首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Basaltic glasses from the three alkalic areas of Iceland (Snaefellsnes Volcanic Zone, Sudurland Volcanic Zone and Vestmannaeyjar Volcanic Area) contain plagioclase, olivine, clinopyroxene, chromian spinel and titanomagnetite as phenocryst phases. The glasses are hypersthene to nepheline normative alkali basaltic with FeO/ MgO ratios between 1.4–4.7. Olivine ranges in composition from Fo90 to Fo55, plagioclase from An90 to An50 and clinopyroxene from En45Fs10Wo45 to En40Fs17Wo43. Clinopyroxene reveals systematic Ti:Al metastable crystallization trends related to the composition of the enclosing glass. Two types of phenocryst are present in most glasses and show a bimodality in size and composition. Microphenocryst phases are those most likely to have crystallized from the enclosing glass, while macrophenocrysts may have crystallized from a liquid of slightly less evolved composition. The glasses show complex phenocryst-glass relations which can be related to a polybaric effect. The normative glass compositions are related to 2-phase cotectic surfaces in the basalt tetrahedron and define the position of the 3-phase cotectic line. In general with increasing FeO/MgO in the glass the phenocryst assemblages vary from clinopyroxene, olivine and plagioclase along a clinopyroxene-olivine surface to olivine and plagioclase along an olivine-plagioclase surface. The normative glass compositions show a deflection from clinopyroxene-bearing to clinopyroxene-free glasses. The appearance of plagioclase together with clinopyroxene and olivine can be explained in the light of experimental investigations of the effect of pressure on phase relations. The major element variation of the glasses is interpreted as representing mantle derived magma batches of primary liquids, modified to some degree by high (6 kbar) and intermediate to low pressure (below 3 kbar) crystal fractionation towards equilibrium phase relations during ascent and residence in crustal magma chambers. The observed deflection in normative compositions of the glasses marks the position of the high pressure 3-phase cotectic line. The bimodality in size and composition of plagioclase and olivine phenocrysts can be related to high pressure crystal fractionation in the melt. The Fe-Ti basalt glasses from Sudurland are believed to be quenched high pressure compositions.  相似文献   

2.
The evolution of major mineral compositions and trace element abundances during fractional crystallization of a model lunar magma ocean have been calculated. A lunar bulk composition consistent with petrological constraints has been selected. Major mineral compositions have been calculated using published studies of olivine-melt, plagioclase-melt, and pyroxene-olivine equilibria. Trace element abundances have been calculated using experimentally-determined partition coefficients where possible. In the absence of experimental determinations, published partition coefficients obtained by analyzing phase separates from porphyritic volcanic rocks have been used. Trace elements studied are La, Sm, Eu, Lu, Rb, Sr( Eu2+), Ni, Co, and Cr.The first mineral to crystallize is olivine, which varies in composition from Fo98 at the liquidus to Fo95 at 50% solidification. Orthopyroxene crystallizes from 50 to 60% solidification with a restricted composition range of En95-En93. Plagioclase and Ca-rich clinopyroxene (XWo arbitrarily set equal to 0.5) co-crystallize during the final 40% solidification. Plagioclase changes in composition from An97 to approximately An93, while clinopyroxene evolves from En46 to approximately En40. The concomitant evolution of major element abundances in the melt is also discussed.The concentration of Ni in the melt decreases rapidly because solid-melt partition coefficients are significantly greater than unity at all stages of crystallization. The concentration of Cr in the melt increases slowly during olivine crystallization, then drops precipitously during the crystallization of orthopyroxene and clinopyroxene. The concentration of Co in the melt decreases slowly during olivine and orthopyroxene crystallization, after which it returns slowly to its initial concentration. Rubidium and Sr are not fractionated relative to one another until the onset of plagioclase crystallization. Ratios of Rb/Sr, normalized to their initial concentrations in the magma, do not rise above 10 until 95% of the magma has solidified. The ratios of Eu/Sm and La/Lu, normalized to their initial concentrations in the magma, remain essentially unfractionated until the onset of crystallization of clinopyroxene plus plagioclase, at which point the normalized La/Lu ratio increases to approximately 1.3 at 100% solidification and the normalized Eu/Sm ratio decreases to approximately 0.2 at 100% solidification.The model calculations are used to place approximate constraints on the bulk composition of the primitive Moon. Consideration of the effect on plagioclase composition of the activities of NaO0.5 and SiO2 in the melt suggests that the primitive Moon contained less than 0.4 wt % NaO0.5 and approximately 42–43 wt % SiO2. Concentrations of the REE in model lunar anorthosites are consistent with the returned samples. Concentrations of the REE in several model ‘highland basalts’ (considered to be representative of the average lunar terrae) are too low when compared with returned samples. Several possible explanations of this discrepancy are considered. The possible role of spinel in a twostage geochemical evolution of mare basalt liquids is discussed.  相似文献   

