首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent and detailed seismic studies in the U.S.S.R. have provided much information on the structure and revolution of the earth's crust. A review of this information indicates the following postulates: a) the thickness and constitution oft he crystalline layers (”basalt“ and ”granite“) change comparatively rapidly in Alpine provinces of pronounced tectonic movements (geosynclinal provinces and mobile zones), with but a slight lag behind these movements. b) Under platform areas, the crystalline complexes rebuild slowly with a lag of a few geologic periods behind the emergence of the structural elements. c) In both geosynclinal and platform areas the downwarping of the major segments is accompanied by an upward movement of the Mohorovi?i? surface. d) Block uplifts in geosynclinal provinces of mobile zones have absolute values, while in platform areas the uplifts usually represent blocks lagging behind their neighbors. e) Changes in thickness and composition of deeper layers within the crust usually lag behind the formation of corresponding structural elements. — J. R. Hayes  相似文献   

2.
Based on the geochemical characteristics of the Miocene-Quaternary volcanic rocks of the Sredinny Range of Kamchatka, we divide it into northern and southern provinces; the latter comprises the “eastern”, “western”, and “central” flanks. We present new data on the composition of Neogene-Quaternary volcanic rocks in the southern part of the Sredinny Range of Kamchatka: Khangar and Icha volcanic massifs and Mt. Yurtinaya on the “western” flank, Bystrinsky and Kozyrevsky Ridges on the “eastern” flank, and Anaunsky Dol and Uksichan massif located in between. We show systematic differences in the composition of rocks from the “western” and “eastern” flanks. During the Neogene, a typical island-arc volcanism took place within the “eastern” flank. Quaternary volcanic rocks of this area have both island-arc and within-plate geochemical features. We propose to call rocks of this type hybrid rocks. Within the “western” flank, hybrid volcanism has been manifested since the Neogene, while typical island-arc rocks are not found. Magma generation processes on the “western” flank of the Sredinny Ridge are influenced by an enriched mantle source; the effect of fluid is less pronounced here as compared to the rocks of the “eastern” flank, where it is clearly traced.  相似文献   

3.
Magmatic rocks of the Pikan and Un’ya massifs situated in eastern segment of the Mongolian-Okhotsk foldbelt are studied using isotopic-geochronological (U-Pb zircon dating) and geochemical methods. Two rock complexes different in age are recognized in the Pikan massif: the high-Al gabbro-tonalite association of the Middle Ordovician (468 ± Ma) and granodiorite-granite association of the Late Silurian-Early Devonian (415 ± 7 Ma). The Late Ordovician age (454 ± 5 Ma) is established for leucocratic granites of the Un’ya massif. As is suggested, the Pikan and Un’ya massifs are “allogenic blocks” detached from continental framework of the Mongolian-Okhotsk foldbelt and tectonically emplaced into the foldbelt structure at the last stage of its development.  相似文献   

4.
This study aims at summarizing available geological and geochemical data on known Proterozoic platinum-bearing ultramafic-mafic massifs in the south of Siberia. Considering new data on geochemistry and geochronology of some intrusions, it was feasible to compare ore-bearing complexes of different time spans and areas and to follow their relationships with the recognized large igneous provinces. In the south of Siberia, the platinum-bearing massifs might be united into three age groups: Late Paleoproterozoic (e.g., Chiney complex, Malozadoisky massif), Late Mesoproterozoic (e.g., Srednecheremshansky massif), and Neoproterozoic (e.g., Kingash complex, Yoko-Dovyren massif, and massifs in the center of the East Sayan Mts.). In most massifs but Chiney the initial magmas are magnesium-rich. On paleogeodynamic reconstructions, the position of the studied massifs is the evidence that three most precisely dated events in North Canada continued into southern Siberia: In the period 1880-1865 Ma, it was the Ghost-Mara River-Morel LIP; at 1270-1260 Ma, the Mackenzie LIP; and at 725-720 Ma, Franklin LIP. In Siberia, the mostly productive massifs with respect to PGE-Ni-Cu mineralization are those linked with the Franklin LIP: Verkhny Kingash, Yoko-Dovyren, and central part of the Eastern Sayan Mountains, e.g., Tartay, Zhelos, and Tokty-Oy.  相似文献   

