首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Very Large Array (VLA) radio observations of precisely-located GRB error boxes have been performed to search for fading and quiescent emission associated with -ray bursts. These observations were made as quickly as 23 hours and as late as 13 years after the time of the burst. Our measurements presented here have found GRB error boxes to be empty of sources to the 80 µJy level ( = 3.6 cm) at 9 months, to 1 mJy (20 cm) at 9 days, and probably to 5 mJy (20 cm) at 23 hours after the bursts.  相似文献   

2.
A central part of the GRB 790613 field is investigated, which contains about 1/3 of the area of 99% confidence of the GRB localization. Up to V 25 no blue optical counterparts were found. This can be interpreted as the absence in the field of single compact objects of the neutron star type as a possible potential source of -burst, up to a distance of 30 pc.  相似文献   

3.
4.
We report the results of an optical study of Moskalenko's OT 1959 field. The deep CCD images were obtained at the 6-m telescope of SAO RAS on June 8/9 1994. The BVR photometry of objects near the position of Moskalenko's OT 1959 are presented. An object with V= 23.43 and peculiar colours B-V= 0.9 and V-R= 1.10 was found. It is a possible candidate for the 1959 optical flash.  相似文献   

5.
γ射线暴光变曲线的研究   总被引:1,自引:0,他引:1  
γ射线暴的光变曲线复杂多变,普遍认为是由内激波产生.由相对论运动学效应导出高速运动激波层发射的光子数与观测者接收到的光子数之间的转换关系,再运用内激波辐射的角度扩展得到单个脉冲的曲线方程和形状,其形状为典型的快上升指数下降.进而在合理的参数下用多壳层的连续碰撞模型对γ射线暴的一些观测光变曲线进行拟合,取得较好效果,由此可以解释更多类型的γ射线暴的光变曲线.  相似文献   

6.
《New Astronomy》2003,8(5):495-505
We present general analytic expressions for GRB afterglow light curves arising from a variable external density profile and/or a variable energy in the blast wave. The former could arise from a clumpy ISM or a variable stellar wind; The latter could arise from refreshed shocks or from an angular dependent jet structure (patchy shell). Both scenarios would lead to a variable light curve. Our formalism enables us to invert the observed light curve and obtain possible density or energy profiles. The optical afterglow of GRB 021004 was detected 537 s AB (after the burst) [GCN (2002) 1564]. Extensive follow up observations revealed a significant temporal variability. We apply our formalism to the R-band light curve of GRB 021004 and we find that several models provide a good fit to the data. We consider the patchy shell model with p=2.2 as the most likely explanation. According to this model our line of sight was towards a ‘cold spot’ that has lead to a relativity low γ-ray flux and an initially weak afterglow (while the X-ray afterglow flux after a day was above average). Observations above the cooling frequency, νc, could provide the best way to distinguish between our different models.  相似文献   

7.
The angular distribution of gamma-ray burst(GRB)jets is not yet clear.The observed luminosity of GRB 170817A is the lowest among all known short GRBs,which is best explained by the fact that our line of sight is outside of the jet opening angle,θ_(obs)θ_j,whereθ_(obs) is the angle between our line of sight and the jet axis.As inferred by gravitational wave observations,as well as radio and X-ray afterglow modeling of GRB 170817A,it is likely that θ_(obs)~20°–28°.In this work,we quantitatively consider two scenarios of angular energy distribution of GRB ejecta:a top-hat jet and a structured jet with a power law index s.For the top-hat jet model,we get a large θ_j(e.g.,θ_j10°),a rather high local (i.e., z 0.01) short GRB rate ~8–15×10~3 Gpc~(-3)yr~(-1((estimated to be 90~1850 Gpc~(-3)yr~(-1) in Fong et al.)and an extremely high(on-axis,V(~500 ke V for a typical short GRB).For the structured jet model,we use θ_(obs) to give limits on s and θ_j for typical on-axis luminosity of a short GRB(e.g.,10~(49)erg s(-1) 1051erg s(-1)),and a low on-axis luminosity case(e.g.,1049erg s(-1))gives more reasonable values of s.The structured jet model is more feasible for GRB170817A than the top-hat jet model due to the rather high local short GRB rate,and the extremely high on-axis E_(peak,0) almost rules out the top-hat jet model.GRB 170817A is likely a low on-axis luminosity GRB(1049erg s(-1))with a structured jet.  相似文献   

