首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents calcite–graphite carbon isotope fractionations for 32 samples from marble in the northern Elzevir terrane of the Central Metasedimentary Belt, Grenville Province, southern Ontario, Canada. These results are compared with temperatures calculated by calcite–dolomite thermometry (15 samples), garnet–biotite thermometry (four samples) and garnet–hornblende thermometry (three samples). Δcal‐gr values vary regularly across the area from >6.5‰ in the south to 4.0‰ in the north, which corresponds to temperatures of 525 °C in the south to 650 °C in the north. Previous empirical calibration of the calcite–graphite thermometer agrees very well with calcite–dolomite, garnet–biotite and garnet–hornblende thermometry, whereas, theoretical calibrations compare less well with the independent thermometry. Isograds in marble based on the reactions rutile + calcite + quartz =titanite and tremolite + calcite + quartz = diopside, span temperatures of 525–600 °C and are consistent with calculated temperature–X(CO2) relations. Results of this study compare favourably with large‐scale regional isotherms, however, local variation is greater than that revealed by large‐scale sampling strategies. It remains unclear whether the temperature–Δcal‐gr relationship observed in natural materials below 650 °C represents equilibrium fractionations or not, but the regularity and consistency apparent in this study demonstrate its utility for thermometry in amphibolite facies marble.  相似文献   

2.
An extensive humite‐bearing marble horizon within a supracrustal sequence at Ambasamudram, southern India, was studied using petrological and stable isotopic techniques to define its metamorphic history and fluid characteristics. At peak metamorphic temperatures of 775±73°C, based on calcite‐graphite carbon isotope thermometry, the mineral assemblages suggest layer‐by‐layer control of fluid compositions. Clinohumite + calcite‐bearing assemblages suggest XCO2 < 0.4 (at 700°C and 5 kbar), calcite + forsterite + K‐feldspar‐bearing assemblages suggest XCO2>0.9 (at 790°C); and local wollastonite + scapolite + grossular‐bearing zones formed at XCO2 of c. 0.3. Retrograde reaction textures such as scapolite + quartz symplectites after feldspar and calcite and replacement of dolomite + diopside or tremolite+dolomite after calcite+forsterite or calcite+clinohumite are indicative of retrogression under high XCO2 conditions. Calcite preserves late Proterozoic carbon and oxygen isotopic signatures and the marble lacks evidence for extensive retrograde fluid infiltration, while during prograde metamorphism the possible infiltration of aqueous fluids did not produce significant isotopic resetting. Isotopic zonation of calcite and graphite grains was likely produced by localized CO2 fluid infiltration during retrogression. Contrary to the widespread occurrence of humite‐marbles related to retrograde aqueous fluid infiltration, the Ambasamudram humite‐marbles record a prograde‐to‐peak metamorphic humite formation and retrogression under conditions of low XH2O.  相似文献   

3.
. The Glarus thrust is a prominent tectonic feature in the eastern Helvetic Alps. It has been recognized as a potential major pathway for syntectonic crustal scale fluid flow. The oxygen, carbon and strontium isotope patterns obtained from two vertical profiles across the thrust indicate fundamentally different flow regimes in the southern section of the thrust, where the footwall is represented by Mesozoic limestones, and in the northern section, where the footwall is represented by Tertiary flysch. At the Grauberg locality in the south, the observed isotope patterns give evidence of a net mass transport component from the hanging wall Verrucano to the footwall limestone with a maximum time-integrated volumetric fluid flux of 6.1 m3/m2 In the south, the hydration of the lowermost 10 to 20 m of the hanging wall Verrucano requires introduction of an aqueous fluid by subhorizontal flow along the thrust with a minimum time integrated flux of 240 m3/m2. At the Lochseite locality in the north, the isotope patterns indicate a vertical mass transport component from the footwall flysch to the hanging wall Verrucano with a time-integrated fluid flux of 2.6 m3/m2. In the north, the fluids were probably derived from compaction and dehydration of the footwall flysch during thrusting. The ascending fluids were ponded below the Verrucano and 'lubricated' the thrust. Short-term pressure drops associated with seismic motion along the thrust led to the precipitation of calcite in veins at the thrust surface contributing material to the Lochseiten calc-mylonite, a thin calc-mylonite layer at the thrust contact. Although cross thrust fluid flow may have been two to three orders of magnitude smaller than flow along the thrust, it had a major impact on the isotopic composition of the Lochseiten calc-mylonite. In particular, it buffered the oxygen isotope composition of the calc-mylonite towards the relatively 18O-depleted composition of the hanging wall Verrucano in the south and towards the relatively 18O-enriched compositions of the footwall flysch in the north. By this mechanism a regional south to north 18O-enrichment trend was simulated within the Lochseiten calc-mylonite.  相似文献   

