首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analyses were made of samples of the several classes of iron meteorites: (hexahedrites, octahedrites, ataxites, and troilite inclusions) in further study of the isotopic composition of primordial lead and toward establishing correlation between the distribution of lead among the mineral inclusions and the nickel-iron mass of the meteorite. Two groups of iron meteorites can be distinguished on the basis of isotopic composition lead suggesting two ages for the parent bodies of common iron meteorites. The distribution of lead in iron meteorites ranges markedly but no relation could be found between isotopic composition of lead and the several structures and compositions. The content of lead in troilites are one or two orders of magnitude higher than in the nickel-iron phase.-- M. Russell.  相似文献   

2.
3.
Geological mapping coupled with structural investigations carried out in the Voltri Massif (eastern Ligurian Alps, Italy) provide new data for the interpretation of the tectonic context controlling main fabric development during exhumation of its high-pressure core. The Voltri Massif is here interpreted as a c. 30 km-long eclogite-bearing, asymmetric dome formed by the progressive verticalisation of the regional, second-phase mylonitic foliation developed during retrogressive greenschist metamorphic conditions. In this light, the exhumation history is driven by a ductile-to-brittle extensional process, operating through low-angle, top-to-the-W multiple detachment systems. A Late Eocene–Early Oligocene age for this extensional episode is proposed on the basis of structural correlations, stratigraphic and radiometric constraints. In this scenario, the Voltri Massif is interpreted as an extensional domain developed to accommodate the Late Eocene–Early Oligocene arching of the Western Alps–Northern Apennines orogenic system.  相似文献   

4.
5.
The Middle–Upper Jurassic succession of the Marguareis–Mongioie area (Ligurian Briançonnais Domain), developed in a protected shelf environment evolving into a pelagic plateau, bears clear evidence of synsedimentary tectonics such as: growth fault-related structures; neptunian dykes; marked lateral variations in stratigraphic thicknesses testifying to the juxtaposition of sectors characterized by different sedimentation and subsidence rates; discordant, anomalous stratigraphic contacts corresponding to paleoescarpments; nodular beds showing evidence of fluidification interpreted as seismites; and the occurrence of sand-sized quartz grains pointing to denudation of Permo-Triassic quartz-rich rocks. Such evidence documents an important Middle-Late Jurassic post-breakup tectonic activity, which was more effective in controlling the basin topography than the Early Jurassic syn-rift tectonic phase. Two main tectono-sedimentary stages, one occurring during the Bathonian, the other falling within the Callovian–Kimmeridgian interval, were reconstructed. The first stage can be referred to a fault-related activity occurring shortly after the initial stages of oceanic spreading of the Ligurian Tethys; the second can be genetically related to the far effects of the first rifting stage of the Bay of Biscay and the Valais basin.  相似文献   

6.
This work is part of the project study for a road tunnel bypassing the town of Genova and was aimed at evaluating the amount of asbestos fibres in the metaophiolites belonging to the Voltri Group and the Sestri–Voltaggio Zone (Liguria, Northern Italy). The 85 studied rock samples (mainly mafic and ultramafic rocks) derive from exposed outcrops and prospecting boreholes. The study of field relations and petrographic/microtextural investigations under the optical microscope allowed for the identification and characterisation of asbestos-bearing settings and lithotypes. Mineralogy and concentration of asbestos fibres in powdered specimens were determined by means of a scanning electron microscope equipped with an energy-dispersive X-ray spectroscopy device. These investigations were combined with petrography on thin-section, X-ray diffraction analysis and phase contrast optical microscopy on rock powders. Mafic and ultramafic rocks commonly contain asbestos in concentrations below 1,000 mg/kg (considered as the contamination threshold under Italian law). However, the fibre concentration rises abruptly within localised zones, where the metaophiolite sequences were involved into late ductile to brittle tectono-metamorphic events. Two groups of asbestos-bearing settings have been so far identified in the area: (a) fracture networks within serpentinites (dominated by fibrous chrysotile), and (b) boudins of chlorite-tremolite schists, likely deriving from dynamic recrystallisation of mafic rocks under greenschist facies conditions (dominated by fibrous amphibole). Even considering the low volumetric incidence of these settings (metres to few tens of metres), their high asbestos content locally controls the total fibre amount in the excavation products, thus requiring special prevention measures during excavation, management and final storage of the contaminated debris.  相似文献   

