共查询到20条相似文献,搜索用时 0 毫秒
1.
The Charleston Granite from the Gawler Craton, South Australia, has been dated by the ion‐microprobe U‐Pb zircon method at 1585 ± 5 Ma (2σ). This confirms previous interpretations of population‐style U‐Pb zircon analyses which record a slightly older age due to the presence of inherited zircon. Inherited cores are present in many zircon crystals, and while the age of some cores can not be accurately determined due to extreme loss of radiogenic Pb, others have ages of ~ 1780, ~ 1970, and > 3150 Ma. These cores record a diverse crustal heritage for the Charleston Granite and indicate that ancient crustal material (> 3150 Ma) is present at depth in the Gawler Craton. This is also suggested by available Nd isotopic data for both the Charleston Granite and other Gawler Craton Archaean rocks. The Rb‐Sr and K‐Ar biotite ages from the Charleston Granite of 1560 to 1570 Ma are close to the U‐Pb zircon crystallization age and suggest that the granite has not experienced sustained thermal disturbance (> 250° C) since emplacement and cooling. However, a much younger Rb‐Sr total‐rock age of 1443 ± 26 Ma probably reflects low‐temperature disturbance to the Sr isotope system in feldspar. 相似文献
2.
SHRIMP U–Pb geochronology and monazite EPMA chemical dating from the southeast Gawler Craton has constrained the timing of high-grade reworking of the Early Paleoproterozoic (ca 2450 Ma) Sleaford Complex during the Paleoproterozoic Kimban Orogeny. SHRIMP monazite geochronology from mylonitic and migmatitic high-strain zones that deform the ca 2450 Ma peraluminous granites indicates that they formed at 1725 ± 2 and 1721 ± 3 Ma. These are within error of EPMA monazite chemical ages of the same high-strain zones which range between 1736 and 1691 Ma. SHRIMP dating of titanite from peak metamorphic (1000 MPa at 730°C) mafic assemblages gives ages of 1712 ± 8 and 1708 ± 12 Ma. The post-peak evolution is constrained by partial to complete replacement of garnet–clinopyroxene-bearing mafic assemblages by hornblende–plagioclase symplectites, which record conditions of ~600 MPa at 700°C, implying a steeply decompressional exhumation path. The timing of Paleoproterozoic reworking corresponds to widespread deformation along the eastern margin of the Gawler Craton and the development of the Kalinjala Shear Zone. 相似文献
3.
Geochemical and Sm‐Nd isotopic data, and 19 ion‐microprobe U‐Pb zircon dates are reported for gneiss and granite from the eastern part of the Albany‐Fraser Orogen. The orogen is dominated by granitic rocks derived from sources containing both Late Archaean and mantle‐derived components. Four major plutonic episodes have been identified at ca 2630 Ma, 1700–1600 Ma, ca 1300 Ma and ca 1160 Ma. Orthogneiss, largely derived from ca 2630 Ma and 1700–1600 Ma granitic precursors, forms a belt along the southeastern margin of the Yilgarn Craton. These rocks, together with gabbro of the Fraser Complex, were intruded by granitic magmas and metamorphosed in the granulite facies at ca 1300 Ma. They were then rapidly uplifted and transported westward along low‐angle thrust faults over the southeastern margin of the Yilgarn Craton. Between ca 1190 and 1130 Ma, granitic magmas were intruded throughout the eastern part of the orogen. These new data are integrated into a review of the geological evolution of the Albany‐Fraser Orogen and adjacent margin of eastern Antarctica, and possibly related rocks in the Musgrave Complex and Gawler Craton. 相似文献
4.