3.
Lunar meteorite Northwest Africa 773 (herein referred to as NWA773) is a breccia composed predominantly of mafic volcanic components, including a prominent igneous clast lithology. The clast lithology is an olivine-gabbro cumulate, which, on the basis of mineral and bulk compositions, is a hypabyssal igneous rock related compositionally to volcanic components in the meteorite. The olivine-gabbro lithology exhibits cumulus textures and, in our largest section of it, includes some 48% olivine (Fo64 to Fo70, average Fo67), 27% pigeonite (En60Fs24Wo16 to En67Fs27Wo6), 11% augite (En50Fs17Wo33 to En47Fs13Wo40), 2% orthopyroxene (En70Fs26Wo4), 11% plagioclase (An80 to An94), and trace barian K-feldspar, ilmenite, Cr-spinel, RE-merrillite, troilite, and Fe-Ni metal. The Mg/Fe ratios of the mafic silicates indicate equilibration of Fe and Mg; however, the silicates retain compositional variations in minor and trace elements that are consistent with intercumulus crystallization. Accessory mineralogy reflects crystallization of late-stage residual melt. Both lithologies (breccia and olivine cumulate) of the meteorite have very-low-Ti (VLT) major-element compositions, but with an unusual trace-element signature compared to most lunar VLT volcanic compositions, i.e., relative enrichment in light REE and large-ion-lithophile elements, and greater depletion in Eu than almost all other known lunar volcanic rocks. The calculated composition of the melt that was in equilibrium with pyroxene and plagioclase of the cumulate lithology exhibits a KREEP-like REE pattern, but at lower concentrations. Melt of a composition calculated to have been in equilibrium with the cumulate assemblage, plus excess olivine, yields a major-element composition that is similar to known green volcanic glasses. One volcanic glass type from Apollo 14 in particular, green glass B, type 1, has a very low Ti concentration and REE characteristics, including extremely low Eu concentration, that make it a candidate parent melt for the olivine-gabbro cumulate. We infer an origin for the parent melt of NWA773 volcanic components by assimilation of a trace-element-rich partial or residual melt by a magnesian, VLT magma deep in the lunar crust or in the mantle prior to transportation to the near-surface, accumulation of olivine and pyroxene in a shallow chamber, eruption onto a volcanic surface, and incorporation of components into local, predominantly volcanic regolith, prior to impact mixing of the volcanic terrain and related hypabyssal setting, and ejection from the surface of the Moon. Volcanic components such as these probably occur in the Oceanus Procellarum region near the site of origin of the green volcanic glasses found in the Apollo 14 regolith.  相似文献   

4.
The Larkman Nunatak (LAR) 06319 olivine-phyric shergottite is composed of zoned megacrysts of olivine (Fo76-55 from core to rim), pyroxene (from core to rim En70Fs25Wo5, En50Fs25Wo25, and En45Fs45Wo10), and Cr-rich spinel in a matrix of maskelynite (An52Ab45), pyroxene (En30-40Fs40-55Wo10-25,), olivine (Fo50), Fe-Ti oxides, sulfides, phosphates, Si-rich glass, and baddeleyite. LAR 06319 experienced equilibration shock pressures of 30-35 GPa based on the presence of localized shock melts, mechanical deformation of olivine and pyroxene, and complete transformation of plagioclase to maskelynite with no relict birefringence. The various phases and textures of this picritic basalt can be explained by closed system differentiation of a shergottitic melt. Recalculated parent melt compositions obtained from melt inclusions located in the core of the olivine megacrysts (Fo>72) resemble those of other shergottite parent melts and whole-rock compositions, albeit with a lower Ca content. These compositions were used in the MELTS software to reproduce the crystallization sequence. Four types of spinel and two types of ilmenite reflect changes in oxygen fugacity during igneous differentiation. Detailed oxybarometry using olivine-pyroxene-spinel and ilmenite-titanomagnetite assemblages indicates initial crystallization of the megacrysts at 2 log units below the Fayalite-Magnetite-Quartz buffer (FMQ - 2), followed by crystallization of the groundmass over a range of FMQ - 1 to FMQ + 0.3. Variation is nearly continuous throughout the differentiation sequence.LAR 06319 is the first member of the enriched shergottite subgroup whose bulk composition, and that of melt inclusions in its most primitive olivines, approximates that of the parental melt. The study of this picritic basalt indicates that oxidation of more than two log units of FMQ can occur during magmatic fractional crystallization and ascent. Some part of the wide range of oxygen fugacities recorded in shergottites may consequently be due to this process. The relatively reduced conditions at the beginning of the crystallization sequence of LAR 06319 may imply that the enriched shergottite mantle reservoir is slightly more reduced than previously thought. As a result, the total range of Martian mantle oxygen fugacities is probably limited to FMQ − 4 to − 2. This narrow range could have been generated during the slow crystallization of a magma ocean, a process favored to explain the origin of shergottite mantle reservoirs.  相似文献   

