首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Ebisutoge–Fukuda tephra (Plio‐Pleistocene boundary, central Japan) has a well‐recorded eruptive style, history, magnitude and resedimentation styles, despite the absence of a correlative volcanic edifice. This tephra was ejected by an extremely large‐magnitude and complex volcanic eruption producing more than 400 km3 total volume of volcanic materials (volcanic explosivity index=7), which extended more than 300 km away from the probable eruption centre. Remobilization of these ejecta occurred progressively after the completion of a series of eruptions, resulting in thick resedimented volcaniclastic deposits in spatially separated fluvial basins, more than 100 km from the source. Facies analysis of resedimented volcaniclastic deposits was carried out in distal fluvial basins. The distal tephra (≈100–300 km from the source) comprises two different lithofacies, primary pyroclastic‐fall deposits and reworked volcaniclastic deposits. The resedimented volcaniclastic succession shows five distinct sedimentary facies, interpreted as debris‐flow deposits (facies A), hyperconcentrated flow deposits (facies B), channel‐fill deposits (facies C), floodplain deposits with abundant flood‐flow deposits (facies D) and floodplain deposits with rare flood deposits (facies E). Resedimented volcaniclastic materials at distal locations originated from unconsolidated deposits of a climactic, large ignimbrite‐forming eruption. Factors controlling inter‐ and intrabasinal facies changes are (1) temporal change of introduced volcaniclastic materials into the basin; (2) proximal–distal relationship; and (3) distribution pattern of pyroclastic‐flow deposits relative to drainage basins. Thus, studies of the Ebisutoge–Fukuda tephra have led to a depositional model of volcaniclastic resedimentation in distal areas after extremely large‐magnitude eruptions, an aspect of volcaniclastic deposits that has often been ignored or poorly understood.  相似文献   

2.
A detailed 90,000-year tephrostratigraphic framework of Aso Volcano, southwestern Japan, has been constructed to understand the post-caldera eruptive history of the volcano. Post-caldera central cones were initiated soon after the last caldera-forming pyroclastic-flow eruption (90 ka), and have produced voluminous tephra and lava flows. The tephrostratigraphic sequence preserved above the caldera-forming stage deposits reaches a total thickness of 100 m near the eastern caldera rim. The sequence is composed mainly of mafic scoria-fall and ash-fall deposits but 36 silicic pumice-fall deposits are very useful key beds for correlation of the stratigraphic sequence. Explosive, silicic pumice-fall deposits that fell far beyond the caldera have occurred at intervals of about 2500 years in the post-caldera activity. Three pumice-fall deposits could be correlated with lava flows or an edifice in the western part of the central cones, although the other silicic tephra beds were erupted at unknown vents, which are probably buried by the younger products from the present central cones. Most of silicic eruptions produced deposits smaller than 0.1 km3, but bulk volumes of two silicic eruptions producing the Nojiri pumice (84 ka) and Kusasenrigahama pumice (Kpfa; 30 ka) were on the order of 1 km3 (VEI 5). The largest pyroclastic eruption occurred at the Kusasenrigahama crater about 30 ka. This catastrophic eruption began with a dacitic lava flow and thereafter produced Kpfa (2.2 km3). Total tephra volume in the past 90,000 years is estimated at about 18.1 km3 (dense rock equivalent: DRE), whereas total volume for edifices of the post-caldera central cones is calculated at about 112 km3, which is six times greater than the former. Therefore, the average magma discharge rate during the post-caldera stage of Aso Volcano is estimated at about 1.5 km3/ky, which is similar to the rates of other Quaternary volcanoes in Japan.  相似文献   