8.
We present an analysis of BV R c I c observations of the field sized around 4′ × 4′ centered at the host galaxy of the gamma-ray burst GRB021004 with the 6-m BTA telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. We measured the magnitudes and constructed the color diagrams for 311 galaxies detected in the field (S/N>3). The differential and integral counts of galaxies up to the limit, corresponding to 28.5 (B), 28.0 (V), 27.0 (R c ), 26.5 (I c ) were computed. We compiled the galaxy catalog, consisting of 183 objects, for which the photometric redshifts up to the limiting magnitudes 26.0 (B), 25.5 (V), 25.0 (R c ), 24.5 (I c ) were determined using the HyperZ code. We then examined the radial distribution of galaxies based on the z estimates. We have built the curves expected in the case of a uniform distribution of galaxies in space, and obtained the estimates for the size and contrast of the possible super-large-scale structures, which are accessible with the observations of this type.  相似文献   

9.
The Swift/XRT detected the X-ray afterglow of long burst GRB 220117A,which began to rebrighten 300 s after triggering and followed a single power-law decay segment after thousands of seconds of the orbital observation gap.This segment is different from the shallow decay segment(plateau) and flare,and may belong to a giant X-ray bump.We investigated this segment by the fall-back accretion model and found that the model can interpret this segment with reasonable parameter values.Within this physic...  相似文献   

10.
GRB 100219A at z = 4.667 has been the highest redshift gamma‐ray burst observed with the X‐shooter spectrograph up to now. The spectrum covering the range from 5000 to 24000 Å and a large number of absorption lines allows to make a detailed study of the interstellar medium in a high redshift galaxy. The ISM in the low ionisation state and the kinematics of the absorption line components reveal a complex velocity field. The metallicity measured from different absorption lines is around 0.1 solar. Other GRB hosts at redshift beyond ∼3 have similar metallicities albeit with a large scatter in the metallicity distribution. X‐shooter will allow us to determine metallicities of a larger number of GRB hosts beyond redshift 5, to probe the early chemical enrichment of the Universe and to study its evolution from redshift 2 to beyond 10 (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We present the results of X-ray and optical observations of GRB 050712 performed by Swift . The X-ray light curve of this burst exhibits episodes of flares in the first 1000 s, the same epoch at which the UVOT detected an optical counterpart. A shallow X-ray decay, with a decay slope of  α=−0.73  , followed and lasted ∼70 ks. This behaviour can be explained in terms of activity of the gamma-ray burst 'inner engine', with the possibility that the last flare is caused by the interaction of the ejecta with the surrounding medium.
We also find interesting spectral parameters for the X-ray emission. In particular, data suggest the presence of an intrinsic absorption in the first 1000 s, which can be explained if circumburst medium clouds lie along the line of sight.  相似文献   

12.
COMPTEL on board CGRO has observed a very strong (S[> 0.3 MeV] = 2.03 × 10–4 erg cm–2), complex, and long lasting (162 s) gamma-ray burst on February 17, 1994 (GRB 940217). Temporal fluctuations occur on timescales as short as 100 ms. Hard-to-soft spectral evolution has been observed during the burst emission and also within individual peaks. The photon spectra obtained within the 6 peaks can be modelled by single power law spectra and by broken power laws with break energies at around 1 MeV. The best-fit power law slopes vary between 1.1 and 3.5 throughout the event. The burst is located at [ 2000, 2000] = [29.5°, 3.8°] with a 3 error radius of 0.9°. COMPTEL does not detect any significant post-burst emission (as reported by EGRET) at low energies (< 30 MeV), and our upper limits are marginally consistent with the EGRET detections. Using high energy spectral and temporal information, distance limits to GRB 940217 have been derived.  相似文献   