5.
The Late Permian Fe-Ti oxide ore-bearing Baima igneous complex (BIC) is one of three gabbro-granitoid complexes with the Emeishan large igneous province. Mineral compositions are determined for the BIC layered gabbro in order to constrain subsolidus and magma chamber processes. The averaged compositions of cumulus olivine, clinopyroxene and plagioclase within individual samples range from Fo65-76, Mg# = 75 to 82 and An49-64 but they are not correlative. The observed mineral compositions are consistent with those modeled using the pHMELTS program. Highly variable magnetite compositions are consistent with extensive subsolidus re-equilibration and exsolution. The occurrence of reversely-zoned granular olivine in Fe-Ti oxide ores is a manifestation of Mg transfer between Fe-Ti oxides and olivine at relatively high (<1150?°C) subsolidus temperatures. The primary oxide is inferred to be an aluminous titanomagnetite. Similar to other layered intrusions in the region, the gabbroic unit of the BIC displays Zr depletion which is consistent with loss of a residual liquid during magma differentiation. If the most Zr-rich syenites of the complex are taken into account, the Zr budgets between the combined gabbro-syenite and the basalts are similar. This indicates that the BIC most likely represents a closed system in terms of magma extraction.  相似文献   

6.
Rhythmically layered anorthosite and gabbro are exposed in a4–10-m thick interval at the base of the layered gabbrounit on North Arm Mountain, one of four massifs that composethe Bay of Islands ophiolite, Newfoundland. Within the rhythmicallylayered interval, up to 37 anorthosite layers 1–2 cm thickalternate with gabbroic layers 7–10 cm thick. Anorthositesare adcumulates (most contain <6ppm Zr) with 98–99%plagioclase (Plag) and 1–2% intergranular clinopyroxene(Cpx), whereas gabbros are adcumulates to mesocumulates (<6–20ppmZr) with 35–55% Plag, and the balance olivine (Ol) + Cpx? orthopyroxene (Opx). Average mineral compositions are: Olmg-number [100 ?Mg/(Mg + Fe)]=84?9, NiO=0?13wt. % Plag An =87?9; Cpx mg-number = 88?3, TiO2=0?20 wt %; and Opx mg-number= 85?7. Rare earth element (REE) concentrations in clinopyroxeneand plagioclase are low throughout the rhythmically layeredinterval (<5 times chondrites). The rhythmically layeredinterval is sandwiched between thick layers of adcumulate toorthocumulate uniform gabbro with average modal proportionsof 54% Plag-39% Cpx-3% Ol-4% Opx. Average mineral compositionsare: Ol mg-number = 75?5, NiO = 0?08 wt. %; Plag An=69%6; Cpxmg-number = 81?2, TiO2 =0?53 wt. %, and Opx mg-number = 77?5.Clinopyroxene and plagioclase REE abundances are systematicallyhigher in the uniform gabbro interval than in the rhythmicallylayered interval. Calculated fractional crystallization pathsand correlated cryptic variation patterns suggest that uniformand rhythmically layered gabbros represent 20–30% in situcrystallization of two distinct magma batches, one more evolvedand the other more primitive. When the more primitive magmaentered the crystallization site of the NA300–301 gabbros,it is estimated to have been 40?C hotter than the resident evolvedmagma, and may have been chilled by contact with a magma chambermargin composed of uniform gabbro. In this model, chilling causedthe liquid to become supercooled with respect to plagioclasenucleation temperatures, resulting in crystallization of gabbrodeficient in plagioclase relative to equilibrium cotectic proportions.Subtraction of a plagioclase-poor melagabbro enriched the liquidin normative plagioclase, which in turn led to crystallizationof an anorthosite layer. Alternating anorthosite and gabbrolayers in the rhythmically layered interval built up by coupledand sustained variations in crystal nucleation and growth rates,and associated variations in liquid compositions at the crystallizationfront. Relatively stagnant magma-flow conditions may be requiredto accumulate substantial thicknesses of rhythmically layeredcumulates by sustained oscillatory crystallization. The rarityof anorthosite-gabbro rhythmic phase layering on North Arm Mountainmay indicate that convective magma currents in the Bay of Islandsmagma chamber were too vigorous for oscillatory crystallizationto commonly occur.  相似文献   

7.
The Precambrian Sierra Ancha sill complex, more than 700 feet thick, is a multiple intrusion with a central layer of feldspathic olivine-rich diabase, and upper and lower layers of olivine diabase derived from a high-alumina basalt magma. Minor rock types include albite diabase and albite-diabase pegmatite. Deuteric alteration was extensive. Principal primary minerals are plagioclase (An72 to An16), augite (Wo43En44Fs13 to Wo40En38Fs22), olivine (Fo74 to Fo54), orthopyroxene (En77 to En44), magnetite (Mgt66Usp34 to Mgt89Usp11), and ilmenite (Ilm86Hem14 to Ilm96Hem4). Ilmenite formed by reaction-exsolution from magnetitess is consistently different in compositon from primary ilmenite. Primary ilmenite became enriched in Mn and depleted in Mg as crystallization proceded. A systematic Fe-Mg partition between contacting olivine and orthopyroxene suggests that equilibrium prevailed on an extremely local scale during crystallization. Albite-diabase pegmatite contains a mineral assemblage including augite, ferrosalite (Wo49En28Fs23 to Wo49En14Fs37), albite (An2 to An0), and iron-rich chlorite. Altered diabase and albite diabase also have unusually calcium-rich pyroxenes. The calcium-rich pyroxenes, which occur in assemblages like those characterizing some spilites, are richer in calcium and lower in aluminum and titanium than basaltic augite.Contribution No. 1712 of the Division of Geological Sciences, California Institute of Technology, Pasadena, California.  相似文献   