3.
The long-term behaviour of andesite stratovolcanoes is characterised by a repetition of edifice growth phases followed by collapse. This cyclic pattern represents a natural frequency at varying timescales in the growth dynamics of stratovolcanoes worldwide. Around the > 130 ka Mt. Taranaki (Egmont volcano), New Zealand, coastal–cliff successions at 20–40 km distance comprise repeating packages of lithologically and sedimentologically distinctive mass-flow deposits. Varying depositional mechanisms and source properties of these units record growth and collapse cycles of the central edifice. These are used to construct a model for cyclic volcaniclastic sedimentation in the surrounds of stratovolcanoes. During edifice-construction phases, thick packages of tabular, predominantly monolithologic, hyperconcentrated-flow and debris-flow deposits accumulate with intercalated tephra beds. The mass-flow units commonly contain large proportions of fresh pumice or juvenile-lithic andesite. Intervals of quiescence separating eruptive periods are characterised by landscape re-adjustment, accompanied by deposition of fluvial and aeolian sediments, along with steady accretion of medial ash. In contrast, brief episodes of destruction are marked by wide-spread, distinctively clay-rich, polylithologic debris-avalanche deposits and related marginal debris flow units. The growth stages can be terminated by an eruption-triggered sector collapse, or by external forces once the edifice exceeds a critical stable height or profile (dependent on eruptive style and local geo-tectonic conditions). Once the edifice becomes metastable, regional tectonic earthquakes or shallow-level intrusion events are likely triggers for collapse. Although the resulting debris avalanches represent the greatest individual hazard from such andesite stratovolcanoes, their frequency is relatively low compared with other types of mass-flows generated during edifice-growth phases. Accurate forecasts of future hazard from mass-flow events are therefore dependent on recognition of both the frequency of a stratovolcano's growth cycle and its current position in that cycle.  相似文献   

4.
Six large Late Miocene to Quaternary calderas, > 10 km in diameter, cluster together with several medium to small calderas and stratovolcanoes in a 60 × 30 km area of the Aizu volcanic field, southern NE Japan arc. These caldera volcanoes were built on a WNW–ESE trending highland coincident with a local uplifted swell since Late Miocene. The flare-up of felsic volcanism occurred synchronously along the NE Japan arc. Pyroclastic flow sheets from the calderas spread over the surrounding intra-arc basins and are interstratified with various sediments. Geochronological data indicates that the large-caldera eruptions have occurred six times since 8 Ma, at intervals of 1 to 2 million years. Late Miocene to Early Pliocene extra-caldera successions in the basin consist of nine sedimentary facies associations: (1) primary pyroclastics, (2) lahars, (3) gravelly fluvial channels, (4) sandy fluvial channels, (5) floodplains, (6) tidal flats, (7) delta fronts, (8) pro-delta slopes, and (9) pro-delta turbidites. The distribution of facies associations show westward prograding of volcaniclastic aprons, made up of braid delta, braidplain, pyroclastic flow sheet, and incised braided river deposits. The extra-caldera successions record: 1) an increase in felsic volcanism with an associated high rate of volcaniclastic sediment supply at about 10 Ma, prior to catastrophic caldera-forming eruptions; and 2) progradation of volcaniclastic aprons toward the back-arc side in response to the succeeding caldera-forming eruptions and sea-level changes, until about 3 Ma.  相似文献   

5.
6.
Some of the soils on the floors of dry chalkland valleys north of the River Thames in the Marlow area have surface horizons of moderately to very flinty, weakly or non-calcareous, poorly sorted loams, which were deposited in the late Holocene. These overlie typical chalkland gelifluction and periglacial fluvial deposits. Fine calcareous colluvial loams also occur but are less common than in valleys elsewhere on the English chalk. Particle size and mineralogical analyses suggest that the loamy matrix of the flinty surface horizons was derived from loess and early Tnames terrace deposits or Clay-with-flints occurring on interfluves between the dry-valleys. On the evidence of their poorly sorted nature, lack of carbonate, abundance of large flints and irregularly ridged surfaces, it is suggested that they originated mainly as valley-side debris flows.  相似文献   