4.
Petrographic investigations on the light yellow marble outcrops in the Griesscharte, Tyrol, Austria/Italy revealed them to be dolomite. The white to blue-grey veins in these marbles were those of calcite. Inside these calcites and along the calcite-dolomite phase boundaries minute and microscopically unidentifiable crystallites (? 10 μ) were observed. These crystallites were recognised by X-ray diffractometry as dolomite and their form and distribution were established by scanning electron microscopy. Trace-element distributions on the calcite-dolomite neighbours were studied by neutron-activation method to elucidate the formation mechanism of these calcites in the marble.Genetic relationships of the dolomite crystallites, the calcite host and the surrounding dolomite marble have been discussed in the light of the petrographic and chemical studies. These findings substantiate a deposition of a new formed vein of calcite from the solution circulating in the fissures of the dolomite marble during prograde metamorphism rather than a simple deposition of mobilized sedimentary calcite. The dolomite crystallites in the calcite seem to have been formed post-tectonically, partly by the nucleation in the calcite cleavage planes during Mg-metasomatism and partly from the exsolutions during retrograde metamorphism.  相似文献   

5.
Graphitization and coarsening of organic material in carbonate-bearing metasedimentary rocks is accompanied by carbon isotope exchange which is the basis of a refractory, pressure-independent geothermometer. Comparison of observed isotopic fractionations between calcite and graphite (δ13CCal–Gr) with independent petrological thermometers provides the following empirical calibration over the range 400–800°C: δ13CCal–Gr= 5.81 times 106×T–2(K) - 2.61. This system has its greatest potential in marbles where calcite + graphite is a common assemblage and other geothermometers are often unavailable. The temperature dependency of this empirical calibration differs from theoretical calibrations; reasons for this are unclear but the new empirical calibration yields temperature estimates in better agreement with independent thermometry from several terranes and is preferred for geological applications. Both calcite-graphite isotopic thermometry and calcite-dolomite solvus thermometry are applied to marble adjacent to the Tudor gabbro in the Grenville Province of Ontario, Canada. The marble has undergone two metamorphic episodes, early contact metamorphism and later regional metamorphism. Values of δ13CCal–Gr decrease regularly from c. 8‰ in samples over 2 km from the pluton to values of 3–4‰ within 200 m of the contact. These samples appear to preserve fractionations from the early thermal aureole with the empirical geothermometer, and indicate temperatures of 450–500° C away from the intrusion and 700–750°C near the gabbro. This thermal profile around the gabbro is consistent with conductive heat flow models. In contrast, the distribution of Mg between calcite and dolomite has been completely reset during later regional metamorphism and yields uniform temperatures of c. 500°C, even at the contact. Graphite textures are important for interpreting the results of the calcite–graphite thermometer. Coarsening of graphite approaching the Tudor gabbro correlates with the decrease in isotopic fractionations and provides textural evidence that graphite crystallization took place at the time of intrusion. In contrast to isotopic exchange during prograde metamorphism, which is facilitated by graphitization, retrogressive carbon isotopic exchange appears to require recrystallization of graphite which is sluggish and easily recognized texturally. Resistance of the calcite–graphite system to resetting permits thermometry in polymetamorphic settings to see through later events that have disturbed other systems.  相似文献   