8.
The Kap Edvard Holm Layered Gabbro Complex is a large layeredgabbro intrusion (>300 km2) situated on the opposite sideof the Kangerdlugssuaq fjord from the Skaergaard Intrusion.It was emplaced in a continental margin ophiolite setting duringearly Tertiary rifting of the North Atlantic. Gabbroic cumulates, covering a total stratigraphic thicknessof >5 km, have a typical four-phase tholeiitic cumulus mineralogy:plagioclase, clinopyroxene, olivine, and Fe–Ti oxides.The cryptic variation is restricted (plagioclase An81–51,olivine Fo85–66, clinopyroxene Wo43–41 En46–37Fs20–11) and there are several reversals in mineral chemistry.Crystallization took place in a low-pressure, continuously fractionatingmagma chamber system which was periodically replenished andtapped. Fine-grained (0•2–0•4 mm) equigranular, thin(0•5–3 m), laterally continuous basaltic zones occurwithin an {small tilde}1000 m thick layered sequence in theTaco Point area. Twelve such zones define the bases of individualmacrorhythmic units with an average thickness of {small tilde}80m. The fine-grained basaltic zones grade upwards, over a fewmetres, into medium-grained (>1 mm) poikilitic, olivine gabbrowith smallscale modal layering. Each fine-grained basaltic zoneis interpreted as an intraplutonic quench zone in which magmachilled against the underlying layered gabbros during influxalong the chamber floor. Supercooling by {small tilde}50C isbelieved to have caused nucleation of plagioclase, olivine,and clinopyroxene in the quench zone. The nucleation rate isbelieved to have been enhanced as the result of in situ crystallizationin a continuously flowing magma. The transition to the overlyingpoikilitic olivine gabbro reflects a decreasing degree of supercooling. Compositional variation in the Taco Point sequence is typicalfor an open magma chamber system: olivine (Fo77–68 5)and plagioclase cores (An80–72) show a zig-zag crypticvariation pattern with no overall systematic trend. Olivinehas the most primitive compositions in the quench zones andmore evolved compositions in the olivine gabbro; plagioclasecores show the opposite trend. Although plagioclase cores arebelieved to retain their original compositions, olivines re-equilibratedby reaction with trapped liquid. Some plagioclase cores containrelatively sodic patches which retain quench compositions. Whole-rock compositions of nine different quench zones varyover a range from 10 to 18% MgO although the mg-number remainsconstant at {small tilde}0•78. The average composition(47•7% SiO2, 13•3%MgO, 1•57% Na2O+K2O) is takenas a best estimate of the parental magma composition, and isequivalent to a high-magnesian olivine tholeiite. The compositionalvariation of the quench zones is believed to reflect burstsof nucleation and growth of olivine and plagioclase during quenching. Magma emplacement is believed to have taken place by separatetranquil influxes which flowed along the interface between alargely consolidated cumulus pile and the residual magma. Theresident magma was elevated with little or no mixing. At certainlevels in the layered sequence the magma drained back into thefeeder system; such a mechanism is referred to as a surge-typemagma chamber system.  相似文献   

9.
Orthopyroxene-magnetite intergrowths (symplectites), partly or completely surrounding olivine, are described from the Wateranga layered mafic intrusion, Queensland, Australia. The texture occurs in unmetamorphosed plagioclase-rich norites, olivine gabbros and troctolites in which the primary minerals are olivine (Fo63–69) orthopyroxene (En66–72), clinopyroxene (Wo42En42Fs16), plagioclase (An49–65), hornblende, ilmenite, magnetite and sulphides. Symplectites range from incipient fine grained developments around corroded olivine grains to intricately formed pseudomorphs after olivine and slow a consistent orthopyroxene/magnetite ratio. Orthopyroxene in symplectites is commonly in optical continuity with surrounding magnetite-free orthopyroxene rims. Later intercumulus hornblended has replaced orthopyroxene. There is marked chemical similarity between primary and simplectite, orthopyroxenes and magnetites. Textures similar to those described here are considered elsewhere to have formed at a late magmatic stage or by solid state reactions involving subsolidus oxidation of olivine. In the Wateranga intrusion textural relations, the chemical similarity between primary and symplectite phases, and the consistent volume proportions of magnetite and orthopyroxene in the intergrowths suggest that they developed during late magmatic crystallization.  相似文献   