7.
The late-orogenic Archaean Duparquet, Kirkland and Stormy basins of the Canadian Superior Province are characterized by bounding crustal-scale faults and abundant porphyry stock emplacement. Lava flows and pyroclastic deposits are restricted to the Kirkland and Stormy basins, and coarse clastic detritus characterizes the Duparquet basin. Seven distinct lithofacies are identified: (1) mafic volcanic, (2) felsic volcanic, (3) pyroclastic, (4) volcaniclastic, (5) conglomerate-sandstone, (6) sandstone-argillite  conglomerate), and (7) argillite-sandstone  tuffaceous sandstone). The mafic and felsic volcanic lithofacies represent effusive lava flows, the pyroclastic lithofacies is formed of subaerial surge and airfall deposits and the volcaniclastic lithofacies is composed of reworked volcanic debris. The conglomerate-sandstone lithofacies is interpreted as alluvial fan, fan delta or proximal braided stream deposits, whereas the sandstone-argillite lithofacies is consistent with sandy-dominated flood- or braidplain deposits. A dominantly shallow-water lacustrine setting is inferred for the argillite-sandstone lithofacies. These different lithofacies record the basin history and can be used to identify basin-forming processes. Lithofacies stacking and rapid lateral changes of lithological units in conjunction with interformational unconformities and basin margin faults suggest tectonically induced sedimentation. Volcanism can also influence basin evolution and the delicate balance between erosion, sedimentation, and prevalent transport processes is affected by volcanic input. Catastrophic influx of pyroclastic material facilitated mass-wasting processes and formation of non-confined hyperconcentrated flood flow deposits account for local congestion of alluvial or fluvial dispersal patterns. Confined stream flow processes govern sedimentation during intravolcanic phases or prominent tectonic uplift. In addition, climate which controls the weathering processes, and vegetation which stabilizes unconsolidated material, affects the transport and depositional process. A CO2-rich aggressive weathering, humid Archaean atmosphere favours traction current deposits and an absence of vegetation promotes rapid denudation. Although tectonism is the prevalent long-term controlling factor in restricted basins, the effects of volcanism, climate and lack of vegetation can also be detected.  相似文献   

8.
The summit region of Ben Nevis, Britain's highest mountain, consists of late Silurian to Early Devonian age volcanic rocks originally interpreted as a thick sequence (> 600 m) of andesite lavas and agglomerates that were down‐faulted during caldera subsidence. New digital field mapping of the Ben Nevis area, including both the steep north and south faces of the mountain, has revealed that the volcanic rocks consist largely of volcaniclastic debris flows, and extensive block and ash flow deposits with minor air‐fall tuff units. There is no evidence of any andesite lava flows or a volcanic vent. The volcanic detritus was derived from a volcanic centre situated to the NW of Ben Nevis, perhaps several tens of kilometres away. The rocks forming the summit region of the mountain have been re‐interpreted as a large roof pendant or keel of the former late Silurian to Early Devonian volcanic land surface that once covered much of the SW Highlands of Scotland.  相似文献   

9.
Volcanic activity can enhance several secondary effects, including the formation of one or more natural dams. A common example is from volcanic collapse, where huge mass volumes are rapidly emplaced, obstructing the drainage around a volcano. Their duration depends on the volume of the obstructing mass, inflow rate, and on its textural characteristics. A block facies of a debris avalanche produces durable and permeable dams that consist of decimeter to meter-sized blocks without matrix, whereas a mixed facies is easily eroded after overflowing. Analysis of the sedimentological characteristics of different volcaniclastic deposits that formed natural dams indicate that a mean grain size (Md) equal to −1 phi divides the field of debris avalanche dams (Md < −1 phi) from that formed from other types of volcanic deposits. In addition, the matrix proportion of dams formed by debris avalanches are less than the 50% and the percentage of mud fraction is highly variable, up to 30%. Combining the granulometric textures with duration time of the dam shows no clear relation. Dam durability is probably more dependent on the volume of the lake and the inflow rate. Only in some cases, as mud fraction increases is the blockage also less durable because the lower permeability favors rapid infilling. The texture of the dam also determines the types of secondary flows that originate by their breakdown. These vary from cohesive debris flow to hyperconcentrated flow, representing different hazards due to their magnitude and their different behavior downstream.  相似文献   