6.
The Mondoñedo thrust sheet has been studied to investigate the complex dynamic relationships that may be involved in the development of low- and medium-P metamorphic domains. This unit underwent an initial medium-P event during the initial stages of Variscan convergence, related to crustal thickening. Subsequently, the thrust sheet evolved to a low-P baric type of metamorphism, related to syn-convergence thinning and exhumation. Its footwall, cropping out in two tectonic windows, registered a different evolution, with a low-P history that evolved from low- to high-T under a high geothermal gradient. Several different PT paths of the Mondoñedo thrust sheet and its relative autochthon are traced and interpreted according to the structural evolution of the area. Following the initial crustal thickening, two main syn-convergence extensional shear zones developed. One of them occurs in the hangingwall, whereas the other affects the footwall unit. Both extensional shear zones were contemporaneous with ductile thrusting in the inner parts of the thrust sheet, and their activity is viewed as a consequence of the need for gravitational re-equilibration within the orogenic wedge.The most commonly accepted models of tectonothermal evolution in regions of thickened continental crust assume that low-P metamorphism is essentially a late phenomenon, and is linked to late-orogenic tectonic activity. In the Mondoñedo thrust sheet, our conclusions indicate that low-P metamorphism may also develop during convergence, and that this may occur in at least two cases. One is tectonic denudation of an allochthonous unit during its emplacement, and the other, thinning and extension at the footwall unit of an advancing thrust sheet. As a consequence, the low-P evolution may show different characteristics in different units of an orogenic nappe pile.  相似文献   

7.
淮北煤田位于徐宿弧形推覆构造带前缘和外缘带。通过分析区域地质资料,并结合野外地质调查,探讨了淮北煤田的构造、演化特征及其形成机制。结果表明:①以宿北断裂为界将淮北煤田划分为南、北2个构造分区,北区构造线总体走向近SN-NNE,呈向西凸出的弧形展布,以逆冲断层为主,发育侏罗山式长轴褶皱;南区构造线走向NNW和NNE,以正断层和开阔短轴褶皱为主。②北区处于徐宿推覆构造主体部位,萧县背斜及其以东地区为上盘推覆体,萧县背斜以西地区属上盘推覆体;南区以西寺坡断层为界,该断层以东地带位于徐宿弧形构造带东南末端,属推覆构造上覆系统,西寺坡断层以西地区为推覆体下伏系统。③自石炭-二叠纪含煤地层沉积后,淮北煤田至少经历了3期较大的构造事件,即印支期近SN方向的挤压,形成近EW向断裂构造为主;燕山早期NWW-SEE方向的强烈挤压作用,形成徐宿弧形构造;燕山晚期NNE-SSW方向挤压,在煤田内形成大量NNE-SSW方向正断层。   相似文献   

8.
The lowermost units of the nappe pile of the Lepontine Alps crop out in the Antigorio valley in the footwall of the Simplon Fault. The whole orthogneiss section of the Antigorio Unit is exposed on both sides of the valley, sandwiched between the Mesozoic metasedimentary sequences of the Baceno unit below and the Tèggiolo unit above. The petrography and mineral composition of tremolite–calcite veins occurring in dolomite marble in both metasedimentary sequences were investigated. Tremolite–calcite (with lesser talc and minor phlogopite) veins have rhythmic banded texture. Banding is due to cyclic differences in modal abundances and fabric of tremolite and calcite. These veins are very similar to those occurring in dolomite rafts within the Bergell granite and it is inferred that they formed by the same “fracture-reaction-seal” mechanism. Veins formed by reaction of a silica-rich aqueous fluid with the host dolomite marble along fractures. According to thermo-barometric calculations, based on electron microprobe analyses, reaction occurred at temperatures between 450 and 490°C and minimum pressure of 2–3 kbar. Such temperature conditions occurred in this footwall region of the Simplon Fault Zone around 15 Ma, during exhumation and cooling of the nappe pile and a transition to brittle behaviour. Aqueous, silica-rich fluids concentrated along fractures, forming tremolite–calcite veins in the dolomite marbles and quartz veins in the orthogneiss.  相似文献   