7.
This study establishes theoretical models of supply and demand for carbon trading and proposes conditions for optimal trading prices and periods. Taiwan’s carbon market is used to verify the validity of the models. Simulations and empirical analysis position firms that emit greenhouse gases as the market buyers, and landowners that convert agricultural lands into plantation forests as the market sellers. The study compares four trading scenarios to determine optimal trading prices and time periods. There were four key conclusions. First, the higher the buyer’s cost to reduce carbon emissions, the higher the demand price is in the carbon trading market. The longer the trading period, the higher the carbon offsets, and the higher the demand price is for emissions trading. Second, the higher the emission trading price, the longer the optimal forest rotation period is for landowners. If emission costs do not exist at the time of logging, landowners are encouraged to log early, reducing the length of rotation periods. Furthermore, as the extension period in the trading scenarios increases, landowners’ costs increase, raising the market equilibrium price. Third, when landowners participate in forest carbon trading mechanisms or carbon subsidy policies, they may not always lengthen forest rotation periods. Therefore, if and when the government implements these mechanisms or policies, it should consider the factors affecting the length of forest rotation period. Finally, to respond to international interest in reducing greenhouse gas emissions, the government should design separate carbon programs and trading mechanisms for different types of private landowners. This would strengthen incentives for participating in the afforestation program.  相似文献   

8.
Liu  Wan-Yu  Wang  Qunwei 《Natural Hazards》2015,84(1):209-242

This study establishes theoretical models of supply and demand for carbon trading and proposes conditions for optimal trading prices and periods. Taiwan’s carbon market is used to verify the validity of the models. Simulations and empirical analysis position firms that emit greenhouse gases as the market buyers, and landowners that convert agricultural lands into plantation forests as the market sellers. The study compares four trading scenarios to determine optimal trading prices and time periods. There were four key conclusions. First, the higher the buyer’s cost to reduce carbon emissions, the higher the demand price is in the carbon trading market. The longer the trading period, the higher the carbon offsets, and the higher the demand price is for emissions trading. Second, the higher the emission trading price, the longer the optimal forest rotation period is for landowners. If emission costs do not exist at the time of logging, landowners are encouraged to log early, reducing the length of rotation periods. Furthermore, as the extension period in the trading scenarios increases, landowners’ costs increase, raising the market equilibrium price. Third, when landowners participate in forest carbon trading mechanisms or carbon subsidy policies, they may not always lengthen forest rotation periods. Therefore, if and when the government implements these mechanisms or policies, it should consider the factors affecting the length of forest rotation period. Finally, to respond to international interest in reducing greenhouse gas emissions, the government should design separate carbon programs and trading mechanisms for different types of private landowners. This would strengthen incentives for participating in the afforestation program.

  相似文献   

9.
The Bracco–Gabbro Complex (Internal Liguride ophiolite), that intruded subcontinental mantle peridotite, contains layers of chromitite that are associated with ultramafic differentiates. The chromitites and disseminated chromites in the ultramafics have Al contents similar to the Al-rich podiform chromitites [0.40 < Cr# = Cr/(Cr + Al) < 0.55]. TiO2 contents of the chromitites are unusually high and range up to 0.82 wt%. The calculated Al2O3 and TiO2 content of the parental melt suggest that the melt was a MORB type. Geothermobarometrical calculations on few preserved silicate inclusions revealed formation temperatures between 970 and 820 °C under a relatively high oxygen fugacity (ΔlogfO2 at +2.0–2.4). Chromitites were altered during the post-magmatic tectono-metamorphic uplift and the final exposure at the seafloor, as evidenced by the formation of ferrian chromite. The PGE contents of the chromitites and associated ultramafics are unusually low (PGEmax 83 ppb). The chondrite-normalized PGE spidergrams show positive PGE patterns and to some extent similarities with the typical trend of stratiform chromitites. No specific PGM have been found but low concentrations of PPGE (Rh, Pt, and Pd) have been detected in the sulphides that occur interstitially to or enclosed in chromite. Recently, it has been shown that the Internal Liguride gabbroic intrusions have formed by relatively low degrees of partial melting of the asthenospheric mantle. We conclude that the low degree of partial melting might be the main factor to control the unusual low PGE contents and the rather unique PGE distribution in the Bracco chromitites.  相似文献   