10.
Catastrophic volcanic debris avalanches reshape volcanic edifices with up to half of pre-collapse cone volumes being removed. Deposition from this debris avalanche deposit often fills and inundates the surrounding landscape and may permanently change the distribution of drainage networks. On the weakly-incised Mt. Taranaki ring-plain, volcanic debris avalanche deposits typically form a large, wedge shape (in plan view), over all flat-lying fans. Following volcanic debris avalanches a period of intense re-sedimentation commonly begins on ring-plain areas, particularly in wet or temperate climates. This is exacerbated by large areas of denuded landscape, ongoing instability in the scarp/source region, damming of river/stream systems, and in some cases inherent instability of the volcanic debris avalanche deposits. In addition, on Mt. Taranaki, the collapse of a segment of the cone by volcanic debris avalanche often generates long periods of renewed volcanism, generating large volumes of juvenile tephra onto unstable and unvegetated slopes, or construction of new domes with associated rock falls and block-and-ash flows. The distal ring-plain impact from these post-debris avalanche conditions and processes is primarily accumulation of long run-out debris flow and hyperconcentrated flow deposits with a variety of lithologies and sedimentary character. Common to these post-debris avalanche units is evidence for high-water-content flows that are typically non-cohesive. Hence sedimentary variations in these units are high in lateral and longitudinal exposure in relation to local topography. The post-collapse deposits flank large-scale fans and hence similar lithological and chronological sequences can form on widely disparate sectors of the ring plain. These deposits on Mt. Taranaki provide a record of landscape response and ring-plain evolution in three stages that divide the currently identified Warea Formation: 1) the deposition of broad fans of material adjacent to the debris avalanche unit; 2) channel formation and erosion of Stage 1 deposits, primarily at the contact between debris avalanche deposits and the Stage 1 deposits and the refilling of these channels; and 3) the development of broad tabular sheet flows on top of the debris avalanche, leaving sediments between debris avalanche mounds. After a volcanic debris avalanche, these processes represent an ever changing and evolving hazard-scape with hazard maps needing to be regularly updated to take account of which stage the sedimentary system is in.  相似文献   

11.
The Ilchulbong tuff cone, Cheju Island, South Korea   总被引:3,自引:0,他引:3  
The Ilchulbong mount of Cheju Island, South Korea, is an emergent tuff cone of middle Pleistocene age formed by eruption of a vesiculating basaltic magma into shallow seawater. A sedimentological study reveals that the cone sequence can be represented by nine sedimentary facies that are grouped into four facies associations. Facies association I represents steep strata near the crater rim composed mostly of crudely and evenly bedded lapilli tuff and minor inversely graded lapilli tuff. These facies suggest fall-out from tephra finger jets and occasional grain flows, respectively. Facies association II represents flank or base-of-slope deposits composed of lenticular and hummocky beds of massive or backset-stacked deposits intercalated between crudely to thinly stratified lapilli tuffs. They suggest occasional resedimentation of tephra by debris flows and slides during the eruption. Facies association III comprises thin, gently dipping marginal strata, composed of thinly stratified lapilli tuff and tuff. This association results from pyroclastic surges and cosurge falls associated with occasional large-scale jets. Facies association IV comprises a reworked sequence of massive, inversely graded and cross-bedded (gravelly) sandstones. These facies represent post-eruptive reworking of tephra by debris and stream flows. The facies associations suggest that the Ilchulbong tuff cone grew by an alternation of vertical and lateral accumulation. The vertical buildup was accomplished by plastering of wet tephra finger jets. This resulted in oversteepening and periodic failure of the deposits, in which resedimentation contributed to the lateral growth. After the eruption ceased, the cone underwent subaerial erosion and faulting of intracrater deposits. A volcaniclastic apron accumulated with erosion of the original tuff cone; the faulting was caused by subsidence of the subvolcanic basement within the crater.  相似文献   