10.
The chemical compositions of melt inclusions in a primitive and an evolved basalt recovered from the mid-Atlantic ridge south of the Kane Fracture Zone (23°–24°N) are determined. The melt inclusions are primitive in composition (0.633–0.747 molar Mg/(Mg+Fe2+), 1.01–0.68 wt% TiO2) and are comparable to other proposed parental magmas except in having higher Al2O3 and lower CaO. The primitive melt inclusion compositions indicate that the most primitive magmas erupted in this region are not near primary magma compositions. Olivine and plagioclase microphenocrysts are close to exchange equilibrium with their respective basalt glasses, whose compositions are displaced toward olivine from 1 atm three phase saturation. The most primitive melt inclusion compositions are close to exchange equilibrium with the anorthitic cores of zoned plagioclases (An78.3-An83.1; the hosts for the melt inclusions in plagioclase) and with olivines more forsteritic (Fo89-Fo91) than the olivine microphenocrysts (the hosts for the melt inclusions in olivine). Xenocrystic olivine analyzed is Fo89 but contains no melt inclusions. These observations indicate that olivines have exchanged components with the melt after melt inclusion entrapment, whereas plagioclase compositions have remained the same since melt inclusion entrapment. Common denominator element ratio diagrams and oxide versus oxide variation diagrams show that the melt inclusion compositions, which represent liquids higher along the liquid line of descent, are related to the glass compositions by the fractionation of olivine, plagioclase and clinopyroxene (absent from the mincral assemblage), probably occurring at elevated pressures. A model is proposed whereby clinopyroxene segregates from the melt at elevated pressures (to account for its absence in the erupted lavas that have the chemical imprint of clinopyroxene fractionation). Zoned plagioclases in the erupted lavas are thought to be survivors of decompressional melting during magma ascent. Since similar primitive melt inclusions occur in olivine microphenocrysts and in the cores of zoned plagioclases, any model must account for all phases present.  相似文献   

11.
The Lower Proterozoic Salt Lick Creek intrusion, East Kimberley region, Western Australia, is a layered intrusion divisible into two well-defined zones, the Basal and Main Zones, whose combined stratigraphic thickness, as now exposed, is approximately 1000 metres. The Basal Zone, 360 metres thick, contains three members, two of which (Members 1 and 3) are dominated by olivine, plagioclase cumulates (including harrisites and allivalites); Member 2, near the middle of the Basal Zone, consists substantially of more olivine-rich cumulates, including plagioclase-bearing dunites. The Main Zone, commencing with Member 4 plagioclase, orthopyroxene cumulates, is composed largely of anorthositic cumulates of Member 5. Mild but nevertheless measurable rhythmic layering is superimposed upon the three members comprising the Basal Zone. Electron probe microanalyses of the primary phases across some 500 metres of cumulates indicate limited cryptic variation with stratigraphic height. Olivine ranges in composition from Fo81 to Fo84, orthopyroxene from Ca2Mg83Fe15 to Ca2Mg78Fe20, clinopyroxene from Ca48Mg46Fe6 to Ca44Mg48Fe8, and plagioclase from An84 to An88 but mineral compositions are not a simple function of stratigraphic height. It is inferred that the parental magma(s) was high-alumina mafic, intrinsically subalkaline, strongly olivine- and plagioclase-normative and in all likelihood tholeiitic in its affinities. The olivine-free cumulates of the Main Zone display a higher level of normative saturation than the cumulates of the Basal Zone but mineral and host rock chemistries, particularly 100 Mg/ (Mg+Fe2+) atomic ratios, are not favourable to proposals which would relate the origin of the Main Zone or the several members of the intrusion to the differentiation of a single pool of magma. It is suggested that the Main Zone, at least, derived from a separate pulse of relatively more saturated magma and that the lateral replenishment by more or less undifferentiated magma was also a fundamental and critical factor in the genesis of the Basal Zone cumulates.  相似文献   

12.
Data from detailed sample traverses in the layered gabbro unit of the North Arm Mauntain massif, Bay of Islands ophiolite, allow meter-scale resolution of magmatic processes in spreading ridge magma chambers. One suite of 46 samples from a 195 m interval near the base of the layered gabbro unit contains cumulus plagioclase (An73.7–87.5; average modal abundance=75%), clinopyroxene (Mg#=80.3–86.0; 18%), and olivine (Fo76.6–82.1; 6%), with intergranular orthopyroxene (Mg#=78.0–83.3; 1%), and accessory Cr-Al spinel (Cr#=32.3–41.4). Ilmenite rims spinel in one sample. Whole rock Zr contents range from <6 to 15 ppm. Plots of stratigraphic height in the traverse versus petrogenetic indicators (e.g. Mg#'s of mafic phases and An in plagioclase) reveal both normal and reverse cryptic variation patterns; the patterns for all indices are generally correlated. The normal portions of the patterns formed during fractional crystallization of basalt batches. Ranges of mineral compositions in the normal trends suggest that 29–38% crystallization of each batch of basalt occurred before magmatic replenishment. The reverse cryptic trends formed by crystallization of hybrid magmas produced during periods of magma mixing. Other evidence for magma mixing is the systematic association of spinel and reversely zoned plagioclase with the reverse trends. Experiments and observations of natural assemblages indicate that 55% modal plagioclase crystallizes from basalts at the olivine+plagioclase+clinopyroxene+liquid piercing point. The average plagioclase content of this suite of leucogabbros from North Arm Mountain is too high to have formed from simple crystallization at the piercing point. Petrologic modeling indicates the leucogabbros may have formed from basalts into which a small amount (<10%) of plagioclase was resorbed during mixing; the initial compositions of these hybrid basalts lie in the plagioclase primary phase volume. Other suites of layered gabbros from North Arm Mountain are not so plagioclase-rich as the leucogabbros described above. Crystallization of basalts in the plagioclase primary phase volume and the consequent formation of plagioclaserich gabbros may occur in restricted portions of zoned magma chambers underlying oceanic spreading centers, or may occur episodically in the overall lifetimes of the magma chambers.  相似文献   