5.
First isotopic-geochemical data were obtained on basite-ultrabasite rocks from the southern Kovdor area that were previously provisionally ascribed to the drusite (coronite) complex based on the occurrence of drusite (coronite) textures. The mineral and whole-rock Sm-Nd isochron age determined for five rock samples from the Sorkajoki and Poioiva massifs and the massif of Elevation 403 m turned out to be close (within the error): 2485 ± 51, 2509 ± 93, and 2517 ± 75 Ma, respectively. The crystallization age was evaluated for the two massifs (Poiojovski and Mount Krutaya Vostochnaya) by the U-Pb system of zircons. Our samples contained both magmatic and xenogenic crustal zircons, whose age was estimated at 2700 Ma. The crystallization age of the massifs themselves (data on the magmatic zircons) is 2410 ± 10 Ma. The undepleted character of the mantle source (ɛNd = +0.9) and the much younger age of the massifs than that of other known manifestations of ultrabasic magmatism in the territory of Karelia and the Kola Peninsula (including the layered pluton classic drusite massifs) suggest that the central part of the Belomorian Mobile Belt hosts one more independent intrusive rock complex, which has never been recognized previously and which is different from typical drusites.  相似文献   

6.
《International Geology Review》2012,54(12):1386-1402
Even the beginnings of the late Proterozoic (Baykalian)geosynclinal process which lasted for about one billion years, i. e. the growth of the base of geosynclinal folded areas, are younger than the skeletons of the ancient platforms. All of the post-Proterozoic folded systems had arisen and grown on the same base the relics of which, not involved in the younger folding are the Baykalids, in the general sense of the term. Every one of the geosynclinal systems evolved in two stages: “the main” and “the orogenic,” genetically an organic whole, but each with its own magmatic and other characteristics. Magrnatism of the main stage is connected with abyssal processes, accessions of magma from the mantle, magmatic differentiation, development and expansion of acidic-magmatic hearths. Magmatism of the orogenic stage is connected with plutons at shallow depths, hearths of secondary magmas, their differentiations, redistribution of magmatic bodies, as a direct (and logical) continuation of the main stage. It is an error therefore to contrast the two parts of the whole, i. e. geosynclinal and the orogenic stages or to draw excessively sharp lines between the geosynclinal- orogenic stage and the platformal evolutions. -- V. P. Sokoloff.  相似文献   

7.
中国地质构造发展历程   总被引:1,自引:0,他引:1  
<正> 中国位于亚洲大陆的东南部,地跨几个洲际性构造单元的交汇部位。在地质历史上,它经历了多次构造变革逐步演化为目前这种复杂的构造格局。北部的准噶尔—兴安构造带属中亚—中蒙地槽褶皱带的一部分;中部为塔里木—中朝地台;青藏高原的大部分属巨型古地中海构造带中段,喜马拉雅地区属印度地台北缘;东部则隶属于中新生代的环太平洋构造带。  相似文献   

8.
《International Geology Review》2012,54(11):1585-1599
Connections between magmatism and tectonics show plainly only in large structures, such as activated cratons (basitic magmatism) or domed blocks (characteristic assortment of moderately acidic volcano-plutonic formations), as shown by analysis of relationships between principal types of structures and the character of magmatism. Eugeosynclines behave like activated cratons, during downwarping of the geosynclinal “bathtub,” when conditions in geosynclinal uplifts resemble those in the domed blocks. The peculiarly geosynclinal magmatic formations develop only during the closure stage, under tangential compressions and linear folding. It was also found that with few exceptions the monotype magmatic formations may enter combinations with crustal structures of different types. This is explainable by the fact that magmatic formations are always epigenetic with respect to the sedimentary ones, whereas the connection between magmatism and tectonics of the crust is merely paragenetic. The moments of activation of magmatic processes are determined primarily by processes in and evolution of the substance in the upper mantle. Even so, expressions of magmatism are modified somewhat by composition and structure of the crust. — Author.  相似文献   

9.
四川阿坝——秀山地学断面   总被引:1,自引:2,他引:1  
四川省阿坝—秀山地学断面长约1000km,横跨上扬子地台和松潘-甘孜地槽褶皱系。在综合研究现有地质、地球物理资料的基础上,对断面及邻区划分出不同性质的三大岩石圈块体;结合表壳变形特征又区分出以四川地块为中心的东、西对冲构造体系;并进一步划分出8个次级构造带(块)。在垂向上划分出地壳、岩石圈厚度及形态,讨论了地壳次级分层及壳、幔低速层、低阻层和高阻层异常的特征,提出了初步解释。指出龙门山断裂带西部地壳缩短、增厚的主要因素。概述了地壳演化。  相似文献   