12.
Jeju Island is a Quaternary shield volcano built upon the Yellow Sea continental shelf off the Korean Peninsula. Decades of borehole drilling reveals that the shield‐forming lavas of the island are underlain by extensive hydrovolcanic deposits (the Seoguipo Formation), which are about 100 m thick and show diverse depositional features. This study provides criteria for distinguishing between hydrovolcanic deposits formed by primary (pyroclastic) and secondary (resedimentation) processes in subaerial and submarine settings based on the observations of several selected cores from the formation. Five facies associations are identified, including: (i) primary hydrovolcanic deposits formed by pyroclastic surges and co‐surge fallouts in tuff rings (facies association PHTR); (ii) primary hydrovolcanic deposits formed by Surtseyan fallout and related pyroclastic transport processes in tuff cones (facies association PHTC); (iii) secondary hydrovolcanic deposits formed by debris flows, hyperconcentrated flood flows, sheet floods and rill flows in subaerial settings (facies association RHAE); (iv) secondary hydrovolcanic deposits formed in submarine settings under the influence of waves, tides and occasional mass flows (facies association RHMAR); and (v) non‐volcaniclastic and fine‐grained deposits formed in nearshore to offshore settings (facies association NVMAR). The primary hydrovolcanic facies associations (PHTR and PHTC) are distinguished from one another on the basis of distinct lithofacies characteristics and vertical sequence profiles. These facies differ from the secondary hydrovolcanic and non‐volcaniclastic facies associations (RHAE, RHMAR and NVMAR) because of their distinctive sedimentary structures, textures and compositions. The depositional processes and settings of some massive and crudely stratified volcaniclastic deposits, which occur in many facies associations, could not be discriminated unambiguously even with microscopic observations. Nevertheless, these facies associations could generally be distinguished because they occur typically in packets or sequences, several metres to tens of metres thick and bounded by distinct stratigraphic discontinuities, and comprise generally distinct sets of lithofacies. The overall characteristics of the Seoguipo Formation suggest that it is composed of numerous superposed phreatomagmatic volcanoes intercalated with marine or non‐marine, volcaniclastic or non‐volcaniclastic deposits. Widespread and continual hydrovolcanic activity, together with volcaniclastic sedimentation, is inferred to have persisted for more than a million years in Jeju Island under the influence of fluctuating Quaternary sea‐levels, before effusion of the shield‐forming lavas. Extensive distribution of hydrovolcanic deposits in the subsurface of Jeju Island highlights that there can be significant differences in the eruption style, growth history and internal structure between shelfal shield volcanoes and oceanic island volcanoes.  相似文献   

13.
 The South Canyon Fire of July 1994 burned 800 ha of vegetation on Storm King Mountain near Glenwood Springs, Colorado, USA. On the night of 1 September 1994, in response to torrential rains, debris flows inundated seven areas along a 5-km length of Interstate Highway 70. Mapping from aerial photographs, along with field observations and measurements, shows that the September rainstorm eroded unconsolidated, burned surficial soil from the hillsides, flushed dry-ravel deposits from the tributary channels, and transported loose, large material from the main channels. The hyperconcentrated flows and debris flows inundated 14 ha of Interstate Highway 70 with 70 000 m3 of material. Although the burned area was seeded in November 1994, the potential for continuing debris-flow activity remains. Incision and entrainment of channel alluvium, as well as erosion of loose material from the hillslopes could result in future debris- and hyperconcentrated-flow activity. Received: 15 October 1996 / Accepted: 25 June 1997  相似文献   

14.
The volcanic-sedimentary succession of the Ventersdorp Supergroup which is virtually undisturbed tectonically and of low-grade (greenschist facies) metamorphism, affords a unique opportunity for studying the interplay between volcanic and sedimentary processes. The transitional sequence between the Rietgat and Bothaville Formations consists of a number of lithofacies. These are a basal breccia representing pyroclastic and laharic deposits, an overlying breccia—arenite—conglomerate (BAC) which formed by debris flow and fluvial processes, an arenite deposited offshore during a transgression, and an upper conglomerate laid down on a beach. In the volcaniclastic BAC and arenite lithofacies the presence of thin tuff beds, deformed acid lava fragments (bombs?) and glass shards in the arenaceous matrix suggest syndepositional volcanism.Sedimentation took place along the flanks of an asymmetrical, actively volcanic, domal structure which consisted partly of unstable pyroclastic deposits in the east. Resedimentation of the pyroclastic debris by subaerial debris flows and braided streams built a volcaniclastic fan lobe at the foot of the domal structure. As volcanic activity subsided, sands derived from a granitic terrain, mixed with minor air-fall debris to subsequently cover the fan lobe during a regional transgression.  相似文献   

15.
The Kverkfjöll sandur in north Iceland is the furthest upstream of a suite of fluvial landforms extending for 200 km along the Jökulsá á Fjöllum river. Incision of the sandur exposes over 3 km of sedimentary sections, up to 15 m in height. A sandur wide, well-bedded succession of matrix-rich cobble-gravel and pebble/granule gravel, with individual beds 0.2 to 0.5 m thick indicates that the sandur is primarily the product of sandur-wide sheet-floods, with sediment-rich hyperconcentrated flows and also some debris flows and channelised turbulent flows. This interpretation is evidenced by bedded hyperconcentrated flow deposits occurring as laterally extensive tabular depositional units that dominate the entire sandur, reflecting the unconfined nature of the flow. Clast-supported boulder-gravel units interpreted as the product of macroturbulent flow occur in relatively narrow, but deep channels. The sedimentary succession is interpreted as the product of at least six volcanically generated catastrophic outburst floods (jökulhlaups) during the Little Ice Age. The sedimentology of these Little Ice Age flood deposits, on a small, high-gradient sandur, contrasts strongly with the deposits of volcanically-generated jökulhlaups on large, low-gradient coastal sandar, and sandar associated with retreating glaciers which have been the basis for most previous models of jökulhlaup sedimentation.  相似文献   