13.
The major element composition of plagioclase, pyroxene, olivine,and magnetite, and whole-rock 87Sr/86Sr data are presented forthe uppermost 2·1 km of the layered mafic rocks (upperMain Zone and Upper Zone) at Bierkraal in the western BushveldComplex. Initial 87Sr/86Sr ratios are near-constant (0·7073± 0·0001) for 24 samples and imply crystallizationfrom a homogeneous magma sheet without major magma rechargeor assimilation. The 2125 m thick section investigated in drillcore comprises 26 magnetitite and six nelsonite (magnetite–ilmenite–apatite)layers and changes up-section from gabbronorite (An72 plagioclase;Mg# 74 clinopyroxene) to magnetite–ilmenite–apatite–fayaliteferrodiorite (An43; Mg# 5 clinopyroxene; Fo1 olivine). The overallfractionation trend is, however, interrupted by reversals characterizedby higher An% of plagioclase, higher Mg# of pyroxene and olivine,and higher V2O5 of magnetite. In the upper half of the successionthere is also the intermittent presence of cumulus olivine andapatite. These reversals in normal fractionation trends definethe bases of at least nine major cycles. We have calculateda plausible composition for the magma from which this entiresuccession formed. Forward fractional crystallization modelingof this composition predicts an initial increase in total iron,near-constant SiO2 and an increasing density of the residualmagma before magnetite crystallizes. After magnetite beginsto crystallize the residual magma shows a near-constant totaliron, an increase in SiO2 and decrease in density. We explainthe observed cyclicity by bottom crystallization. Initiallymagma stratification developed during crystallization of thebasal gabbronorites. Once magnetite began to crystallize, periodicdensity inversion led to mixing with the overlying magma layer,producing mineralogical breaks between fractionation cycles.The magnetitite and nelsonite layers mainly occur within fractionationcycles, not at their bases. In at least two cases, crystallizationof thick magnetitite layers may have lowered the density ofthe basal layer of melt dramatically, and triggered the proposeddensity inversion, resulting in close, but not perfect, coincidenceof mineralogical breaks and packages of magnetitite layers. KEY WORDS: layered intrusion; mineral chemistry; isotopes; magma; convection; differentiation  相似文献   

14.
In order to describe the composition and crystallinity of the initial (parental) magma of the Partridge River intrusion of the Keweenawan Duluth Complex, and thereby understand the mode of emplacement and solidification of the intrusion, we have applied a numerical simulation technique called geochemical thermometry (Frenkel et al. 1988). The parental magma was a low-alumina, high-Ti-P olivine tholeiite similar to typical Keweenawan low-alumina, high-Ti-P basalts associated with the Duluth Complex and from the nearby Portage Lake area of the Lake Superior region. The parental magma was emplaced as a crystal-liquid suspension, followed by chilling of an evolved, leading edge ferrodioritic liquid in the basal zone of the intrusion. The conditions of emplacement at the present crustal location were 1,150°C, 2 kbar, and f O 2 slightly above the wustite-magnetite (WM) buffer. The main differentiation process after emplacement was the sorting and redistribution of plagioclase and olivine crystals on a local scale accompanied by less efficient convection and minor settling of olivine. Calculated crystallization sequence for the parental magma is olivine+plagioclase (1,240°C)olivine+plagioclase+magnetite (1,146°C, WM+0.5)olivine+plagioclase+magnetite+augite (1,140°C, WM+0.5). The calculated compositions of the cumulus olivine and plagioclase in equilibrium with the parent magma at 1,150°C are Fo66.7±1.1 and An64.5±2.5, respectively, and are similar to the estimated average composition of primary olivine (Fo69.1±2.8) and the average composition of plagioclase core (An66.3±2.8) measured in drill core samples through the intrusion (Chalokwu and Grant 1987).  相似文献   

