reflect periods of quiescence and activity, on the McKinley fault.The two strands of the Denali fault divide the central Alaska Range into northern, central, and southern terranes. During the Paleozoic—Mesozoic there is evidence for at least two episodes of compressive deformation in the northern terrane, four in the central terrane, and two in the southern. During each, the axis of maximum compressive strain was subhorizontal and about north—south. This pattern suggests a Paleozoic and Mesozoic setting dominated by plate convergence, despite the possible large pre-Late Cretaceous lateral movement on the Hines Creek fault.The Cenozoic pattern of faulting and folding appears compatible with a plate tectonic model of (1) rapid northward movement of the Pacific plate relative to Alaska during the early Tertiary; (2) slow northwestward movement of the Pacific plate during the Oligicene and (3) rapid northwestward movement of the Pacific plate from the end of the Oligocene to the present.  相似文献   

10.
郯庐断裂带的形成与演化:综述   总被引:81,自引:0,他引:81  
万天丰  朱鸿 《现代地质》1996,10(2):159-168
从历史的与整体的观点出发,综合了地质、地貌、地球化学与地球物理的资料,系统地研究了郯庐断裂带各阶段的形态学、运动学以及动力学机制。认为此断裂带开始形成于中、晚三叠世,其长度小于1500km,切割深度小于15~20km,此时最大左行走滑断距为430km左右。侏罗纪(208~135Ma)与中始新世-渐新世(52~23.3Ma),此断裂带表现为逆断层活动,断层面受挤压较紧闭。白垩纪-早始新世(135~52Ma),郯庐断裂呈现为略带右行走滑的正断层(走滑断距不超过100km),郯庐断裂带与其北部切割深度约为30~40km。中新世-更新世(23.3~0.73Ma)断裂带表现为带有左行走滑的正断层,走滑断距约50km,断裂带切割深度在50~80km之间。中更新世(0.73Ma以来)断裂带又变成略带右行走滑的逆断层,走滑断距不足100m。由于断裂带形成以来的剥蚀深度不大,地表的断层岩都是碎裂岩与断层泥。沿此断裂带在早白垩世构成了中国东部重要的内生金属成矿带。  相似文献   

11.
Thirty magnetotelluric soundings were made along two NW–SE profiles to the north and south of Oaxaca City in southern Mexico. The profiles crossed the N–S Oaxaca Fault and the Oaxaca-Juarez terrane boundary defined by the Juarez mylonitic complex. Dimensionality analysis of the MT data showed that the subsurface resistivity structure is 2D or 3D. The Oaxaca and correlative Guichicovi terranes consist of ca. 1–1.4 Ga granulitic continental crust overlain by Phanerozoic sedimentary rocks, characterized by high and low resistivities, respectively. The Juarez terrane consists of oceanic Mesozoic metavolcanic and metasedimentary rocks, characterized by a low to medium resistivity layer, that is approximately 10 km thick. The Oaxaca Fault is a Cenozoic aged, normal fault that reactivated the dextral and thrust Juarez mylonitic complex north of Oaxaca City: its location south of Oaxaca City is uncertain. In the southern profile, the MT data show a ca. 20–50 km wide, west-dipping, relatively low resistivity zone material that extends through the entire crust. This is inferred to be the Juarez terrane bounded on either side by the ca. 1–1.4 Ga granulites. The Oaxaca Fault is imaged only by a major electrical resistivity discontinuity (low to the west, high to the east) along both the western border of the Juarez mylonitic complex (northern profile) and the San Miguel de la Cal mountains (southern profile) suggesting continuity.  相似文献   

12.
The Xayacatlán area (eastern Mixteca terrane, southern Mexico) was previously inferred to preserve the Ordovician‐Silurian thrust contact between vestiges of the Iapetus Ocean and the para‐autochthon bordering Oaxaquia. Detailed remapping indicates that the rocks occur in four vertically‐bounded, NS fault blocks. The latter record the following tectonothermal events that post‐date Iapetus and occurred along the margins of the Rheic (1) and Pacific (2 and 3) oceans: (1) dextral transtension accompanying intrusion of an NS, tholeiitic dike swarm at ~442 Ma; (2) penetrative, greenschist‐facies deformation during the Mississippian related to extrusion of high‐pressure rocks; and (3) subgreenschist‐facies dextral transtension on NS faults during the generation of Middle Permian fabrics.  相似文献   

