首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Topsails igneous terrane of Western Newfoundland contains a diverse suite of igneous rocks, but consists mainly of Silurian alkaline to peralkaline granites and rhyolites. The terrane exhibits evidence for the coexistence of mafic and salic magmas in the form of composite dykes and flows, sinuous, boudined mafic dykes cutting granites and net vein complexes. Field data and major and trace element chemical data suggest that these magmas mixed to produce limited volumes of more or less homogeneous hydrids.Magma mixing, a process which has received recent prominence in petrogenetic models for calc-alkaline volcanic suites, has elicited less attention than restite separation and fractional crystallization as a cause of chemical dispersion in granites. Evidence from the Topsails igneous terrane suggests the possible importance of magma mixing to granite petrogenesis and a major role for transcurrent faulting in the origin and evolution of peralkaline magmas.  相似文献   

2.
通过对大兴安岭北段晚侏罗世吉祥峰组中酸性火山岩的岩石地球化学研究,发现其中存在高Sr低Y型火山岩,即文献上所称的埃达克质岩,笔者认为中酸性火山岩的岩浆起源于下地壳玄武质岩浆,为玄武质岩浆底辟上侵引起地热梯度增加、下地壳中-基性变质火成岩石部分熔融的之混合岩浆,是古太平洋板块向西伯利亚板块斜向俯冲过程中,蒙古-鄂霍次克海槽封闭,陆壳碰撞使地壳加厚,形成兴蒙造山带时所引起的一系列构造岩浆活动。其形成时的构造环境应是在滨太平洋构造域背景下受古亚洲构造域的影响和限制,并非是滨太平洋构造活动带的单一活动所致。早白垩世上库力组酸性火山岩属陆壳重熔型(S型)火山岩,其形成可能与印度-澳大利亚板块朝北偏东方向推挤运移、中国东部岩石圈拉张引起的下地壳拆沉作用有关。   相似文献   

3.
《International Geology Review》2012,54(11):1027-1047
New geological and petrological data on the range of magmatic complexes and formations of the Eastern Sayan show two primary magmas: basic and granitoid. These magmas were formed through melting hard deep-seated layers of the earth crust: basaltic and sialic. During the geosynclinal stage the development of magmas belonging to the Archean, Proterozoic, and Salair [Cambrian] volcanic cycles proceeded consecutively from ultrabasic and basic formations formed in a pre-orogenic or earlier-orogenic geosynclinal development stage to granitoids set up in a synorogenic or later-synorogenic development stage. During the platform stage middle Paleozoic (Lower Devonian) and Mesozoic-Cenozoic cycles of magmatism proceeded directly, without the geosynclinal preparatory stage. Their development, accompanied by faulting, proceeded in reverse order from acidic and alkalic intrusions to predominantly basic eruptives. A further development of deep-seated basic and granitoid magmas was determined first by magmatic differentiation and later by assimilation phenomena which took place during the magma's passage into upper structural layers. The granitoids of geosynclinal magmatic complexes correspond petrochemically to the intermediate types of calc-alkalic rocks of the Pacific Ocean belt. The granitoids and alkalic rocks of the Lower Devonian platform magmatic complex resemble those of the Cenozoic East-Asia alkalic province. The composition of the granitoid magma belonging to the volcanic cycle is conditioned initially chiefly by the sial environment and geosynclinal strata. Magmatic complexes and formations are characterized by definite endogenic mineralizations. Chromium, nickel, cobalt, platinum, diamond, asbestos and other deposits are genetically connected with Proterozoic basic and ultrabasic rocks; gold, muscovite and tin-rare metal pegmatite with upper Proterozoic granitoids. Copper, galenaite and gold-ore occurrences are related to the postmagmatic manifestations of Salair granitoids. Deposits of pyrochlore carbonatites, molybdenite, graphite and others belong to Lower Devonian acidic and alkalic granitoids. — Auth. English summ.  相似文献   