9.
Abstract Widespread ultra-high-P assemblages including coesite, quartz pseudomorphs after coesite, aragonite, and calcite pseudomorphs after aragonite in marble, gneiss and phengite schist are present in the Dabie Mountains eclogite terrane. These assemblages indicate that the ultra-high-P metamorphic event occurred on a regional scale during Triassic collision between the Sino-Korean and Yangtze cratons. Marble in the Dabie Mountains is interlayered with coesite-bearing eclogite and gneiss and as blocks of various size within gneiss. Discontinuous boudins of eclogite occur within marble layers. Marble contains an ultra-high-P assemblage of calcite/aragonite, dolomite, clinopyroxene, garnet, phengite, epidote, rutile and quartz/coesite. Coesite, quartz pseudomorphs after coesite, aragonite and calcite pseudomorphs after aragonite occur as fine-grained inclusions in garnet and omphacite. Phengites contain about 3.6 Si atoms per formula unit (based on 11 oxygens). Similar to the coesite-bearing eclogite, marble exhibits retrograde recrystallization under amphibolite–greenschist facies conditions generated during uplift of the ultra-high-P metamorphic terrane. Retrograde minerals are fine grained and replace coarse-grained peak metamorphic phases. The most typical replacements are: symplectic pargasitic hornblende + epidote after garnet, diopside + plagioclase (An18) after omphacite, and fibrous phlogopite after phengite. Ferroan pargasite + plagioclase, and actinolite formed along grain boundaries between garnet and calcite, and calcite and quartz, respectively. The estimated peak P–T conditions for marble are comparable to those for eclogite: garnet–clinopyroxene geothermometry yields temperatures of 630–760°C; the garnet–phengite thermometer gives somewhat lower temperatures. The minimum pressure of peak metamorphism is 27 kbar based on the occurrence of coesite. Such estimates of ultra-high-P conditions are consistent with the coexistence of grossular-rich garnet + rutile, and the high jadeite content of omphacite in marble. The fluid for the peak metamorphism was calculated to have a very low XCO2 (<0.03). The P–T conditions for retrograde metamorphism were estimated to be 475–550°C at <7 kbar.  相似文献   

10.
The key to comprehending the tectonic evolution of the Himalaya is to understand the relationships between large-scale faulting, anatexis, and inverted metamorphism. The great number and variety of mechanisms that have been proposed to explain some or all of these features reflects the fact that fundamental constraints on such models have been slow in coming. Recent developments, most notably in geophysical imaging and geochronology, have been key to coalescing the results of varied Himalayan investigations into constraints with which to test proposed evolutionary models. These models fall into four general types: (1) the inverted metamorphic sequences within the footwall of the Himalayan thrust and adjacent hanging wall anatexis are spatially and temporally related by thrusting; (2) thrusting results from anatexis; (3) anatexis results from normal faulting; and (4) apparent inverted metamorphism in the footwall of the Himalayan thrust is produced by underplating of right-way-up metamorphic sequences. We review a number of models and find that many are inconsistent with available constraints, most notably the recognition that the exposed crustal melts and inverted metamorphic sequences not temporally related. The generalization that appears to best explain the observed distribution of crustal melts and inverted metamorphic sequences is that, due to specific petrological and tectonic controls, episodic magmatism and out-of-sequence thrusting developed during continuous convergence juxtaposing allochthonous igneous and metamorphic rocks. This coincidental juxtaposition has proven to be something of a red herring, unduly influencing attention toward finding a causal relationship between anatexis and inverted metamorphism.  相似文献   