13.
1 INTRODUCTIONMom the detection at X-rap optical and radio wavelengths of ganuna-ray bursts (GRBs)since 1997 (Costa et al. 1997; van Paradijs et al. 1997; Sahu et al. 1997; Djorgovsld et al. 1997;Metzger et al. 1997; Frail et al. 1997; Taylor et al. 1997; Kulforni et al. 1998; Halpern et al.1998; Castro-Tirado et al. 1999; Kulkalni et al. 1999; Galama et al. 1999), we have come toknow that the GRBs can release 1051 ~ 1054 ergs in a few seconds and that the fireball modelcan describ…  相似文献   

14.
We analyze the randomness of the sky distribution of cosmic gamma-ray bursts. These events are associated with massive galaxies, spiral or elliptical, and therefore their positions should trace the large-scale structure, which, in turn, could show up in the sky distribution of fluctuations of the cosmicmicrowave background (CMB). We test this hypothesis by mosaic correlation mapping of the distributions of CMB peaks and burst positions, find the distribution of these two signals to be correlated, and interpret this correlation as a possible systematic effect.  相似文献   

15.
By using relativistic, axisymmetric, ideal MHD, we examine the motion of the baryon/e±/ photon fluid that emanates from a stellar-mass compact object/debris-disk system (a common outcome of many progenitor models). We prove that the motion can be described as a frozen pulse, which permits the study of each shell of the pancake-shaped outflow using steady-state equations. The ejected energy flux is dominated by the electromagnetic (Poynting) contribution, but it can also have a non negligible e±/radiation (thermal fireball)component. We demonstrate, through exact self-similar solutions, that the flow is first thermally and subsequently magnetically accelerated up to equipartition between kinetic and Poynting fluxes, i.e., ~ 50% of the total energy is converted into baryonic kinetic energy. The electromagnetic forces also collimate the flow, reaching a cylindrical structure asymptotically.  相似文献   

16.
本文首先对Gamma暴的观测特性和物理过程作了简要的介绍 ,而后 ,对火球模型的相对论流体动力学机制和同步加速辐射机制作了论述。主要工作是 :具体研究火球所抛出壳层的相对论流体动力学演化 ,应用同步加速辐射机制 ,通过由共动坐标系到实验室坐标系的相对论变换 ,得到Gamma暴余辉的光变曲线。对于火球壳层的不同的动力学演化规律 ,各向同性或各向异性的壳层抛出形式 ,以及不同的外部介质环境 ,所得到的光变曲线都各不相同。通过对这些不同的光变曲线的比较 ,明确了Gamma暴余辉的整体的物理演化图象以及各种物理过程在Gamma暴余辉演化过程中所起的作用 ,并从余辉演化的方面进一步理解了Gamma暴的物理本质  相似文献   

17.
18.
We describe a method to address the burster origin problem by determining their distance scale. We show that this can be easily carried out at soft X-ray wavelengths by measuring the effective column densities of a representative sample of burst spectra. We demonstrate the effectiveness of the technique by simulating the performance of a small CATSAT-type mission (Forrestet al., 1995).  相似文献   

19.
Existing theory and models suggest that a Type I (merger) GRB should have a larger jet beaming angle than a Type II (collapsar) GRB, but so far no statistical evidence is available to support this suggestion. In this paper, we obtain a sample of 37 beaming angles and calculate the probability that this is true. A correction is also devised to account for the scarcity of Type I GRBs in our sample. The probability is calculated to be 83% without the correction and 71% with it.  相似文献   

20.
A gamma-ray burst (GRB) optical photometric follow-up system at the Xinglong Observatory of National Astronomical Observatories of China (NAOC) has been constructed. It uses the 0.8-m Tsinghua-NAOC Telescope (TNT) and the 1-m EST telescope, and can au-tomatically respond to GRB Coordinates Network (GCN) alerts. Both telescopes slew rela-tively fast, being able to point to a new target field within ~ 1 min upon a request. Whenever available, the 2.16-m NAOC telescope is also used. In 2006 the system responded to 15 GRBs and detected seven early afterglows. In 2007 six GRBs have been detected among 18 follow-up observations. TNT observations of the second most distant GRB 060927 (z = 5.5) are shown, which started as early as 91 s after the GRB trigger. The afterglow was detected in the combined image of the first 19 × 20 s unfiltered exposures. This GRB follow-up system has joined the East-Asia GRB Follow-up Observation Network (EAFON).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号