4.
 The southern Ivrea-Verbano Zone of the Italian Western Alps contains a huge mafic complex that intruded high-grade metamorphic rocks while they were resident in the lower crust. Geologic mapping and chemical variations of the igneous body were used to study the evolution of underplated crust. Slivers of crustal rocks (septa) interlayered with igneous mafic rocks are concentrated in a narrow zone deep in the complex (Paragneiss-bearing Belt) and show evidence of advanced degrees of partial melting. Variations of rare-earth-element patterns and Sr isotope composition of the igneous rocks across the sequence are consistent with increasing crustal contamination approaching the septa. Therefore, the Paragneiss-bearing Belt is considered representative of an “assimilation region” where in-situ interaction between mantle- and crust-derived magmas resulted in production of hybrid melts. Buoyancy caused upwards migration of the hybrid melts that incorporated the last septa and were stored at higher levels, feeding the Upper Mafic Complex. Synmagmatic stretching of the assimilation region facilitated mixing and homogenization of melts. Chemical variations of granitoids extracted from the septa show that deep septa are more depleted than shallow ones. This suggests that the first incorporated septa were denser than the later ones, as required by the high density of the first-injected mafic magmas. It is inferred that density contrasts between mafic melts and crustal rocks play a crucial role for the processes of contamination of continental magmas. In thick under plated crust, the extraction of early felsic/hybrid melts from the lower crust may be required to increase the density of the lower crust and to allow the later mafic magmas to penetrate higher crustal levels. Received: 2 May 1995 / Accepted: 1 November 1995  相似文献   

5.

A major phase of igneous activity of Late Oligocene to Early Miocene age affects West Kalimantan and Sarawak in northwest Borneo. The suite of igneous rocks, intruded as stocks, sills and dykes, ranges in composition from diorite to granite, the majority being granodiorite, and has geochemical characteristics similar to I‐type granitoids. The locus of magmatic activity was in the thickest part of Late Cretaceous and Early Tertiary sedimentary basins. The age of magmatism, its tectonic position and geochemistry suggest that it is related to deep crustal re‐melting and intrusion in a passive, postsubduction environment.  相似文献   

6.
The Claret Creek Ring Complex forms a minor part of the extensive Upper Palaeozoic calcalkaline province of northeast Queensland. Although the Claret Creek Ring Complex contains 10 mappable units, it was formed about 300 m.y. ago over a time interval no greater than 10 m.y. This interval is short compared with the overall duration of Upper Palaeozoic igneous activity, which lasted from approximately 320 m.y. to 270 m.y. in this area. Although geochemically distinct, the complex shares a common initial 87Sr/86Sr ratio with the majority of the surrounding igneous rocks; this suggests derivation from different sources with a common initial ratio. Such a relationship could arise by the re‐melting or pronounced fractional crystallisation of magmas which underplated or intruded the lower crust immediately prior to final magma generation. Alternatively, the acidic magmas may have originally formed by partial melting of crustal rocks immediately after a regional isotopic homogenisation. In either case the magmas were derived from originally igneous rocks which were dioritic in chemical composition.  相似文献   

7.
Devonian basaltic to andesitic dykes and compositionally similar plutons of the southern Lachlan Fold Belt are often temporally and spatially closely associated with large granitic complexes. Mafic intrusions play a major role in the transfer of heat into the continental crust, providing a thermal ‘engine’ which leads to crustal melting, and geochemical/isotopic evidence indicates that they contribute chemical constituents to the products of this melting. Studied mafic‐intermediate dykes in the southern Lachlan Fold Belt have tholeiitic to alkaline affinities and include groups with both high and low Ti and K. Several dyke generations may be associated with a single felsic complex. Primitive mantle‐normalised trace‐element abundance patterns with negative Nb and Ti anomalies for basaltic/andesitic and gabbroic/dioritic rocks as young as Early Devonian most resemble those of modern island arcs and suggest an influence of subduction on mantle magma sources. However, some Middle and Late Devonian mafic rocks are enriched in light rare‐earth elements and other incompatible elements, lack significant Nb anomalies, and confirm the change to continental‐rift extensional settings clearly indicated by Lachlan Fold Belt geology.  相似文献   

8.
A potassium-rich Alkalic Suite from the Deccan Traps,Rajpipla, India   总被引:4,自引:0,他引:4  
The Rajpipla Alkalic Suite is the most potassium-enriched group of basaltic rocks so far described from the Deccan Traps. In the same area however early tholeiitic flows and late tholeiitic dykes show the potassium-poor nature characteristic of most Deccan Trap magmas. The rocks of the alkalic suite are highly porphyritic and their major element variation can be interpreted in terms of crystal fractionation dominated by clinopyroxene. Plagioclase, which is an important phenocryst phase, has fractionated only in relatively small amounts as a result of a lack of density contrast between it and the liquids. A dyke-like form for the magma chambers in which fractionation has taken place is postulated to account for the abundance of highly porphyritic types. The Rajpipla area is also notable as being one of the few Deccan localities where rhyolites are found.Abbreviations AB ankaramitic basalt - PB porphyritic basalt - PTB porphyritic trachybasalt - FPM feldsparphyric mugearite - M mugearite - TR trachyte - P. RHY potassic rhyolite - Th. B. tholeiitic basalt - Th. D. tholeiitic dolerite - Af alkali feldspar  相似文献   