15.
The Baima layered intrusion is located in the central part of the Emeishan Large Igneous Province (ELIP). The N–S striking intrusion is ~ 24 km long and ~ 2 km thick and dips to the west. Based on variations in modal proportions and cumulus mineral assemblages, the intrusion from the base to the top is simply subdivided into a lower zone (LZ) with most of the economic magnetite layers, and an upper zone (UZ) with apatite-bearing troctolite and gabbro. The rock textures suggest crystallization of the Fe–Ti oxide slightly later than plagioclase (An67-54) but relatively earlier than olivine (Fo74-55), followed by clinopyroxene and finally apatite.Relatively low olivine forsterite content and abundant ilmenite exsolution lamellae in clinopyroxene indicate that the Baima parental magma is a highly evolved Fe–Ti-rich magma. Via MELTS model, it demonstrates that under a closed oxygen system, extensive silicate mineral fractionation of a picritic magma might lead to Fe and Ti enrichment and oxygen fugacity elevation in the residual magma. When such Fe–Ti-rich magma ascends to the shallower Baima intrusion, the Fe–Ti oxides may become an early liquidus phase. Well-matched olivine and plagioclase microprobe data with the results of MELTS calculation, combined with relatively low CaO content in olivine (0.02–0.08 wt.%) indicate that wall-rock contamination probably plays a weak role on oxygen fugacity elevation and the early crystallization of Fe–Ti oxides. Several reversals in whole-rock chromium and plagioclase anorthite contents illustrate that multiple recharges of such Fe–Ti-rich magma mainly occurred along the lower part of the Baima magma chamber. Frequent Fe–Ti-rich magma replenishment and gravitational sorting and settling are crucial for the development of thick Fe–Ti oxide layers at the base of the Baima layered intrusion.  相似文献   

16.
WIEBE  R.A. 《Journal of Petrology》1986,27(6):1253-1275
Nodules and xenocrysts dominated by high-A1 orthopyroxene occurin Proterozoic basaltic dikes that cut the Nain anorthositecomplex, Labrador. This pyroxene (En73–68, Al2O3 = 6.5–4.5)lacks exsolution and occurs both as anhedral xenocrysts up to10 cm in diameter and with euhedral plagioclase (An55) in ophiticnodules. Rarely, olivine (Fo70) occurs with orthopyroxene andAl-spinel with plagioclase. Scarce, more Fe-rich nodules containtwo pyroxenes (orthopyroxene + pigeonite and pigeonite+augite)and coarse intergrowths of ilmenite and Ti-rich magnetite. Pyroxenepairs yield temperatures of 1250? to 1170 ?C; coexisting oxidelamellae yield temperatures between 1145? and 1120 ?C. The highsubsolidus temperatures of the nodules contrasts with the lowtemperature of the host anorthosite at the time of dike emplacementand indicates a deep source for the nodules. Coexisting olivine(Fo70) and plagioclase (An54) suggest a maximum pressure ofabout 11 kb.The dominant orthopyroxene in these nodules is nearlyidentical in composition to the high-Al orthopyroxene megacrystswith exsolved plagioclase (HAOM) found in most Proterozoic anorthosites,and the ophitic nodules have textures similar to ophitic occurrencesof HAOM in anorthosite. Rafting of cotectic nodules from thelower crust can explain occurrences of HAOM in shallow levelanorthosites.The nodules and xenocrysts have compositions consistentwith crystallization from magmas that were parental to the anorthosites.They lend support to models which derive anorthosites by fractionalcrystallization of basaltic magma near the base of the crust.  相似文献   

17.
Gebel Dahanib is a well preserved, late Precambrian layered mafic-ultramafic sill about 1.5 km thick, forming a prominent peak in the Southeastern Desert of Egypt. Dunites, harzburgites and thin chromite layers at the base grade upward through pyroxenites to layered gabbros and rare anorthosite at the top. Peridotitic dykes from the main body, unsheared margins, and ubiquitous cumulate textures all suggest magmatic rather than tectonic emplacement.Olivine ranges from Fo94 to Fo76, orthopyroxene from En90 to En79, and abundant clinopyroxene is typically low Cr diopside or diopsidic augite. Plagioclase is exceptionally calcic (An94-An83) and typically is 10% more calcic at a given coexisting olivine composition than plagioclase in the Skaergaard and Stillwater intrusions. Assimilation of the country rock is common along the borders, and chilled margins are not developed. The bulk composition of the sill, estimated from whole rock analyses weighted according to outcrop areas, is SiO2=50.1%, A12O3= 8.9%, MgO=19.9%, CaO=12.1%, K2O=0.06%, TiO2=0.2%. REE contents in the original magma were less than four times chondritic abundances. The chemical and mineralogical characteristics of the Dahanib sill suggest comparisons with basaltic or pyroxenitic komatiites.  相似文献   