11.
The Greater Himalayan Sequence (GHS) has commonly been treated as a large coherently deforming high‐grade tectonic package, exhumed primarily by simultaneous thrust‐ and normal‐sense shearing on its bounding structures and erosion along its frontal exposure. A new paradigm, developed over the past decade, suggests that the GHS is not a single high‐grade lithotectonic unit, but consists of in‐sequence thrust sheets. In this study, we examine this concept in central Nepal by integrating temperaturetime (T–t) paths, based on coupled Zr‐in‐titanite thermometry and U–Pb geochronology for upper GHS calcsilicates, with traditional thermobarometry, textural relationships and field mapping. Peak Zr‐in‐titanite temperatures are 760–850°C at 10–13 kbar, and U–Pb ages of titanite range from c. 30 to c. 15 Ma. Sector zoning of Zr and distribution of U–Pb ages within titanite suggest that diffusion rates of Zr and Pb are slower than experimentally determined rates, and these systems remain unaffected into the lower granulite facies. Two types of T–t paths occur across the Chame Shear Zone (CSZ). Between c. 25 and 17–16 Ma, hangingwall rocks cool at rates of 1–10°C/Ma, while footwall rocks heat at rates of 1–10°C/Ma. Over the same interval, temperatures increase structurally upwards through the hangingwall, but by 17–16 Ma temperatures converge. In contrast, temperatures decrease upwards in footwall rocks at all times. While the footwall is interpreted as an intact, structurally upright section, the thermometric inversion within the hangingwall suggests thrusting of hotter rocks over colder from c. 25 to c. 17–16 Ma. Retrograde hydration that is restricted to the hangingwall, and a lithological repetition of orthogneiss are consistent with thrust‐sense shear on the CSZ. The CSZ is structurally higher than previously identified intra‐GHS thrusts in central Nepal, and thrusting duration was 3–6 Ma longer than proposed for other intra‐GHS thrusts in this region. Cooling rates for both the hangingwall and footwall of the CSZ are comparable to or faster than rates for other intra‐GHS thrust sheets in Nepal. The overlap in high‐T titanite U–Pb ages and previously published muscovite 40Ar/39Ar cooling ages imply cooling rates for the hangingwall of ≥200°C/Ma after thrusting. Causes of rapid cooling include passive exhumation driven by a combination of duplexing in the Lesser Himalayan Sequence, and juxtaposition of cooler rocks on top of the GHS by the STDS. Normal‐sense displacement does not appear to affect T–t paths for rocks immediately below the STDS prior to 17–16 Ma.  相似文献   

12.
The boundary zone between two Penninic nappes, the eclogite-facies to ultrahigh-pressure Zermatt-Saas zone in the footwall and the blueschist-facies Combin zone in the hanging wall, has been interpreted previously as a major normal fault reflecting synorogenic crustal extension. Quartz textures of mylonites from this fault were measured using neutron diffraction. Together with structural field observations, the data allow a refined reconstruction of the kinematic evolution of the Pennine nappes. The main results are: (1) the contact is not a normal fault but a major thrust towards northwest which was only later overprinted by southeast-directed normal faulting; (2) exhumation of the footwall rocks did not occur during crustal extension but during crustal shortening; (3) the Sesia-Dent Blanche nappe system originated from a continental fragment (Cervinia) in the Alpine Tethys ocean, and the Combin zone ophiolites from the ocean basin southeast of Cervinia; (4) out-of-sequence thrusting played a major role in the tectonic evolution of the Penninic nappes. An erratum to this article can be found at  相似文献   

13.
In the northern limb of the 2.06-Ga Bushveld Complex, the Platreef is a platinum group elements (PGE)-, Cu-, and Ni-mineralized zone of pyroxenite that developed at the intrusion margin. From north to south, the footwall rocks of the Platreef change from Archaean granite to dolomite, hornfels, and quartzite. Where the footwall is granite, the Sr-isotope system is more strongly perturbed than where the footwall is Sr-poor dolomite, in which samples show an approximate isochron relationship. The Nd-isotope system for samples of pyroxenite and hanging wall norite shows an approximate isochron relationship with an implied age of 2.17 ± 0.2 Ga and initial Nd-isotope ratio of 0.5095. Assuming an age of 2.06 Ga, the ɛNd values range from −6.2 to −9.6 (ave. −7.8, n = 17) and on average are slightly more negative than the Main Zone of the Bushveld. These data are consistent with local contamination of an already contaminated magma of Main Zone composition. The similarity in isotope composition between the Platreef pyroxenites and the hanging wall norites suggests a common origin. Where the country rock is dolomite, the Platreef has generally higher plagioclase and pyroxene δ 18O values, and this indicates assimilation of the immediate footwall. Throughout the Platreef, there is considerable petrographic evidence for sub-solidus interaction with fluids, and the Δ plagioclase–pyroxene values range from −2 to +6, which indicates interaction at both high and low temperatures. Whole-rock and mineral δD values suggest that the Platreef interacted with both magmatic and meteoric water, and the lack of disturbance to the Sr-isotope system suggests that fluid–rock interaction took place soon after emplacement. Where the footwall is granite, less negative δD values suggest a greater involvement of meteoric water. Consistently higher values of Δ plagioclase–pyroxene in the Platreef pyroxenites and hanging wall norites in contact with dolomite suggest prolonged interaction with CO2-rich fluid derived from decarbonation of the footwall rocks. The overprint of post crystallization fluid–rock interaction is the probable cause of the previously documented lack of correlation between PGE and sulfide content on the small scale. The Platreef in contact with dolomite is the focus of the highest PGE grades, and this suggests that dolomite contamination played a role in PGE concentration and deposition, but the exact link remains obscure. It is a possibility that the CO2 produced by decarbonation of assimilated dolomite enhanced the process of PGE scavenging by sulfide precipitation.  相似文献   