10.
In recent years, the high incidence of harmful health effects through inhalation of airborne asbestos from amphibole-bearing rock mélanges has been thoroughly documented. Here, we present a field-based, multi-scale geological approach aimed at illustrating the occurrence of amphibole fibrous mineralisation in an ophiolitic suite from the Ligurian Alps (Italy) and discussing the implication on in situ determination of the asbestos hazard. The rock mélange is composed of plurimetre-sized blocks of different lithotypes (metagabbro, serpentinite, chloritoschist) juxtaposed by the meaning of tectonic structures. The geological-structural survey revealed that the fibrous mineralisation is localised in specific structural sites of the rock volume, including veins and schistosity. Both micro-chemical and crystal structure analyses on selected fibrous samples revealed that actinolite fibres grow in veins within the metagabbro and in chloritoschists, while fibrous tremolite occurs in serpentinite schistosity. The morphological features of these amphibole fibres have been analysed in TEM images and used for classifying them as “asbestiform” or “non-asbestiform”. The results show that the asbestos hazard determination is not unequivocally identified when different procedures for asbestos fibre identification and classification are applied. This may have impact on normatives and regulations in defining environmental hazards due to asbestos occurrence.  相似文献   

11.
《International Geology Review》2012,54(13):1772-1790
The Quanji Massif (QM), in the northeast part of Tibet, consists of Palaeoproterozoic metamorphic rocks, granitoids, and mafic dikes. U–Pb dating of a diorite gneiss and a mafic dike in the QM yielded a crystallization age of 2272 ± 15 Ma and a metamorphic age of 1928 ± 11 Ma, respectively. Although some post-emplacement alteration has occurred, the mafic dikes display a sub-alkaline signature with slight light rare earth element-enrichment, depletion in Th, Nb, Ta, and Ti, and have a rare earth element pattern consistent with volcanic arc basalts. Based on the geochronology and field relationships, we conclude that the mafic dikes formed in an extensional setting within either a fore-arc or back-arc environment. We argue that the metamorphism that affected the dikes occurred shortly after intrusion. Our diorite gneiss and monzodiorite samples are characterized by relatively high Mg# (47–56) and Sr contents (367–1070 ppm), low-to-moderate Sr/Y (10–90), low Rb/Sr (0.03–0.28) and high K/Rb (179–775). These felsic melts likely originated from partial melting of a mafic source. Our new data, combined with results from previous studies, indicate that the QM formed between 2.50 and 2.30 Ga and underwent metamorphism around 1.95–1.75 Ga that may relate to the dispersal of Neoarchaean ‘Kenorland’ and the formation of the Columbia supercontinent. The similarity between the Palaeoproterozoic events in the Tiekelik, North Altyn–Dunhuang, Alashan blocks, and QM suggests that QM was part of either the Tarim or the North China Craton in the late Archaean and Palaeoproterozoic. If the model is correct, then there was a single ‘North China–Quanji–Tarim Craton’ that was later disrupted by Neoproterozoic to Phanerozoic tectonic events.  相似文献   