13.
青藏高原已识别出柴北缘、南阿尔金和高喜马拉雅三条超高压变质带。这些超高压变质带提供了一个不可多得的研究超高压变质岩石形成和折返的机会。柴北缘超高压变质带位于阿尔金断裂的东边,是柴达木—东昆仑地体与祁连—阿尔金微地体和阿拉善—敦煌地体碰撞的产物,由榴辉岩、石榴石橄榄岩和含柯石英片麻岩组成,榴辉岩形成时代500~440Ma,峰期超高压变质年龄440Ma。南阿尔金超高压变质带位于阿尔金断裂带的西边,以产出榴辉岩和石榴石橄榄岩为特征,榴辉岩形成时代为500Ma。南阿尔金超高压变质带被认为是柴北缘超高压变质带的西延,两者被阿尔金断裂左旋位移约400km。阿尔金断裂是巨大的深度>200km的岩石圈走滑断裂,断裂的活动时代至少早到240~220Ma,认为走滑过程中伴随的隆升作用有可能为柴北缘和南阿尔金超高压变质岩石的折返和出露地表做出了贡献,其中阿尔金断裂起到了类似剪刀型断裂的作用。高喜马拉雅超高压变质带在巴基斯坦和印度被发现,以榴辉岩中含柯石英或金刚石为特征,榴辉岩的超高压变质年龄为46Ma,表明超高压变质岩石发生在雅鲁藏布江缝合线关闭后并快速折返。喀喇昆仑断裂走滑过程中伴随的抬升作用则可能对高喜马拉雅地区超高压变质岩石的折返和出露地表做出贡献。在中国东部出露的大别—苏鲁超高压变质带被巨大郯庐断裂左旋走滑位移约500km,可以看作是走滑作用伴随的抬升运动对超高压变质岩石的最后折返和出露地表做出重要贡献的又一例证。青藏高原的隆升通常被认为是印度板块和欧亚大陆新生代以来的碰撞结果。根据高原北部断裂的时代、火山活动和沉积盆地的形成,我们提出高原的隆升是两次俯冲碰撞的结果。第一次发生在中特提斯班公湖-怒江洋盆在白垩纪时期的关闭,其时由于北部来自塔里木盆地和北中国板块及东部来自太平洋板块俯冲产生的抵柱效应,高原北部开始隆升;第二次发生在印度板块的新生代俯冲碰撞作用,造成高原的整体抬升,由此可以解释高原北部平均海拔(5000m)要高于高原南部(平均海拔4000m)。  相似文献   

14.
15.
GPS-derived velocities (1993–2002) in northwestern California show that processes other than subduction are in part accountable for observed upper-plate contraction north of the Mendocino triple junction (MTJ) region. After removing the component of elastic strain accumulation due to the Cascadia subduction zone from the station velocities, two additional processes account for accumulated strain in northern California. The first is the westward convergence of the Sierra Nevada–Great Valley (SNGV) block toward the coast and the second is the north–northwest impingement of the San Andreas fault system from the south on the northern California coastal region in the vicinity of Humboldt Bay. Sierra Nevada–Great Valley block motion is northwest toward the coast, convergent with the more northerly, north–northwest San Andreas transform fault-parallel motion. In addition to the westward-converging Sierra Nevada–Great Valley block, San Andreas transform-parallel shortening also occurs in the Humboldt Bay region. Approximately 22 mm/yr of distributed Pacific–SNGV motion is observed inland of Cape Mendocino across the northern projections of the Maacama and Bartlett Springs fault zones but station velocities decrease rapidly north of Cape Mendocino. The resultant 6–10 mm/yr of San Andreas fault-parallel shortening occurs above the southern edge of the subducted Gorda plate and at the latitude of Humboldt Bay. Part of the San Andreas fault-parallel shortening may be due to the viscous coupling of the southern edge of the Gorda plate to overlying North American plate. We conclude that significant portions of the upper-plate contraction observed north of the MTJ region are not solely a result of subduction of the Gorda plate but also a consequence of impingement of the western edge of the Sierra Nevada–Great Valley block and growth of the northernmost segments of the San Andreas fault system.  相似文献   

16.
The Salado River fault (SRF) is a prominent structure in southern Mexico that shows evidence of reactivation at two times under different tectonic conditions. It coincides with the geological contact between a structural high characterized by Palaeozoic basement rocks to the north, and an ~2000 m thick sequence of marine and continental rocks that accumulated in a Middle Jurassic–Cretaceous basin to the south. Rocks along the fault within a zone up to 150 m across record crystal-plastic deformation affecting the metamorphic basement of the Palaeozoic Acatlán Complex. Later brittle deformation is recorded by both the basement and the overlying Mesozoic sedimentary rocks. Regional features and structural textures at both outcrop and microscopic scale indicate two episodes of left-lateral displacement. The first took place under low-to medium-grade P-T conditions in the late Early Jurassic (180 Ma) based on the interpretation of 40Ar/39Ar ratios from muscovite within the fault zone; the second occurred under shallow conditions, when the fault served as a transfer zone between areas with differing magnitudes of shortening north and south of the fault. In the southern block, fold hinges were dragged westward during Laramide tectonic transport to the east, culminating in brittle deformation characterized by strike–slip faulting in the Mesozoic sedimentary rocks. North of the fault, folds are not well defined, and it is clear that the fold hinges observed in the southern block do not continue north of the fault. Although the orientation and kinematics of the SRF are similar to major Cainozoic shear zones in southern Mexico, our new data indicate that the fault had become inactive by the time of Oligocene volcanism.  相似文献   