14.
The Elzevir Terrane of the Grenville Orogen in southern Ontario contains metapelites and abundant graphitic marbles that were regionally metamorphosed from the upper greenschist to upper amphibolite facies. Comparative thermometry was undertaken with widely used calibrations for the systems garnet-biotite, calcite-dolomite, and calcite-graphite. Temperatures that are obtained from matrix biotites paired with prograde garnet near-rim analyses are usually consistent with those determined using calcite-graphite thermometry. However, calcite-graphite thermometry occasionally yields low temperatures due to lack of equilibration of anomalously light graphite. Application of calcite-graphite and garnet-biotite systems may yield temperatures up to 70 °C higher than calcite-dolomite in amphibolite facies rocks. Calcite-dolomite temperatures most closely approach those from calcite-graphite and garnet-biotite when the samples contain a single generation of dolomite and calcite grains contain no visible dolomite exsolution lamellae. However, some of these samples yield temperatures considerably lower than temperatures calculated from calcite-graphite and garnet-biotite thermometry, indicating that the calcite-dolomite thermometer may have been partially reset during retrogression. Estimated peak metamorphic temperatures of regional metamorphism between Madoc (upper greenschist facies) and Bancroft (upper amphibolite facies) range from 500 to 650 °C. These results place the chlorite-staurolite isograd at 540 °C, the kyanite-sillimanite isograd at 590 °C, and the sillimanite-K-feldspar isograd at 650 °C. Although each thermometer may have an absolute uncertainty of as much as ±50 °C, the 50 to 60 °C temperature differences between the isograds are probably accurate to 10 to 20 °C. An incomplete picture of the thermal gradients can result from the application of only one thermometer in a given area. Simultaneous application of several systems allows one to recognize and overcome the inherent limitations of each thermometer. Received: 26 March 1997 / Accepted: 15 April 1998  相似文献   

15.
In sharp contrast to the common observed characteristic of areas of thrust tectonics, where older rocks are thrust over younger, along the Vaikrita Thrust in the High Himalaya younger hanging wall rocks (i.e. Vaikrita Group—Late Mesoproterozoic to Early Neoproterozoic) lie above the older footwall rocks (i.e. Munsiari Formation—Paleoproterozoic). The phenomenon is explained by an inversion tectonics-based model where normal faulting and metamorphism were followed by thrusting, in which the thrust displacement was less than the displacement during the earlier normal faulting. The present day hanging wall tilt towards north may have been caused by a later thrust, initiated as a piggy back sequence, accompanied by folding and Himalayan metamorphism.  相似文献   