M. M. Mitchell B. P. Kohn P. B. O'Sullivan M. J. Hartley D. A. Foster 《Australian Journal of Earth Sciences》2013,60(3):551-563
Apatite fission track results are reported for 26 outcrop samples from the Mt Painter Inlier, Mt Babbage Inlier and adjacent Neoproterozoic rocks of the northwestern Curnamona Craton of South Australia. Forward modelling of the data indicates that the province experienced variable regional cooling from temperatures >110°C during the Late Palaeozoic (Late Carboniferous to Early Permian). The timing of this cooling is similar to that previously reported from elsewhere in the Adelaide Fold Belt and the Curnamona Craton, suggesting that the entire region underwent extensive Late Palaeozoic cooling most likely related to the waning stages of the Alice Springs or Kanimblan Orogenies. Results from the Paralana Fault Zone indicate that the eastern margin of the Mt Painter Inlier experienced a second episode of cooling (~40–60°C) during the Paleocene to Eocene. The entire region also experienced significant cooling (less than ~40°C) during the Late Cretaceous to Palaeogene in response to unroofing and/or a decrease in geothermal gradient. Regional cooling/erosion during this time is supported by: geomorphological and geophysical evidence indicating Tertiary exhumation of at least 1 km; Eocene sedimentation initiated in basins adjacent to the Flinders and Mt Lofty Ranges sections of the Adelaide Fold Belt; and Late Cretaceous ‐ Early Tertiary cooling previously reported from apatite fission track studies in the Willyama Inliers and the southern Adelaide Fold Belt. Late Cretaceous to Palaeogene cooling is probably related to a change in stress field propagated throughout the Australian Plate, and driven by the initiation of sea‐floor spreading in the Tasman Sea in the Late Cretaceous and the Eocene global plate reorganisation. 相似文献
5.
Megan E. Lech Patrice de Caritat Subhash Jaireth Amy Kemich 《中国地球化学学报》2006,25(B08):64-64
Geoscience Australia and the Cooperative Research Centre for Landscape Environments and Mineral Exploration, in collaboration with State agencies are conducting a series of pilot baseline geochemical surveys (BGS). These aim to characterize regional geochemical patterns and contribute to what is presently a limited research direction in Australia. BGS can help (1) establish baselines to monitor future change; (2) target mineral exploration; (3) develop informed environmental policies; and (4) geomedical studies on plant and animal well being. In 2004-05, sampling at an average density of 1 sample per 1100 km^2, was conducted in the Gawler Craton, South Australia. In contrast to our pilot region in the Riverina of New South Wales and Victoria, the Gawler lacks well-developed drainage systems and is dominated by aeolian dunes in its western sector. One of the key aims of the Gawler study is to determine whether elemental excesses or deficiencies exist in the regolith and the implications of these for plant, animal and human health. Top (0-10 cm depth) and bottom (~55-90 cm depth) sediment samples were collected in the lower parts of 42 catchments. The compositions of the 〈75 um and 〈180 um fractions were analyzed using XRF (major and some trace elements), ICP-MS (most trace elements) and ISE (F) methods. Preliminary results show that F, Cr and V are locally elevated above national and international guideline concentrations, raising concerns that these elements may pose potential health issues. Heavy mineral fractions (density 〉2.95) in 4 samples (3 sites) are dominated by iron oxides, spinels, rutile, zircon and barite. Some Cr and V may be related to heavy minerals such as spinels, limiting their bioavailability. Cu, Se and Zn are potentially deficient in parts of the region, but once identified in agricultural areas can easily be remedied through the application of suitable fertilizers. 相似文献
6.
Desmond F. Lascelles 《Australian Journal of Earth Sciences》2013,60(1-2):161-165
Two inliers with a total outcrop length of 3000 m and a maximum width of 200 m, consisting of a sedimentary klippe (olistolith) and an olistostrome (both composed of banded iron‐formation and shale belonging to the Hamersley Group) occur within the Mininer Turbidite Member of the Wyloo Group, south of Paraburdoo, W.A., 2500 m from the top of the Hamersley Group proper. The olistostrome is a typical debris slide produced by slumping of unconsolidated material. The klippe was rafted into position as a solid block by a turbidity current. The pattern of mineralisation within the banded iron‐formation part of the klippe, which is identified as being from the Brockman Iron Formation, together with evidence from the basal conglomerate of the Wyloo Group, shows that the formation of the Hamersley iron ore deposits commenced prior to the deposition of the Wyloo Group sediments. 相似文献
7.
Rubidium‐strontium and strontium isotope data for eight whole‐rock samples of granite varieties from the Encounter Bay area, South Australia, yield an isochron age of 487 ± 37 m.y. Two specimens of albitised granite, formed as a result of late‐stage metasomatic alteration of original megacrystic granite, conform to this isochron. These data support a genetic relation between granites and late‐stage metasomatic alteration as suspected from field, petrographical and geochemical studies. Eight samples from contiguous Kanmantoo Group metasedimentary rocks have an isochron age of 487 ± 60 m.y. Thus this metamorphic event is coincident with emplacement of the Encounter Bay Granite. The initial Sr87Sr86 ratio for the Encounter Bay Granite (0.719) is significantly higher than initial ratios for the Palmer (0.709) and Anabama (0.705) Granites from the same region and can be attributed to either remobilisation or incorporation of strontium from older crustal material in the intrusion. The apparent initial Sr87/Sr86 ratio for the Kanmantoo Group metasedimentary rocks (0.722) can not be distinguished from that for the Encounter Bay Granite within the analytical uncertainties. Compatability of ages and high initial Sr87Sr86 ratios suggest that the granites formed by remobilisation of associated crustal rock. 相似文献
8.