10.
于双忠 《地质论评》1999,45(2):113-113
通过对典型活动断裂两盘重力场特征的对比与分析,发现具有大面积布各重力负异常(或相对我异常)的地块总是向赤道方向运动,而布格重力正异常(或相对正异常)的地块向极点方向运动,布格重力异常图反映了密度情况,正异常带为大密度地块,负异常带为小密度地块,从理论分析得知,地块的密度变化导致了受力条件的改变,致使地块失稳产生运动,岩浆活动是造成地块密度变化的重要因素。  相似文献   

11.
The Vorochistoozersky, Nizhnepopovsky, and Severo-Pezhostrovsky gabbro-anorthosite massifs have been studied in the central part of the Belomorian Province, Fennoscandian Shield. The similarity of geological setting and rock composition of these massifs suggests their affiliation to a single complex. The age of the gabbro-anorthosites was determined by U-Pb (SHRIMP II) zircon dating of gabbro-pegmatites from the Vorochistoozersky massif at 2505 ± 8 Ma. The studied massifs were overprinted by the high-pressure amphibolite facies metamorphism. Relicts of magmatic layering and primary magmatic assemblages preserved in the largest bodies. The massifs consist mainly of leucocratic gabbros but also contain rocks of the layered series varying in composition from olivinite to anorthosite. The presence of troctolites in the layered series indicates the stability of the olivine–plagioclase liquidus assemblage and, respectively, shallow depths of melt crystallization. Despite the composition differences between gabbro-anorthosites of the Belomorian and peridotite–gabbronorite intrusions Kola provinces, these simultaneously formed massifs presumably mark a single great igneous event. It also includes the gabbronorite dikes in the Vodlozero terrane of the Karelian province, the Mistassini swarm in the Superior province, and the Kaminak swarm in the Hearne Craton, Canadian Shield. The large igneous province of age ~2500 Ma reflects the oldest stage of within-plate magmatism after a consolidation of the Neoarchean crust of the Kenorland Supercontinent (Superia supercraton).  相似文献   

12.
The rocks of the cratonic foreland extend underneath many orogens, where they are subjected to “regeneration” during the geosynclinal phase and to superimposed structures during the folding of the orogen. Such structural and metamorphic alterations are now exposed in the “Sockelstockwerk” of certain orogenic belts in Africa, America, Australia and Europe. In this deep level, originally situated between the bottom of the geosyncline and the migmatite stockwerk, the following zones have been observed along the total length of the orogenic belt: border zone along the margin of the cratonic foreland: broad belt with superimposed structures of two (ore more) different orogenic deformations; main vergency fan, marking the central axis of the orogen. This fan often is a lineament with deep roots and a structure of continental importance.  相似文献   

13.
The geological, geochemical, and geochronological data on the granitiods of the Shmakovka massif, which represents a petrotype of the synonymous complex (southern Russian Primorye), show that the granitoid intrusions of the Shmakovka Complex play a “coupling” role, occurring in different blocks of the Khanka composite terrane. The geochemical and isotopic features of the granitoids indicate that their formation resulted from melting of a “mixed,” substantially metapelite, source similar to the most intensely metamorphosed rocks of the Khanka massif. According to U–Pb measurements, the granitoids are 490 ± 1 Ma old. The analysis of the distribution of Early Paleozoic I-, S-, and A-type granitoids in southern Primorye reveals that Late Cambrian–Early Ordovician endogenic events marked the amalgamation of Precambrian–Early Paleozoic blocks and the eventual formation of the Bureya–Jiamusi superterrane (Bureya–Khanka orogenic belt).  相似文献   

14.
Charnockitic magmatism in southern India   总被引:2,自引:0,他引:2  
Large charnockite massifs cover a substantial portion of the southern Indian granulite terrain. The older (late Archaean to early Proterozoic) charnockites occur in the northern part and the younger (late Proterozoic) charnockites occur in the southern part of this high-grade terrain. Among these, the older Biligirirangan hill, Shevroy hill and Nilgiri hill massifs are intermediate charnockites, with Pallavaram massif consisting dominantly of felsic charnockites. The charnockite massifs from northern Kerala and Cardamom hill show spatial association of intermediate and felsic charnockites, with the youngest Nagercoil massif consisting of felsic charnockites. Their igneous parentage is evident from a combination of features including field relations, mineralogy, petrography, thermobarometry, as well as distinct chemical features. The southern Indian charnockite massifs show similarity with high-Ba-Sr granitoids, with the tonalitic intermediate charnockites showing similarity with high-Ba-Sr granitoids with low K2O/Na2O ratios, and the felsic charnockites showing similarity with high-Ba-Sr granitoids with high K2O/Na2O ratios. A two-stage model is suggested for the formation of these charnockites. During the first stage there was a period of basalt underplating, with the ponding of alkaline mafic magmas. Partial melting of this mafic lower crust formed the charnockitic magmas. Here emplacement of basalt with low water content would lead to dehydration melting of the lower crust forming intermediate charnockites. Conversely, emplacement of hydrous basalt would result in melting at higher {ie565-01} favoring production of more siliceous felsic charnockites. This model is correlated with two crustal thickening phases in southern India, one related to the accretion of the older crustal blocks on to the Archaean craton to the north and the other probably related to the collision between crustal fragments of East and West Gondwana in a supercontinent framework.  相似文献   