12.
The Zermatt–Saas-Fee ophiolites (ZSFO) are one of the best preserved slices of eclogitic oceanic crust in the Alpine chain. They formed during the opening of the Mesozoic Tethys and underwent subduction to HP/UHP conditions during Alpine compression. A cathodoluminescence-based ion microprobe (SHRIMP) dating of different zircon domains from metagabbros and oceanic metasediments was carried out to constrain the timing of formation and subduction of this ophiolite, two fundamental questions in Alpine geodynamics. The formation of the ophiolitic sequence is constrained by the intrusion ages of the Mellichen and the Allalin metagabbros (164.0 ± 2.7 Ma and 163.5 ± 1.8 Ma) obtained on magmatic zircon domains. These data are in line with the maximum deposition age for Mn-rich metasediments which overlie the mafic rocks at Lago di Cignana (161 ± 11 Ma) and at Sparrenflue (ca. 153–154 Ma). An Eocene age of 44.1 ± 0.7 Ma was obtained for whole zircons and zircon rims from an UHP eclogite and two metasediments at Lago di Cignana. One of the Eocene zircons contains a rutile inclusion indicating formation at HP conditions. As the temperature and pressure peak of these rocks nearly coincide, the Eocene zircons probably constrain the age for the deepest subduction of the ZSFO. This Eocene age for the UHP metamorphism implies that the ZSFO were subducted later than the Adriatic margin (Sesia-Lanzo Zone) and before the Late Eocene subduction of the European continental crust below Apulia. A scenario with three subduction episodes propagating in time from SE to NW is proposed for the geological evolution of the Central and Western Alps. Received: 1 December 1997 / Accepted: 8 April 1998  相似文献   

13.
The lowermost units of the nappe pile of the Lepontine Alps crop out in the Antigorio valley in the footwall of the Simplon Fault. The whole orthogneiss section of the Antigorio Unit is exposed on both sides of the valley, sandwiched between the Mesozoic metasedimentary sequences of the Baceno unit below and the Tèggiolo unit above. The petrography and mineral composition of tremolite–calcite veins occurring in dolomite marble in both metasedimentary sequences were investigated. Tremolite–calcite (with lesser talc and minor phlogopite) veins have rhythmic banded texture. Banding is due to cyclic differences in modal abundances and fabric of tremolite and calcite. These veins are very similar to those occurring in dolomite rafts within the Bergell granite and it is inferred that they formed by the same “fracture-reaction-seal” mechanism. Veins formed by reaction of a silica-rich aqueous fluid with the host dolomite marble along fractures. According to thermo-barometric calculations, based on electron microprobe analyses, reaction occurred at temperatures between 450 and 490°C and minimum pressure of 2–3 kbar. Such temperature conditions occurred in this footwall region of the Simplon Fault Zone around 15 Ma, during exhumation and cooling of the nappe pile and a transition to brittle behaviour. Aqueous, silica-rich fluids concentrated along fractures, forming tremolite–calcite veins in the dolomite marbles and quartz veins in the orthogneiss.  相似文献   

14.
The intrusion of mafic dykes into a near-trench accretionary prism, and continental margin magmatism with characteristics that differ from those of adjacent arc magmatism, are direct manifestations of the subduction of a spreading ocean ridge and the formation of a slab window. In this paper, we investigated mafic dykes intruded into the accretionary prism that hosts the Duolong porphyry Cu–Au deposit (DCAD) of western Tibet. LA-ICP-MS analysis of U–Pb in zircon indicates that the dykes formed during the Early Cretaceous (126–127 Ma). The dykes are characterized by εHf(t) values from + 2.44 to + 11.8. Twenty-nine mafic dyke samples were divided into three groups based on their locations and geochemical compositions: group I has Nb = 8.31–10.2 ppm, Nb/La = 0.71–1.20, and Nb/U = 21.4–37.9; group II has Nb = 40.5–52.6 ppm, Nb/La = 0.84–1.58, and Nb/U = 18.8–47.8; and group III has Nb = 65.7–105 ppm, Nb/La = 1.35–2.08, and Nb/U = 36.5–73.8. Group I is classified as Nb-enriched basalts (ENBs), whereas groups II and III are classified as high-Nb basalts (HNBs). Both the ENBs and HNBs were derived from an adakite-metasomatized mantle wedge that subsequently underwent crystallization of olivine and clinopyroxene. The compositional variations of the studied dykes resulted mainly from mantle source heterogeneity. The volume of the slab melts gradually increases from group I (ENBs) to group II (HNBs) and group III (HNBs), leading to gradually increasing incompatible element concentrations. Considering their geochemical characteristics and field relationships, as well as the unique characteristics of continental margin magmatism in the DCAD, we propose that the dykes emplaced in an extensional accretionary prism were derived from the northward subduction of a spreading ridge in the Bangong Co–Nujiang Tethys Ocean during the Early Cretaceous. The ridge subduction event was also responsible for the generation of coeval adakites, intermediate–felsic intrusions, the Maierze bimodal volcanic rocks as well as the metallogenesis of the DCAD.  相似文献   