Ballarat in western Victoria hosts substantial hard‐rock and palaeoplacer gold deposits. The most famous placers are the deep leads—channel deposits of a middle Cenozoic drainage system that were buried by voluminous basalt flows over the past few million years. The basalt has also shielded large areas of the highly prospective bedrock from exploration for more of the hard‐rock gold deposits. Although difficult to explore for, such deposits could express themselves as geochemical plumes in the major aquifer system hosted by the deep leads. Groundwater sampling may provide a vector to such deposits, but around Ballarat debate has long surrounded the distribution and flow directions of the deep leads, which are critical for this exploration methodology. The present landscape around Ballarat began to develop in the Early Cenozoic when a pre‐existing Mesozoic landscape was severely dissected during Australia‐Antarctica breakup. Several cycles of erosion left several generations of fluvial placer deposits scattered across the present landscape. New data from regional mapping, boreholes and compilation of historical records elucidates the positions and flow directions of the deep leads. The distribution and flow directions of the deep leads beneath the basalt are different to, and cannot be inferred from, the present drainage upon the basalt. The deep‐lead drainage divide runs beneath the city of Ballarat with divergence of up to 30 km between the deep lead and the present drainage divides. The divide was shifted northward to its present position by the process of drainage diversion because the basalt eruptions built new topography to greater heights than along the pre‐existing deep‐lead divide. 相似文献
9.
The Murray Basin in southeastern Australia is a large, shallow, intracratonic basin filled with laterally extensive, undeformed, Cenozoic carbonate and terrigenous clastic sedimentary rocks that constitute regional and locally important groundwater aquifers. The marine Oligo‐Miocene strata distributed throughout the southwestern portion of the basin are here encompassed within the Murray Supergroup. The Murray Supergroup (formerly Murray Group) incorporates the marginal marine marl and clay of the Ettrick Formation, Winnambool Formation and Geera Clay in the western and northern portions of the Murray Basin in South Australia, in addition to the limestone that outcrops along the banks of the River Murray in nearly continuous section for 175 km. The stratigraphic nomenclature of these rocks is revised as follows. The boundary between the lower and upper members of the Mannum Formation is redefined and a new Swan Reach Dolomite Member is erected. The Finniss Clay is revised to Finniss Formation possessing three new members: the Cowirra Clay Member, Portee Carbonate Member and Woolpunda Marl Member. The ‘Morgan Limestone’ is raised to Morgan Group and contains three new formations: the Glenforslan Formation, Cadell Formation (with Murbko Marl Member and Overland Corner Clay Member) and Bryant Creek Formation. The Pata Formation is redefined and described. Type and reference sections are erected for each new and revised unit, and are lithostratigraphically correlated to illustrate their stratigraphic architecture. 相似文献
10.