16.
Marble occurs abundantly in a 31,000 km2 segment of the southernGrenville Province of the Canadian Precambrian Shield, whereit is associated with quartzite, biotite-garnet gneiss, andamphibolite to form the Grenville Group. An 1800 km2 area onthe western margin of this segment, north of the Ottawa river,displays a great variety of carbonate rocks, which may be dividedinto two groups: (I) major marble, with calcite, dolomite, graphite, phlogopite,Ca amphibole, Ca pyroxene, forsterite, humite group minerals, (II) minor marble, with pink calcite, phlogopite, Ca amphibole,Ca pyroxene, K feldspar, scapolite, sphene. Rocks of the first group are associated with plagioclase gneissand amphibolite, and are metamorphosed limestone, little affectedby metasomatism; rocks of the second group, which are less common,are associated with potassium feldspar gneiss and heterogeneousgranitic and syenitic rocks, and are inferred to be metasomaticrocks. Numerous mineral reactions have taken place in the carbonaterocks during metamorphism. The calcite-dolomite reaction, whichgoverns the Mg content of calcite, indicates a metamorphic temperatureof about 650 °C. Forsterite was possibly produced from low-Alamphibole, and forsterite + spinel from high-Al amphibole. Thecrystallization of some silicate minerals in the minor marbleunits, and the enrichment in the contained calcite in Fe andSr are attributed to metasomatic reactions. Metamorphic ion-exchangereactions involving carbonates produced the following distributioncoefficients: Sr in calcite/Sr in dolomite = 2.5 Mn in calcite/Mn in dolomite = 0.89 Fe in calcite/Fe in dolomite = 0.29 from which inferences may be drawn concerning the distributionof these elements between the Ca and Mg sites within dolomiteduring metamorphic crystallization. Ion-exchange reactions involvingsilicates produced the following distribution of Mn: humite group Ca pyroxene.Ca amphibole phlogopite where the numbers are distribution coefficients. An equilibriumdistribution of Fe between silicates and calcite in the minormarble was evidently not attained during metasomatic crystallization.Numerous retrograde reactions have taken place, including thealteration of pyroxene to amphibole, forsterite to serpentine,and the exsolution of dolomite from calcite. Forsterite in marble, and orthopyroxene in the associated gneissesand amphibolites crystallized sporadically in the Laurentianhighlands, but not in the lowlands of the Ottawa rift valley,where peak metamorphic temperatures may have been slightly lower.In the highlands, reactions to produce forsterite and orthopyroxenewere initiated in response to a local increase in temperature,local peculiarities in the chemical composition of amphibole,which produced these minerals, or a local decrease in the activityof CO2 and H2O in the grain-boundary phase.  相似文献   

17.
Abstract

The present contact caused by the superposition of the Alpujarride complex over that of the Nevado-Filabride in the western area of Sierra Nevada and Sierra de Filábres corresponds to a detachment. The deformation in the footwall associated with this contact, produced mylonitic fabrics with a significant stretching-lineation, over which brittle structures are superimposed. The deformation in the hanging wall associated with this contact is, on the other hand, essentially brittle. These deformations are subsequent to a series of syn-to post-metamorphic structures related to thrust phases.

The micro- and meso-structures indicate that the hanging wall has moved towards the west-south-west.

Other brittle structures, which began during the same extensional regime, are superimposed on the detachment and have continued to develop up to the present time. These structures were produced in an extensional regime with a non-coaxial deformation component and suggest the possibility of a tectonic evolution similar to that described for core complexes in the USA.  相似文献   

18.
Structural and geochemical patterns of heterogeneously deformed diamictite in northern Utah (USA) record interrelations between strain accumulation, fluid–rock interaction, and softening processes across a major fault (Willard thrust). Different clast types in the diamictite have varying shape fabrics related to competence contrasts with estimated effective viscosity ratios relative to micaceous matrix of: ∼6 and 8 for large quartzite clasts respectively in the Willard hanging wall and footwall; ∼5 and 2 for less altered and more altered granitic clasts respectively in the hanging wall and footwall; and ∼1 for micaceous clasts that approximate matrix strain. Within the footwall, matrix XZ strain ratios increase from ∼2 to 8 westward along a distinct deformation gradient. Microstructures record widespread mass transfer, alteration of feldspar to mica, and dislocation creep of quartz within matrix and clasts. Fluid influx along microcracks and mesoscopic vein networks increased westward and led to reaction softening and hydrolytic weakening, in conjunction with textural softening from alignment of muscovite aggregates. Consistent Si, Al, and Ti concentrations between matrix, granitic clasts, and protoliths indicate limited volume change. Mg gain and Na loss reflect alteration of feldspar to phengitic muscovite. Within the hanging wall, strain is overall lower with matrix XZ strain ratios of ∼2 to 4. Microstructures record mass transfer and dislocation creep concentrated in the matrix. Greater Al and Ti concentrations and lower Si concentrations in matrix indicate volume loss by quartz dissolution. Na gain in granitic clasts reflects albitization. Large granitic clasts have less mica alteration and greater competence compared to smaller clasts. Differences in strain and alteration patterns across the Willard thrust fault suggest overall downward (up-temperature) fluid flow in the hanging wall and upward (down-temperature) fluid flow in the footwall.  相似文献   