15.
《Geodinamica Acta》2013,26(3):131-138
Radiolarians of Middle Jurassic age (tentatively middle Bathonian) provide the first direct age determination from oceanic sediments associated with the Chenaillet-Montgenèvre ophiolite (Piemonte zone, French-Italian Alps). This datum obtained from radiolarites of the Lago Nero- Replatte thrust sheet is older than those previously established on ophiolite sedimentary covers from this segment of the western Alps. It also shows that Lago Nero-Replatte basal radiolarites are anterior to the youngest intrusives from the overlying Chenaillet s.s. thrust sheet. This chronological relationship implies either a late seafloor spreading-related magmatic activity in places younger than adjacent initial pelagic sedimentation, or more likely that the Lago Nero-Replatte and the Chenaillet s.s. thrust sheets are distinct and distant pieces of lithosphere that were eventually stacked together: the Lago Nero-Replatte unit was trapped within the accretionary wedge while the Chenaillet s.s., of a younger age and in a more distal position with regards to the European margin, was obducted. Regionally, the Lago Nero-Replatte sediments appear to be coeval to other Bathonian supraophiolitic radiolarites exposed in the western Alps. These results strengthen the Bathonian correlation of widespread seafloor spreading in both western Tethys and the central Atlantic ocean.  相似文献   

16.
The lateral continuity of the E?CW trending thrust sheets developed within the Lower to Middle Triassic cover of the central Southern Alps (Orobic belt) is disturbed by the occurrence of several N?CS trending transverse zones, such as the poorly known Grem?CVedra Transverse Zone (GVTZ). The GVTZ developed during the emplacement of the up to six S-verging thrust sheets consisting of Lower to Middle Triassic units, occurring immediately south of the Orobic Anticlines. The transverse zone, active during thrust emplacement related to the early Alpine compressions which pre-date the Adamello intrusion, includes three major vertical shear zones, the Grem, Pezzel and Zuccone faults. The major structure of the transverse zone is the dextral Grem fault, forming a deep lateral ramp between thrust sheets 3 and 5. A similar evolution also occurred along the Zuccone and Pezzel faults, which show a left-lateral displacement of syn-thrust folds. The Grem fault was later reactivated as an oblique tear fault during the emplacement of the Orobic Anticlines, due to back-thrusting along out-of-sequence thrust surfaces (Clusone fault). Transpressional deformations along the fault zone are recorded by the rotation of major syn-thrust folds, which also suggest a horizontal offset close to 0.5?km. Records of the first stage of evolution of the Grem fault are better preserved along its northern segment, and structural relationships suggest that it propagated southward and downward in the growing thrust stack. The study of the meso and megascopic structures developed along the GVTZ constrains the evolution of the transverse zone, illustrating the complex deformational phenomena occurring in a transpressional regime. The GVTZ probably reflects the existence of pre-existing tectonic lineaments with a similar orientation. Evidence of pre-existing structures are not preserved in the exposed units, nevertheless the N?CS extensional fault systems that characterize the Norian to Jurassic rifting history of the Lombardian basin are valid candidates.  相似文献   