15.
Geophysical and deep-drilling data disclose the block nature of the faulting in both folded and platform provinces of the crust. System and morphology of deep-seated structures embraces two types of major elements: large angular crustal blocks bordered by intense crush zones on one or more sides,and narrow elongated graben rifts. On platforms, the sedimentary cover conceals the true identity of the deep-seated structures which reveal themselves as gentle flexures but seldom by thickening or thinning of the beds as a whole. Deep rifts of the Russian platforms (Russian, Scythian-Turanian, West Siberian, and East Siberian) are interpreted as parts of a planetary system of rifts. Associated with these major features are sub-systems of more localized faults and fold belts. The deep Russian rifts and structures of the platforms are analyzed by depth to basement measurements which collectively show the enormous amount of absolute crustal subsidence even on relatively elevated platforms. Combinations of platform and geosynclinal tectonic provinces are discussed with some interesting variations on the general pattern of geosynclinal evolution. - -B. N. Cooper.  相似文献   

16.
On the basis of a representative collection of ultramafic rocks and chromite ores and a series of technological samples from the largest (Central and Western) deposits in the Rai-Iz massif of the Polar Urals and the Almaz-Zhemchuzhina and Poiskovy deposits in the Kempirsai massif of the southern Urals, the distribution and speciation of platinum-group elements (PGE) in various type sections of mafic-ultramafic massifs of the Main ophiolite belt of the Urals have been studied. Spectral-chemical and spectrophotometric analyses were carried out to estimate PGE in 700 samples of ultramafic rocks and chromite ores; 400 analyses of minerals from rocks, ores, and concentrates and 100 analyses of PGE minerals (PGM) in chromite ores and concentrates were performed using an electron microprobe. Near-chondritic and nonchondritic PGE patterns in chromitebearing sections have been identified. PGE mineralization has been established to occur in chromite ore from all parts of the mafic-ultramafic massifs in the Main ophiolite belt of the Urals. The PGE deposits and occurrences discovered therein are attributed to four types (Kraka, Kempirsai, Nurali-Upper Neiva, and Shandasha), which are different in mode of geological occurrence, geochemical specialization, and placer-forming capability. Fluid-bearing minerals of the pargasite-edenite series have been identified for the first time in the matrix of chromite ore of the Kempirsai massif (the Almaz-Zhemchuzhina deposit) and Voikar-Syn’ya massif (the Kershor deposit). The PGE grade in various types of chromite ore ranges from 0.1–0.2 to 1–2 g/t or higher. According to technological sampling, the average PGE grade in the largest deposits of the southeastern ore field of the Kempirsai massif is 0.5–0.7 g/t. Due to the occurrence of most PGE as PGM 10–100 mm in size and the proved feasibility of their recovery into nickel alloys, chromites of the Kempirsai massif can be considered a complex ore with elevated and locally high Os, Ir, and Ru contents. The Nurali-Upper Neiva type of ore is characterized by small-sized primary deposits, which nevertheless are the main source of large Os-Ir placers in the Miass and Nev’yansk districts of the southern and central Urals, respectively.  相似文献   