9.
《International Geology Review》2012,54(13):1557-1583
The late Mesozoic Great Xing’an Range Large Igneous Province (XRLIP), with an area of >3 × 105 km2, is a prominent, enigmatic feature in eastern central Asia. The province is characterized by extensive within-plate magmatism, including a >4 km-thick sequence of volcanic rocks and voluminous plutons emplaced during an interval of ~40 million years from Late Jurassic through Early Cretaceous times (~150–110 Ma). The igneous activities are characterized by widespread adakitic rocks, alkalic basalts, and A-type granitoids with largely intraplate geochemical signatures, emplaced in a normal continental crustal setting. A Mongol–Okhotsk ridge subduction model is proposed for petrogenesis of the igneous rocks. Partial melting of young, hot, subducting oceanic slabs close to the ridge formed the adakitic rocks. A slab window that opened during ridge subduction triggered alkalic basaltic to A-type granitic and minor calc-alkaline magmas, as well as large-scale, metallogenic mineralization and subsequent basin formation.  相似文献   

10.
柴达木盆地北缘之全吉地块花岗质岩体大量发育,具多期次多阶段特征。通过对全吉地块金泉山—化石沟一带古生代花岗质岩体岩石学、岩石化学特征及单颗粒锆石U-Pb同位素定年,发现该区花岗岩有4次侵入,侵入时代分别为早奥陶世(471~476Ma)、中奥陶世(459±5Ma)、早志留世(423±4Ma)和中泥盆世(366±2Ma)。岩石地球化学研究显示,该4期花岗岩均具典型的钙碱性特征,轻稀土富集、重稀土轻度亏损、Eu轻微负异常—正异常,大离子亲石元素K2O、Rb、Ba、Th等相对强烈富集,高场强元素Nb、Ta、Hf、Zr及Yb明显亏损,除第4期岩体即具I型,又具S花岗岩特征外,其它各期次均属I型花岗岩,总体显示岩体具壳源特征,为板块碰撞前消减地区花岗岩,研究推测,金泉山—化石沟一带古生代花岗质岩体第1、2组年龄为全吉地块与柴达木陆块碰撞的时代,第3组年龄反映了深俯冲地下的板块由于拆沉而折返的时代,第4组年龄为碰撞隆起后造山带伸展、滑塌的时代。  相似文献   

11.
The basic volcanic group exposed in the Kadiri schist belt includes high Mg-basalt, basalt, basaltic andestite and dacite. The basalts are tholeiitic in composition and high Mg-basalts, basaltic andesites and dacites show calc-alkaline affinity. Major and trace element characteristics suggest that the volcanic suite has been derived from an initial tholeiitic magma which has given rise to an early basaltic type and a later calc-alkaline type of rocks. An island arc and active continental margin tectonic setting was inferred for these rocks.  相似文献   

12.
The Middle Miocene Tsushima granite pluton is composed of leucocratic granites, gray granites and numerous mafic microgranular enclaves (MME). The granites have a metaluminous to slightly peraluminous composition and belong to the calc‐alkaline series, as do many other coeval granites of southwestern Japan, all of which formed in relation to the opening of the Sea of Japan. The Tsushima granites are unique in that they occur in the back‐arc area of the innermost Inner Zone of Southwest Japan, contain numerous miarolitic cavities, and show shallow crystallization (2–6 km deep), based on hornblende geobarometry. The leucocratic granite has higher initial 87Sr/86Sr ratios (0.7065–0.7085) and lower εNd(t) (?7.70 to ?4.35) than the MME of basaltic–dacitic composition (0.7044–0.7061 and ?0.53 to ?5.24), whereas most gray granites have intermediate chemical and Sr–Nd isotopic compositions (0.7061–0.7072 and ?3.75 to ?6.17). Field, petrological, and geochemical data demonstrate that the Tsushima granites formed by the mingling and mixing of mafic and felsic magmas. The Sr–Nd–Pb isotope data strongly suggest that the mafic magma was derived from two mantle components with depleted mantle material and enriched mantle I (EMI) compositions, whereas the felsic magma formed by mixing of upper mantle magma of EMI composition with metabasic rocks in the overlying lower crust. Element data points deviating from the simple mixing line of the two magmas may indicate fractional crystallization of the felsic magma or chemical modification by hydrothermal fluid. The miarolitic cavities and enrichment of alkali elements in the MME suggest rapid cooling of the mingled magma accompanied by elemental transport by hydrothermal fluid. The inferred genesis of this magma–fluid system is as follows: (i) the mafic and felsic magmas were generated in the mantle and lower crust, respectively, by a large heat supply and pressure decrease under back‐arc conditions induced by mantle upwelling and crustal thinning; (ii) they mingled and crystallized rapidly at shallow depths in the upper crust without interaction during the ascent of the magmas from the middle to the upper crust, which (iii) led to fluid generation in the shallow crust. The upper mantle in southwest Japan thus has an EMI‐like composition, which plays an important role in the genesis of igneous rocks there.  相似文献   