The Proterozoic Soldiers Cap Group, a product of two major magmatic rift phases separated by clastic sediment deposition, hosts mineralised (e.g. Pegmont Broken Hill‐type deposit) and barren iron oxide‐rich units at three main stratigraphic levels. Evaluation of detailed geological and geochemical features was carried out for one lens of an apatite‐garnet‐rich, laterally extensive (1.9 km) example, the Weatherly Creek iron‐formation, and it was placed in the context of reconnaissance studies of other similar units in the area. Chemical similarities with iron‐formations associated with Broken Hill‐type Pb–Zn deposit iron‐formations are demonstrated here. Concordant contact relationships, mineralogy, geochemical patterns and pre‐deformational alteration all indicate that the Soldiers Cap Group iron‐formations are mainly hydrothermal chemical sediments. Chondrite normalised REE patterns display positive Eu and negative Ce anomalisms, are consistent with components of both high‐temperature, reduced, hydrothermal fluid (≥250°C) and cool oxidised seawater. Major element data suggest a largely mafic provenance for montmorillonitic clays and other detritus during chemical sedimentation, consistent with westward erosion of Cover Sequence 2 volcanic rocks, rather than local mafic sources. Ni enrichment is most consistent with hydrogenous uptake by Mn‐oxides or carbonates. Temperatures inferred from REE data indicate that although they are not strongly enriched, base metals such as Pb and Zn are likely to have been transported and deposited prior to or following iron‐formation deposition. Most chemical sedimentation pre‐dated emplacement of the major mafic igneous sill complexes present in the upper part of the basin. Heating of deep basinal brines in a regional‐scale aquifer by deep‐seated mafic magma chambers is inferred to have driven development of hydrothermal fluids. Three major episodes of extension exhausted this aquifer, but were succeeded by a final climactic extensional phase, which produced widespread voluminous mafic volcanism. The lateral extent of the iron‐formations requires a depositional setting such as a sea‐floor metalliferous sediment blanket or series of brine pools, with iron‐formation deposition likely confined to much smaller fault‐fed areas surrounded by Fe–Mn–P–anomalous sediments. These relationships indicate that in such settings, major sulfide deposits and their associated chemical sediment marker horizons need not overlie major igneous sequences. Rather, the timing of expulsion of hydrothermal fluid reflects the interplay between deep‐seated heating, extension and magmatism. 相似文献
11.
The chemistry and mineralogy of much of the Late Eocene Blanche Point Formation of South Australia show that biogenic and volcanogenic products were the only significant contributor to the sedimentary record. Intermittent volcanic activity followed by dissolution of the resultant silicic ash and small scale migration of silicon with reprecipitation as the oxide, provides the simplest and most likely explanation for the repetitive nature of the silicification. Seemingly, this was controlled by local silica concentrations which in turn were apparently controlled by the biota. Changes in circulation patterns and/or water depth may have initiated the environmental variations recorded in the formation. 相似文献
12.
J. J. Peucat R. Capdevila C. M. Fanning R. P. Ménot L. Pécora L. Testut 《Australian Journal of Earth Sciences》2013,60(5):831-845
Rhyodacite and rhyolite blocks found in numerous moraines on the Terre Adélie Craton in Antarctica are samples of a high‐temperature high‐K calc‐alkaline to alkali‐calcic igneous suite emplaced at ca 1.60 Ga. They comprise lavas and pyroclastic rocks, including ignimbritic varieties, chemically representative of anorogenic and post‐orogenic igneous suites. The eruptive centres are probably close to the coast according to radar satellite images that show the trace of the ice streams. The volcanic suite is similar in age, petrography and chemical composition (major and trace elements as well as Nd isotopes) to the Gawler Range Volcanics from the Gawler Craton of South Australia. These similarities strengthen correlations previously established between the Gawler Craton and the Terre Adélie Craton (Mawson Continent). Moreover, the present petrological, geochemical and geochronological data give a new insight into the last major thermal event affecting the Mawson Continent. The results also highlight the useful contribution of moraines to our knowledge of Antarctic geology. 相似文献
13.
A 2 m‐thick diamictite occurs near the base of the Cretaceous Eromanga Basin succession at Trinity Well, at the northern extremity of the Flinders Ranges in South Australia. The diamictite consists of a matrix of silt‐ and clay‐size particles and a framework of sand and coarser materials up to small boulder size. Scanning electron microscope study reveals the presence of numerous quartz grains displaying extreme angularity and surface textures attributed to glacial crushing. Sandy sediments considered as fluvioglacial in origin and a locally developed facies displaying flow structures attributed to solifluction processes constitute the basal 3–5 m of the sequence. In places these directly underlie the diamictite and rest with angularity on Neoproterozoic Adelaidean strata. Conformably above the diamictite at the type locality ‘Recorder Hill’ is a sequence approximately 15 m thick of fine sand and silt units containing lonestones up to ~70 cm diameter and hummocky cross‐stratification. These sediments have been assigned to the Cadna‐owie Formation and are dated on palynology as Berriasian to Valanginian. The occurrence of diamictite containing glacially affected quartz grains contributes to our interpretation that the southern margin of the Eromanga Basin, and at least the adjacent part of the northern Flinders Ranges, were affected by glaciation in the Early Cretaceous. The associated dropstone and solifluction facies and nearby glendonite pseudomorphs after ikaite are further evidence of at least intermittent cold climates at this time. 相似文献
14.