19.
Dolomitic marble on the island of Naxos was deformed at variable temperatures ranging from 390 °C to >700 °C. Microstructural investigations indicate two end-member of deformation mechanisms: (1) Diffusion creep processes associated with small grain sizes and weak or no CPO (crystallographic preferred orientation), whereas (2) dislocation creep processes are related with larger grain sizes and strong CPO. The change between these mechanisms depends on grain size and temperature. Therefore, sample with dislocation and diffusion creep microstructures and CPO occur at intermediate temperatures in relative pure dolomite samples. The measured dolomite grain size ranges from 3 to 940 μm. Grain sizes at Tmax >450 °C show an Arrhenius type evolution reflecting the stabilized grain size in deformed and relative pure dolomite. The stabilized grain size is five times smaller than that of calcite at the same temperature and shows the same Arrhenius-type evolution. In addition, the effect of second phase particle influences the grain size evolution, comparable with calcite. Calcite/dolomite mixtures are also characterized by the same difference in grain size, but recrystallization mechanism including chemical recrystallization induced by deformation may contribute to apparent non-temperature equilibrated Mg-content in calcite.  相似文献   

20.
The Guelb Moghrein Fe oxide–Cu–Au–Co deposit, with a total resource of 23.6 Mt at 1.88% Cu, 1.41 g/t Au, and 143 g/t Co, is hosted by an extensive metacarbonate body. However, it is restricted to up to 30-m wide tabular breccia zones developed parallel to discrete shear zones that transect the host metacarbonates. The Fe–Mg clinoamphibole–chlorite schists represent up to 1-m thick interlayer metasediments and localized viscous shearing in these shear zones. Siderite of the metacarbonate body was deformed into a breccia and was replaced by an ore and alteration assemblage comprised of Fe–Mg clinoamphibole, magnetite, pyrrhotite, chalcopyrite, graphite, Fe–Co–Ni arsenides, arsenopyrite, cobaltite, uraninite, and Bi–Au–Ag–Te minerals. In contact with wall rock amphibolites, the metacarbonate body is enveloped by an alteration halo up to 40 m wide, consisting of biotite, actinolite, grunerite, chlorite, calcite, albite, and quartz. The Guelb Moghrein ore body is structurally controlled by shear zones that developed in the footwall of a regional thrust zone. This thrust separates greenschist facies quartz–sericite schists and biotite–garnet–quartz schists of the Sainte Barbe volcanic unit in the hanging wall from amphibolite facies metavolcanic rocks, metacarbonates, and the Guelb Moghrein ore body of the Akjoujt metabasalt unit in the footwall. Peak temperatures of the latter unit are estimated by hornblende–plagioclase thermometry at 580±40°C. Thrusting was retrograde for the Akjoujt metabasalt unit, but prograde for the Sainte Barbe volcanic unit at P–T conditions of about 410±30°C and 2–3 kbar (garnet–biotite thermometry). Structural and petrological evidences suggest that the ore fluids migrated along the shear zones and reacted with the siderite in the metacarbonate. This evolution and the setting of Guelb Moghrein in the fold-and-thrust belt of the Pan-African to Variscan Mauritanides (Mauritania, West Africa) resemble Proterozoic Fe oxide–Cu–Au–Co deposits such as examples from the Tennant Creek and Mount Isa Inliers, Australia.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号