18.
Experimental studies, mainly under 3 kbars pressure, have been undertaken on representative samples to determine if any of these compositions could be parental magma to the Bushveld Complex. One such composition, with 12.5% MgO, Mg/(Mg + Fe) of 0.72 and quartz-normative, crystallizes olivine, Fo88, as liquidus mineral, at about 1,300° C, followed at only slightly lower temperature by orthopyroxene at 3 kbars pressure. There is a temperature drop of over 100° C before the appearance of plagioclase and finally clinopyroxene. This crystallization sequence is in excellent agreement with the observed sequence in the lower part of the Bushveld Complex.Results at higher pressures show that this composition cannot be a partial melt from mantle peridotite because olivine is replaced by orthopyroxene as the liquidus mineral at lower crustal pressures. A combination of olivine fractionation and contamination was probably involved in the early evolution of this magma.Experimental data on the other compositions show that they are not suitable as parental magma to the lowest portion of the complex. However, the data are used to construct phase diagrams within the basalt tetrahedron at 3 kbars pressure, which are of relevance to the crystallization of basic magmas in the upper crust.Research undertaken at the Grant Institute of Geology, University of Edinburgh, Scotland  相似文献   

19.
One-atmosphere, anhydrous phase equilibria determined for alkali basalt/high-silica rhyolite mixtures provide a model for crystallization of natural calc-alkaline mixed magmas. The compositional trend defined by these mixtures mimics the trends of many continental calc-alkaline volcanic suites. As with many naturally occurring suites, the mixtures studied straddle the low-pressure olivine-plagioclase-augite thermal divide. Magma mixing provides a convenient method for magmas to cross this thermal divide in the absence of magnetite crystallization. For the mixtures, Mg-rich olivine (Fo82–87) coexists alone with liquid over an exceptionally large range of temperature and silica content (up to 63 wt% SiO2). This indicates that the Mg-rich olivines found in many andesites and dacites are not necessarily out of equilibrium with the host magma, as is commonly assumed. Such crystals may be either primary phenocrysts, or inherited phenocrysts derived from a mafic magma that mixed with a silicic magma. For the bulk compositions studied, the distribution of Fe and Mg between olivine and liquid (K D ) is equal to 0.3 and is independent of temperature and composition. This result extends to silicic andesites the applicability of K D arguments for tests of equilibrium between olivine and groundmass and for modeling of fractional crystallization. In contrast, the distribution of calcium and sodium between plagioclase and liquid varies significantly with temperature and composition. Therefore, plagioclase-liquid K D s cannot be used for fractional crystallization modeling or as a test of equilibrium. Calcic plagioclase from a basalt will be close to equilibrium with andesitic mixtures, but sodic plagioclase from a rhyolite will be greatly out of equilibrium. This explains the common observation that calcic plagioclase crystals in hybrid andesites are generally close to textural equilibrium with the surrounding groundmass, but sodic plagioclase crystals generally show remelting and armoring with calcic plagioclase.  相似文献   

20.
Larkman Nunatak (LAR) 06319 is an olivine-phyric shergottite whose olivine crystals contain abundant crystallized melt inclusions. In this study, three types of melt inclusion were distinguished, based on their occurrence and the composition of their olivine host: Type-I inclusions occur in phenocryst cores (Fo77-73); Type-II inclusions occur in phenocryst mantles (Fo71-66); Type-III inclusions occur in phenocryst rims (Fo61-51) and within groundmass olivine. The sizes of the melt inclusions decrease significantly from Type-I (∼150-250 μm diameter) to Type-II (∼100 μm diameter) to Type-III (∼25-75 μm diameter). Present bulk compositions (PBC) of the crystallized melt inclusions were calculated for each of the three melt inclusion types based on average modal abundances and analyzed compositions of constituent phases. Primary trapped liquid compositions were then reconstructed by addition of olivine and adjustment of the Fe/Mg ratio to equilibrium with the host olivine (to account for crystallization of wall olivine and the effects of Fe/Mg re-equilibration). The present bulk composition of Type-I inclusions (PBC1) plots on a tie-line that passes through olivine and the LAR 06319 whole-rock composition. The parent magma composition can be reconstructed by addition of 29 mol% olivine to PBC1, and adjustment of Fe/Mg for equilibrium with olivine of Fo77 composition. The resulting parent magma composition has a predicted crystallization sequence that is consistent with that determined from petrographic observations, and differs significantly from the whole-rock only in an accumulated olivine component (∼10 wt%). This is consistent with a calculation indicating that ∼10 wt% magnesian (Fo77-73) olivine must be subtracted from the whole-rock to yield a melt in equilibrium with Fo77. Thus, two independent estimates indicate that LAR 06319 contains ∼10 wt% cumulate olivine.The rare earth element (REE) patterns of Type-I melt inclusions are similar to that of the LAR 06319 whole-rock. The REE patterns of Type-II and Type-III melt inclusions are also broadly parallel to that of the whole-rock, but at higher absolute abundances. These results are consistent with an LAR 06319 parent magma that crystallized as a closed-system, with its incompatible-element enrichment being inherited from its mantle source region. However, fractional crystallization of the reconstructed LAR 06319 parent magma cannot reproduce the major and trace element characteristics of all enriched basaltic shergottites, indicating local-to-large scale major- and trace-element variations in the mantle source of enriched shergottites. Therefore, LAR 06319 cannot be parental to the enriched basaltic shergottites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号