16.
Studies on the genesis of subaerial debris flows and associated deposits are relatively rare in the literature, especially in an ice-marginal context of moraine formation. The present contribution reports results from both the macro- and micro-scales of a subaerial depositional setting in order to contribute to closing this gap. At the macroscale, alternating loose, stratified, clast- and matrix-supported diamicts and finely laminated sand units indicate deposition of debris flows and fluvial units in a subaerial, ice-marginal setting that were stacked up to form a terrestrial ice-contact fan. Macroscale and micromorphological analyses show that this fan displays evidence of a three-phased formation: (a) overriding and glaciotectonisation of pre-existing sediments followed by retreat and burial of this core by (b) ice-contact fan deposition dominated by water-rich fluvial deposition with relatively little debris flow activity and (c) a switch to a gravitational sedimentation style with dominantly debris flow deposition and fewer and thinner fluvial units. Thin sections of both the diamict and laminated sand units show evidence of deposition of a mud and fine sand-rich slurry being expelled from the tops of advancing mass flows. Water-rich fine-grained slurries appear to have been progressively overridden and deformed in response to ductile shear occurring at the base of individual flows. Liquefaction and remobilisation of sand within laminated deposits occurred during such basal shear events, resulting in the injection of liquefied sediments into variably deformed laminated sands and clays. Deformation is more likely to have taken place through internal movement of the sediment due to changing porewater conditions and loading upon emplacement. Our approach confirms previous results that highlight the possibilities of increasing the accuracy of sedimentological investigations through combined sedimentological analyses at varying scales.  相似文献   

17.
The Middle‐Upper Miocene Bodrum magmatic complex of the Aegean region, southwestern Turkey, is mainly represented by intermediate stocks, lavas, pyroclastic and volcaniclastic deposits. Monzonitic stocks and connected porphyry intrusions and extrusions are the first products of the magmatism. These are followed by a volcanic succession consisting of andesitic‐latitic lavas, autobrecciated lavas, pyroclastic and volcaniclastic deposits. The final stage is represented by basaltic and basaltic andesitic flows and dykes intruded into previous units. The volcanic succession crops out in the northern part of the Bodrum peninsula. In the lower part of this succession are widespread pyroclastic deposits, composed of pyroclastic fall and flow units, alternating with epiclastic deposits. Grain size, volume and thickness of the pyroclastic deposits were mainly controlled by the type, magnitude and intensity of the eruption. Further up the section, there are two horizons of debris avalanche deposits forming the coarsest and thickest deposits of the volcaniclastic succession. The debris avalanche deposits indicate at least two different flank collapses coeval with the volcanism. The stratigraphy and map pattern of these volcanic units imply that the northern part of the Bodrum peninsula was the north‐facing flank of a stratovolcano during the mid‐Late Miocene. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
The Orapa A/K1 Diamond Mine, Botswana, exposes the crater facies of a bilobate kimberlite pipe of Upper Cretaceous age. The South Crater consists of layered volcaniclastic deposits which unconformably cross‐cut massive volcaniclastic kimberlite of diatreme facies in the North Pipe. Based on the depositional structure, grain‐size, sorting and composition of kimberlite in the South Crater, six units are distinguished in the ~70 m thick stratiform crater‐fill sequence and talus slope deposits close to the crater wall, which represents a multistage infill of the volcanic crater. Monolithic basalt breccias (Unit 1) near the base of the crater‐fill are interpreted as rock‐fall avalanche deposits, generated by the sector collapse of the crater walls. These deposits are overlain by a basal imbricated lithic breccia and upper massive sub‐unit (Unit 2), interpreted as the deposits of a pyroclastic flow that entered the South Crater from another source. Vertical degassing structures within the massive sub‐unit show evidence for elutriation of fines and probably were formed after emplacement by fluidization due to air entrainment. Units 3 and 5 are thinly stratified deposits, characterized by diffuse bedding, reverse and normal grading, coarse lenticular beds, mudstone beds, small‐scale scour channels and load casts. These units are attributed to rapidly emplaced sheet floods on the crater floor. Units 3 and 5 are directly overlain by poorly sorted volcaniclastic kimberlite (Units 4 and 6) rich in basalt boulders, attributed to debris flows formed by the collapse of crater walls. Unit 7 comprises medium sandstones to cobble conglomerates representing talus fans, which were active throughout the deposition of Units 1 to 6. The study demonstrates that much of the material infilling the South Crater is derived externally after eruption, including primary pyroclastic flow deposits probably from another kimberlite pipe. These findings have important implications for predicting diamond grade. Results may also aid the interpretation of crater sequences of ultra‐basic, basaltic and intermediate volcanoes, together with the deposits of topographic basins in sub‐aerial settings.  相似文献   