17.
In the Northern Apennines of Italy, mud-rich olistostromes (sedimentary mélanges) occur at different stratigraphic levels within the late Oligocene–early Miocene sedimentary record of episutural/wedge-top basins. They are widely distributed along the exhumed outer part of the Ligurian accretionary complex, atop the outer Apenninic prowedge, over an area about 300 km long and 10–15 km wide. Olistostromes represent excellent examples of ancient submarine mass-transport complexes (MTCs), consisting of stacked cohesive debris flows that can be directly compared to some of those observed in modern accretionary wedges. We describe the internal arrangement of olistostrome occurrences in the sector between Voghera and the Monferrato area, analysing their relationships with mesoscale liquefaction features, which are commonly difficult to observe in modern MTCs. Slope failures occurred in isolated sectors along the wedge front, where out-of-sequence thrusting, seismicity, and different pulses of overpressured tectonically induced fluid flows acted concomitantly. Referring to the Northern Apennines regional geology, we also point out a gradual lateral rejuvenation (from late Oligocene to early Miocene) toward the SE and an increasing size and thickness of the olistostromes along the strike of the frontal Apenninic prowedge. This suggests that morphological reshaping of the outer prowedge via mass-transport processes balanced, with different pulses over a short time span, the southeastward migration and segmentation of accretionary processes. The latter were probably favoured by the occurrence in the northwestern part of the Northern Apennines of major, inherited palaeogeographic features controlling the northward propagation of the prowedge. Detailed knowledge of olistostromes, as ancient examples of MTCs related to syn-sedimentary tectonics and shale diapirism, and of their lateral variations in term of age and size, provides useful information in regard to better understanding of both the tectono-stratigraphic evolution of the Apenninic prowedge and the submarine slope failures in modern accretionary wedges.  相似文献   

18.
The Karkonosze–Izera Massif is a large tectonic unit located in the northern periphery of the Bohemian Massif. It includes the Variscan Karkonosze Granite (about 328–304 Ma) surrounded by the following four older units:
  • -Izera–Kowary (the Early Paleozoic continental crust of the Saxothuringian Basin),
  • -Ještĕd (the Middle Devonian to Lower Viséan sedimentary succession deposited on the NE passive margin of the Saxothuringian Terrane), out of the present study area,
  • -Southern Karkonosze (metamorphosed sediments and volcanics filling the Saxothuringian Basin), out of the present study area,
  • -Leszczyniec (Early Ordovician, obducted fragment of Saxothuringian Basin sea floor).
The authors present a genetic model of ore mineralization in the Karkonosze–Izera Massif, in which ore deposits and ore minerals occurrences are related to the successive episodes of the geological history of the Karkonosze–Izera Massif:
  • -formation of the Saxothuringian Basin and its passive continental margin (about 500–490 Ma)
  • -Variscan thermal events:
    • -regional metamorphism (360–340 Ma)
    • -Karkonosze Granite intrusion (328–304 Ma)
  • -Late Cretaceous and Neogene-to-Recent hypergenic processes.
The oldest ore deposits and ore minerals occurrences of the Karkonosze–Izera Massif are represented by pyrite and magnetite deposits hosted in the Leszczyniec Unit as well as by magnetite deposit and, presumably, by a small part of tin mineralization hosted in the Izera–Kowary Unit. All these deposits and occurrences were subjected to the pre-Variscan regional metamorphism.Most of the Karkonosze–Izera Massif ore deposits and occurrences are related to the Karkonosze Granite intrusion. This group includes a spatially diversified assemblage of small ore deposits and ore mineral occurrences of: Fe, Cu, Sn, As, U, Co, Au, Ag, Pb, Ni, Bi, Zn, Sb, Se, S, Th, REE, Mo, W and Hg located within the granite and in granite-related pegmatites, in the close contact aureole of the granite and within the metamorphic envelope, at various distances from the granite. Assuming world standards, all these deposits are now uneconomic. Various age determinations indicated that ore formation connected with the Karkonosze Granite might have taken place mostly between about 326 and 270 Ma.The last ore-forming episode in the Karkonosze–Izera Massif is related to hypergenic processes, particularly important in the northern part of the massif, in the Izera–Kowary Unit where some uranium deposits and occurrences resulted from the infiltration of ore solutions that originated from the weathering of pre-existing accumulations of uranium minerals. A separate problem is the presence of oxidation zones of ore deposits and occurrences, both the fossil and the recent.A full list of ore minerals identified in described deposits and occurrences of the Karkonosze–Izera Massif together with relevant, key references is presented in the form of an appendix.  相似文献   