17.
Basement is constituted of rocks which belong to a previous orogenic cycle which have been reactivated and incorporated into a younger cycle. Basement massifs may be classified according to their relative position in an orogen as external or internal massifs. They may also be categorized according to their role in deformation, as thrust-related, fold-related and composite massifs. All Appalachian external massifs were transported following their removal from the overridden edge of the ancient North American continental margin. Most of the internal massifs are also probably transported, but several (Pine Mountain and Sauratown Mountains) may be present as windows exposing parautochthonous basement beneath the main thrust sheet. The latter reside immediately west of the low (west) to high (east) gravity gradient which probably outlines the old edge of Grenvillian crust. Reactivated crustal material generated during early Palaeozoic orogeny plays the same mechanical role in reactivation as basement from the previous Grenville cycle. The domes of the Bronson Hill anticlinorium cored with Ordovician or older gneisses illustrate this behaviour. Basement (Grenville) massifs are distributed throughout the Appalachians as a belt of external massifs (Blue Ridge, Reading Prong, Hudson and Berkshire Highlands, Green Mountains, and Long Range Mountains) along the western edge of the crystalline metamorphic core. Additionally, internal massifs are also present (Pine Mountain belt, Tallulah Falls and Toxaway domes, Sauratown Mountains anticlinorium, State Farm gneiss dome, Baltimore Gneiss domes, Mine Ridge anticline, and Chain Lakes massif). Basement internal massifs probably served to localize thrusts by causing them to ramp over and around the massifs. Their antiformal shape may in part be as much related to thrust mechanics as to folding.  相似文献   

18.
The Dabie–Sulu collision belt in China extends to the Hongseong–Odesan belt in Korea while the Okcheon metamorphic belt in Korea is considered as an extension of the Nanhua rift within the South China block. The Hongseong–Odesan belt divides Korea's Gyeonggi massif into northern and southern portions. The southern Gyeonggi massif and the Yeongnam massif are correlated with China's Yangtze and Cathaysia blocks, respectively, while the northern Gyeonggi massif is part of the southern margin of the North China block. The southern and northern Gyeonggi massifs rifted from the Rodinia supercontinent during the Neoproterozoic, to form the borders of the South China and North China blocks, respectively. Subduction commenced along the southern and eastern borders of the North China block in the Ordovician and continued until a Triassic collision between the North China and South China blocks. While subduction was occurring on the margin of the North China block, high-P/T metamorphic belts and accretionary complexes developed along the inner zone of southwest Japan from the Ordovician to the Permian. During the subduction, the Hida belt in Japan grew as a continental margin or continental arc. Collision between the North and South China blocks began in Korea during the Permian (290–260 Ma), and propagated westwards until the Late Triassic (230–210 Ma) creating the sinistral TanLu fault in China and the dextral fault in the Hida and Hida marginal belt in Japan. Phanerozoic subduction and collision along the southern and western borders of the North China block led to formation of the Qinling–Dabie–Sulu–Hongseong–Hida–Yanji belt.  相似文献   

19.
某超基性岩体的原生流动构造(辉橄岩中由辉石组成的流层及纯橄榄岩中由附生铬尖晶石构成的流层)十分发育(图1),其分布也很有规律,产状亦较稳定。作者在进行室内研究时,发现同一薄片中各橄榄石颗粒的干涉色极其相似;费氏旋转台的研究发现在同一切面上的原生造岩矿物(橄榄石、斜方辉石)的光性方位也比较相近,因而引起了我们的注意。为了阐明造成上述现象的原因,同时也为了了解岩体原生构造与分异作用和成岩过程的关系,我们作了一些岩石显微构造的研究,发现了一些有趣的现象。超基性岩岩石显微构造的研究,是作者初次尝试,若干现象尚未能完善的加以解释,希读者指正。在工作过程中得到何作霖教授的指导,朱寿华、郭金弟和何永年等同志也给了许多帮助,作者仅向他们表示谢意。  相似文献   

20.
The paper reports the results of mineralogical and isotope-geochronological study of zircons from the Uzyansky Kraka (UK) Massif, which represents the part of the large (more than 900 km2) lherzolite allochthon thrusted onto the Paleozoic sequences of the East European margin. The massif shows a distinct stratification (from the top downward): spinel lherzolites, garnet pyroxenites, and dunites. The formation of stratified section is considered to be related to the decompression uplift of mantle lherzolite block. Zircons from the massif rocks were dated using SHRIMP-II ion microprobe. The oldest relict datings characterizing endogenous transformations of protolith were established in the zircons from the lherzolites (2037 ± 20 and 1132 ± 6 Ma), garnet pyroxenites (953 ± 11 Ma), and dunites (632 ± 11 Ma). All rock associations contain zircons with ages within 590–550 and 445–390 Ma, which mark the stages of mantle stratification of lherzolite block into complementary series and their emplacement at the upper crustal level. Age values within 299–196 Ma were found only in the dunites and date the influence of the Paleozoic strike-slipping. Our studies led us to conclude that the modern structure of the Ural collision orogen contains the fragments of subcontinental lithosphere, which were previously described only for the massifs of the root zones of the Western and Central Europe. Some general petrogenetic questions of lherzolite massifs from orogenic regions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号