17.
准噶尔盆地西北缘达尔布特断裂的运动学特征   总被引:3,自引:0,他引:3       下载免费PDF全文
樊春  苏哲  周莉 《地质科学》2014,49(4):1045-1058
达尔布特断裂是准噶尔盆地西北缘的边界断裂,本文通过大量的野外地质调查并结合遥感解译,发现该断裂具有明显的左行走滑特征,其最大位错量出现在其西南段,达到60 km左右。根据野外的观察,达尔布特断裂是一条经历过多期变形的断裂,运动学特征指示了该断裂的各期活动均为左行走滑。它与准噶尔盆地东北缘北西-南东向的右行走滑断裂一起,构成了一组共轭断裂系,是印欧板块碰撞造成青藏高原强烈抬升并向北扩展的远程效应,同时也受到西伯利亚板块向南运动的影响。和什托洛盖盆地是在断裂走滑过  相似文献   

18.
《Tectonophysics》2002,344(1-2):81-101
Geological, geomorphological and geophysical data have been used to determine the total displacement, slip rates and age of formation of the Arima–Takatsuki Tectonic Line (ATTL) in southwest Japan. The ATTL is an ENE–WSW-trending dextral strike-slip fault zone that extends for about 60 km from northwest of the Rokko Mountains to southwest of the Kyoto Basin. The ATTL marks a distinct topographic boundary between mountainous regions and basin regions. Tectonic landforms typically associated with active strike-slip faults, such as systematically-deflected stream channels, offset ridges and fault scarps, are recognized along the ATTL. The Quaternary drainage system shows progressive displacement along the fault traces: the greater the magnitude of stream channel, the larger the amount of offset. The maximum dextral deflection of stream channels is 600–700 m. The field data and detailed topographic analyses, however, show that pre-Neogene basement rocks on both sides of the ATTL are displaced by about 16–18 km dextrally and pre-Mio–Pliocene elevated peneplains are also offset 16–17 km in dextral along the ATTL. This suggests that the ATTL formed in the period between the development of the pre-Mio–Pliocene peneplains and deflection of the Quaternary stream channels.The geological, geomorphological and geophysical evidence presented in this study indicates that (1) the ATTL formed after the mid-Miocene, (2) the ATTL has moved as a dextral strike-slip fault with minor vertical component since its formation to late Holocene and (3) the ATTL is presently active with dextral slip rates of 1–3 mm/year and a vertical component of >0.3 mm/year. The formation of the ATTL was probably related to the opening of the Japan Sea, which is the dominant tectonic event around Japan since mid-Miocene. The case study of the ATTL provides insight into understanding the tectonic history and relationship between tectonic landforms and structures in active strike-slip faults.  相似文献   

19.
Mid-Cretaceous granulite gneisses crop out in a narrow belt in the Cucamonga region of the south-eastern foothills of the San Gabriel Mountains, southern California. Interlayered mafic granulites and pelitic, carbonate, calc-silicate and quartzofeldspathic metasediments record hornblende granulite subfacies metamorphism at approximately 8 kbar and 700–800°C. Regional deformation and formation of banded gneisses ceased by c. 108 Ma. although mafic-intermediate magmatism and high-grade metamorphism continued locally as late as c. 88 Ma. Garnet zoning in metapelitic gneisses suggests that peak metamorphism was followed locally by a period of near-isobaric cooling, but this interpretation requires diachronous cooling of the granulite belt which cannot be demonstrated without detailed thermo-chronological data. It is more likely that the entire terrane remained at granulite facies P–T conditions until 88 Ma, followed by rapid uplift associated with juxtaposition against adjacent middle and upper crustal arc terranes. Uplift occurred between c. 88 and 78 Ma at rates of approximately 1–2 km Ma-1. The geotectonic evolution of the Cucamonga granulites is similar to mid-Cretaceous high- P granulites in the Sierra Nevada and Salinian block of central California. Late Cretaceous uplift common to these granulites may provide an important tectonic link between dismembered Mesozoic batholithic terranes in the California Cordillera.  相似文献   

20.
鄂拉山断裂带是分隔青海乌兰盆地 (柴达木盆地的一部分 )与茶卡—共和盆地的一条重要边界断裂 ,长约 2 0 7km ,由 6条规模较大的主要以右阶或左阶次级断裂段羽列而成 ,阶距约 1~ 3.5km。该断裂右旋走滑的起始时代为第四纪初期 ,约在 1.8~ 3.8MaB .P .期间 ,大的地质体累积断错约 9~12km。断裂新活动形成了一系列山脊、冲沟和阶地等的右旋断错及断层崖、断层陡坎等。晚更新世晚期以来 ,鄂拉山断裂带的平均水平滑动速率为 (4 .1± 0 .9)mm/a ,垂直滑动速率为 (0 .15± 0 .1)mm/a。鄂拉山地区的构造变形受区域NE向构造应力作用下的剪切压扁与鄂拉山断裂的右旋剪切和挤压的共同影响 ,共和—茶卡盆地和乌兰盆地均属于走滑挤压型盆地。青藏高原东北缘地区在区域性北东向挤压的作用之下 ,应变被分解为沿北西西向断裂的左旋走滑和沿北北西向断裂的右旋走滑运动 ,形成一对共轭的剪切断裂。鄂拉山断裂及其他北北西走向断裂的发展演化和变形机制表明青藏高原东北缘向东的挤出和逃逸是非常有限的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号