19.
The Olyutorsky–Kamchatka foldbelt formed as a result of two successive collisions of the Achaivayam–Valaginsky and Kronotsky–Commander island arcs with the Eurasian margin where the two terranes docked after a long NW transport. We model their motion history from the Middle Campanian to Present and illustrate the respective plate margin evolution with ten reconstructions. In this modeling the arcs are assumed to travel on the periphery of the large plates of Eurasia, North America, Pacific, and Kula, for which the velocities and directions of motion are known from published data. The model predicts that the Achaivayam–Valaginsky arc was the leading edge of the Kula plate from the Middle Campanian to the Middle Paleocene and then moved slowly with the Pacific plate as long as the Middle Eocene when it accreted to Eurasia. The Kronotsky arc initiated in the Middle Campanian on the margin of North America and was its part till the latest Paleocene when the terrane changed polarity to move northwestward with the Pacific plate and eventually to collide with Eurasia in the Late Miocene. The predicted paleolatitudes of the Achaivayam–Valaginsky and Kronotsky–Commander island arcs for the latest Cretaceous and Paleogene are consistent with nine (out of eleven) reliable paleomagnetic determinations for samples from the two arcs. Additional changes imposed on the initial model parameters (kinematics of the large plates, relative position of the Kula–Pacific Ridge and the Emperor seamount chain, or time of active volcanism within the arcs) worsen the fit of the final reconstructions to available geological and paleomagnetic data. Therefore, the suggested model appears to be the most consistent one at this stage of knowledge.  相似文献   

20.
New insights on the Paleozoic evolution of the continental crust in the North Patagonian Massif are presented based on the analysis of Sm–Nd systematics. New evidence is presented to constrain tectonic models for the origin of Patagonia and its relations with the South American crustal blocks. Geologic, isotopic and tectonic characterization of the North Patagonian Massif and comparison of the Nd parameters lead us to conclude that: (1) The North Patagonian Massif is a crustal block with bulk crustal average ages between 2.1 and 1.6 Ga TDM (Nd) and (2) At least three metamorphic episodes could be identified in the Paleozoic rocks of the North Patagonian Massif. In the northeastern corner, Famatinian metamorphism is widely identified. However field and petrographic evidence indicate a Middle to Late Cambrian metamorphism pre-dating the emplacement of the ca. 475 Ma granitoids. In the southwestern area, are apparent 425–420 Ma (?) and 380–360 Ma metamorphic peaks. The latter episode might have resulted from the collision of the Antonia terrane; and (3) Early Paleozoic magmatism in the northeastern area is coeval with the Famatinian arc. Nd isotopic compositions reveal that Ordovician magmatism was associated with attenuated crust. On the southwestern border, the first magmatic recycling record is Devonian. Nd data shows a step by step melting of different levels of the continental crust in the Late Palaeozoic. Between 330 and 295 Ma magmatism was likely the product of a crustal source with an average 1.5 Ga TDM (Nd). Widespread magmatism represented by the 295–260 Ma granitoids involved a lower crustal mafic source, and continued with massive shallower-acid plutono volcanic complexes which might have recycled an upper crustal segment of the Proterozoic continental basement, resulting in a more felsic crust until the Triassic. (4) Sm–Nd parameters and detrital zircon age patterns of Early Paleozoic (meta)-sedimentary rocks from the North Patagonian Massif and those from the neighboring blocks, suggest crustal continuity between Eastern Sierras Pampeanas, southern Arequipa-Antofalla and the northeastern sector of the North Patagonian Massif by the Early Paleozoic. This evidence suggests that, at least, this corner of the North Patagonian Massif is not allochthonous to Gondwana. A Late Paleozoic frontal collision with the southwestern margin of Gondwana can be reconcilied in a para-autochthonous model including a rifting event from a similar or neighbouring position to its post-collision location. Possible Proterozoic or Early Paleozoic connections of the NPM with the Kalahari craton or the western Antartic blocks should be investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号