Evolution of Sedimentation and Tectonics of the Youjiang Composite Basin, South China 总被引:10,自引:0,他引:10
Zeng Yunfu Liu Wenjun Cheng Hongde Zheng Rongcai Zhang Jinquan Chengdu Institute of Technology Chengdu SichuanLi Xiaoquan Jiang Tingcao Regional Geological Survey Party of Guangxi Guilin Guangxi Jiang M inxi 《《地质学报》英文版》1995,69(4):358-371
Located at the southern margin of the South China plate, the Youjiang basin is a closely related to the NW- and NE-trending syndepositional faults in respect to the configuration and structure of the basin. The evolution of the Youjiang basin progressed through two stages. In the Hercynian period, the opening of the Ailaoshan-Honghe ocean basin gave rise to a number of NW-trending rift belts in the Youjiang area. During this period, deep-water sediments were dominant and the basin was possesed of the characteristics of the rift system of passive continental margins. In the early Indosinian after the Dongwu movement, the circum - Pacific tectonism led to a major change in the configuration and structure of the basin. In the meantime, the Ailaoshan ocean basin began to be subducted towards the northeast, thus causing the basin to be split and expand again, and then the basin developed into the stage of the back -arc basin. At the end of the Indosinian period, the basin gradually closed from east to west, 相似文献
15.
A. A. Krassay B. E. Bradshaw J. Domagala M. J. Jackson 《Australian Journal of Earth Sciences》2013,60(3):533-562
The River Supersequence represents a 2nd‐order accommodation cycle of approximately 15 million years duration in the Isa Superbasin. The River Supersequence comprises eight 3rd‐order sequences that are well exposed on the central Lawn Hill Platform. They are intersected in drillholes and imaged by reflection seismic on the northern Lawn Hill Platform and crop out in the McArthur Basin of the Northern Territory. South of the Murphy Inlier the supersequence forms two south‐thickening depositional wedges on the Lawn Hill Platform. The northern wedge extends from the Murphy Inlier to the Elizabeth Creek Fault Zone and the southern wedge extends from Mt Caroline to the area south of Riversleigh Station. On the central Lawn Hill Platform the River Supersequence attains a maximum thickness of 3300 m. Facies are dominantly fine‐grained siliciclastics, but the lower part comprises a mixed carbonate‐siliciclastic succession. Interspersed within fine‐grained facies are sharp‐based sandstone and conglomeratic intervals interpreted as lowstand deposits. Such lowstand deposits represent a wide range of depositional systems and palaeoenvironments including fluvial channels, shallow‐marine shoreface settings, and deeper marine turbidites and sand‐rich submarine fans. Associated transgressive and highstand deposits comprise siltstone and shale deposited below storm wave‐base in relatively quiet, deep‐water settings similar to those found in a mid‐ to outer‐shelf setting. Seismic analysis shows significant fault offsets and thickness changes within the overall wedge geometry. Abrupt thickness changes across faults over small horizontal distances are documented at both the seismic‐ and outcrop‐scales. Synsedimentary fault movement, particularly along steeply north‐dipping, largely northeast‐trending normal faults, partitioned the depositional system into local sub‐basins. On the central Lawn Hill Platform, the nature of facies and their thickness change markedly within small fault blocks. Tilting and uplift of fault blocks affected accommodation cycles in these areas. Erosion and growth of fine‐grained parts of the section is localised within fault‐bounded depocentres. There are at least three stratigraphic levels within the River Supersequence associated with base‐metal mineralisation. Of the seven supersequences in the Isa Superbasin, the River Supersequence encompasses arguably the most dynamic period of basin partitioning, syndepositional faulting, facies change and associated Zn–Pb–Ag mineralisation. 相似文献
16.
Ian C. F. Stewart 《Australian Journal of Earth Sciences》2013,60(3):351-362
There appears to be little correlation of earthquake epicentres with known surface geological features in South Australia. Seismic wave travel‐time residuals are used to derive corrections for the velocity and depth parameters for the simple uniform crustal model which approximates to that in South Australia. Local studies of Moho depth in the seismic zone and analysis of travel‐time station corrections from both local earthquake and teleseismic data suggest that lateral and vertical variations in the South Australian crust are small. Data presented in this paper appear to be consistent with a plate tectonic model derived from focal mechanism studies (Stewart & Mount, 1972) for the active South Australian seismic zones. 相似文献
17.
18.