19.
Large-scale ignimbrite eruptions from rhyolitic caldera volcanoes can trigger geologically instantaneous changes in sedimentary systems over huge areas by either burying existing environments or overloading them with vast quantities of unconsolidated particulate material. The post-eruption readjustment of the landscape to such perturbations is one of the most dramatic processes in physical sedimentology, exemplified here by the 1.8 ka Taupo eruption in the central North Island of New Zealand. This eruption generated voluminous fall deposits, then climaxed with emplacement of a c. 30 km3 non-welded ignimbrite over a near-circular area of c. 20 000 km2. Approximately 90% of the area, but < 50% of the ignimbrite volume, is represented by a landscape-mantling unit that covered the pre-eruption topography to a depth varying from c. 10 m in proximal areas to less than 15–30 cm distally. The remainder of the ignimbrite deposit is represented by landscape-modifying material that ponded in valley bottoms and depressions to thicknesses of up to 70 m, with no systematic variation in thickness with distance from source.The headwaters of many of the North Island's largest rivers were impacted by both the primary pyroclastic fall and flow material. Large-scale post-eruption remobilisation of this material, coupled with the re-establishment of fluvial systems, occurred in a distinct sequence as recorded by the evolution of sedimentary facies in different sub-environments. Following an initial period dominated by mass flows, re-establishment of fluvial systems began with the headward erosion of box canyons through the ponded ignimbrite deposits, a process often associated with the break-out of temporary lakes. Aggradational streams developed in these channels rapidly evolved from shallow, ephemeral, sediment-laden outbursts associated with flash flood events to deeper, permanent braided rivers, before declining sediment yields led to retrenchment of single thread rivers and a return to pre-eruption gradients and bedloads years to decades later. Typically the modern profile of many streams and rivers follow closely their pre-eruption profiles, and incision and erosion is overwhelmingly confined to the deposits of the eruption itself.Although the general remobilisation pattern is similar for all impacted river systems, detailed studies of the Waikato, Rangitaiki, Mohaka, Ngaruroro and Whanganui catchments show that the relative timing and scale of each eruption response phase differs between each catchment. These reflect differences in catchment physiography and hydrology, and the volume and type of pyroclastic material deposited in each. Ultimately, the landscape response reflects the relative spatial distributions of, and the volumetric ratios between, the volumes of pyroclastic debris, water, and accommodation space in the basin (cf. Kataoka and Manville, this volume).  相似文献   

20.
A new archaeological excavation on the northern slope of Vesuvius has provided invaluable information on the eruptive activity and post-eruptive resedimentation events between the late Roman Empire and 1631. A huge Roman villa, thought to belong to the Emperor Augustus, survived the effects of the 79 a.d. Plinian eruption, but was mainly engulfed in volcaniclastic materials eroded and redeposited immediately after a subsequent eruption or during repose periods. Primary pyroclastic deposits of the 472 a.d. eruption are only few centimeters thick but are overlain by reworked volcaniclastic deposits up to 5 m thick. The resedimented volcaniclastic succession shows distinct sedimentary facies that are interpreted as debris flow deposits, hyperconcentrated flow deposits, and channel-fill deposits. This paper has determined that the aggradation above the roman level is about 9 m in 1,200 years, leading an impressive average rate of 0.75 cm/year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号