W. G. Libby J. R. De Laeter R. A. Armstrong 《Australian Journal of Earth Sciences》2013,60(6):851-860
Rb–Sr dating of biotite in the northwestern corner of the Yilgarn Craton identified four areas with distinctive age ranges. Biotite in the northwestern area, which includes the Narryer Terrane and part of the Murchison Terrane, yields reset Rb–Sr dates of ca 1650 Ma. In the western area, along the margin of the craton, biotite has been reset to 629 Ma. Eastward of these areas, mainly in the Murchison Terrane, the modal biotite date is near 2450 Ma, though because of a skewed distribution the mean date is closer to 2300 Ma. Dates in a transition zone between the western and eastern areas range broadly between 2000 and 1000 Ma, averaging about 1775 Ma. The western area and the transition zone are continuous with analogous areas south of the limits of the present study. The 1650 Ma dates in the northwestern area are probably related to plutonic and tectonic activity of similar age in the Gascoyne Province to the north. They may represent cooling after thermal resetting during tectonic loading by southward thrust‐stacking of slices of Narryer Terrane and allochthonous Palaeoproterozoic volcanic arc and backarc rocks during the Capricorn Orogeny. This episode of crustal shortening resulted from the collision of the Yilgarn and Pilbara Cratons to form the West Australian Craton. The dates reflect cooling associated with subsequent erosion‐induced rebound. The 2450 Ma biotite dates of the eastern area are similar to biotite dates found over most of the Yilgarn Craton and represent a background upon which the later dates have been superimposed. The origin of dates in the western area is unknown but may be related to an associated dolerite dyke swarm or to possible thrusting from the west. There is some evidence of minor later intrusion of felsic hypabyssal rock between 2000 and 2200 Ma and localised shearing in the Narryer area at about 1350 to 1400 Ma. One small area near Yalgoo with biotite Rb–Sr dates near 2200 Ma may be cogenetic with the Muggamurra Swarm of dolerite dykes. 相似文献
19.
40Ar‐39Ar age spectra on minerals from granitic, metamorphic and hydrothermal rocks confirm that the Early Proterozoic Tennant Creek Block was affected by two thermal events during its evolution. Although extensive alteration of biotite and feldspar within the granites precludes the direct determination of their cooling history, 40Ar‐39Ar analyses for hydrothermal muscovite from several nearby gold‐copper deposits indicate that regional cooling to below ~ 300°C was not prolonged. Flat, uniform muscovite age spectra were obtained from gold deposits east of the Tennant Creek town site and indicate a minimum age of 1825–1830 Ma for their formation. These ages are within error of those for the felsic volcanism of the Flynn Subgroup, and a genetic relationship between the two may exist. Samples from gold deposits elsewhere in the area indicate disturbance of the K‐Ar isotope system. The second thermal event to affect the region occurred at around 1700 Ma, and is confirmed by the 40Ar‐39Ar muscovite ages for the ‘Warrego’ granite (1677 ± 4 Ma) and for the metamorphism of the Wundirgi Formation (1696 ± 4 Ma). 相似文献
20.
The mid to outer neritic carbonates of the Gambier Limestone (Upper Eocene to lower Middle Miocene) can be divided into seven units by using criteria of sequence stratigraphy and foraminiferal biofacies. The boundaries fall mainly on erosional surfaces, even though the temporal duration of these surfaces appears to be largely beyond the resolution of foraminiferal biostratigraphy. The Eocene/Oligocene contact is distinctively unconformable in several sections, with at least part of the Upper Eocene sediments missing. Chert nodules, common to abundant in most sections, are associated with deep‐ or cool‐water benthic assemblages (> 100–200 m and <15°C), indicating cool, nutrient‐rich bottom conditions probably influenced by the Antarctic Circumpolar Current beginning during the Early Oligocene. The mid‐Oligocene fall in sea‐level was probably coupled with a major local uplift that removed at least part of the Lower Oligocene, an event widely recorded in the Australian‐New Zealand region. In areas weakly affected, this glacioeustatic lowstand is represented by chert‐free limestone and grey to pink dolomites in some sections, with a poorly preserved assemblage comprising few planktonic and deep‐water benthic species. Local unconformities separate regional unconformity‐bounded or allostratigraphic packages of strata to represent third‐order sequences. Although variations in local subsidence might have influenced accumulation space and sediment thickness, glacioeustatic influence on the packaging of the sequences and units of the Gambier Limestone was easily the more effective and concordant with the global patterns. 相似文献