13.
A mafic–ultramafic intrusive belt comprising Silurian arc gabbroic rocks and Early Permian mafic–ultramafic intrusions was recently identified in the western part of the East Tianshan, NW China. This paper discusses the petrogenesis of the mafic–ultramafic rocks in this belt and intends to understand Phanerozoic crust growth through basaltic magmatism occurring in an island arc and intraplate extensional tectonic setting in the Chinese Tianshan Orogenic Belt (CTOB). The Silurian gabbroic rocks comprise troctolite, olivine gabbro, and leucogabbro enclosed by Early Permian diorites. SHRIMP II U-Pb zircon dating yields a 427 ± 7.3 Ma age for the Silurian gabbroic rocks and a 280.9 ± 3.1 Ma age for the surrounding diorite. These gabbroic rocks are direct products of mantle basaltic magmas generated by flux melting of the hydrous mantle wedge over subduction zone during Silurian subduction in the CTOB. The arc signature of the basaltic magmas receives support from incompatible trace elements in olivine gabbro and leucogabbro, which display enrichment in large ion lithophile elements and prominent depletion in Nb and Ta with higher U/Th and lower Ce/Pb and Nb/Ta ratios than MORBs and OIBs. The hydrous nature of the arc magmas are corroborated by the Silurian gabbroic rocks with a cumulate texture comprising hornblende cumulates and extremely calcic plagioclase (An up to 99 mol%). Troctolite is a hybrid rock, and its formation is related to the reaction of the hydrous basaltic magmas with a former arc olivine-diallage matrix which suggests multiple arc basaltic magmatism in the Early Paleozoic. The Early Permian mafic–ultramafic intrusions in this belt comprise ultramafic rocks and evolved hornblende gabbro resulting from differentiation of a basaltic magma underplated in an intraplate extensional tectonic setting, and this model would apply to coeval mafic–ultramafic intrusions in the CTOB. Presence of Silurian gabbroic rocks as well as pervasively distributed arc felsic plutons in the CTOB suggest active crust-mantle magmatism in the Silurian, which has contributed to crustal growth by (1) serving as heat sources that remelted former arc crust to generate arc plutons, (2) addition of a mantle component to the arc plutons by magma mixing, and (3) transport of mantle materials to form new lower or middle crust. Mafic–ultramafic intrusions and their spatiotemporal A-type granites during Early Permian to Triassic intraplate extension are intrusive counterparts of the contemporaneous bimodal volcanic rocks in the CTOB. Basaltic underplating in this temporal interval contributed to crustal growth in a vertical form, including adding mantle materials to lower or middle crust by intracrustal differentiation and remelting Early-Paleozoic formed arc crust in the CTOB.  相似文献   

14.
Thirty-one plugs of alkaline volcanic rocks of Cenozoic age (37 Ma in mean) occur in the Upper Benue valley, northern Cameroon (Central Africa). The complete alkaline series (alkaline basalts, hawaiites, mugearites, phonolites, trachytes and rhyolites) is represented. Basalts contain phenocrysts of olivine, Al-Ti-rich diopside, and Ti-magnetite, and hawaiites-abundant microphenocrysts of plagioclase. Mugearites have a trachytic texture and contain xenocrysts of K-feldspar, apatite, quartz and unstable biotite. Phonolites are peralkaline. Trachytes (peralkaline and non-peralkaline) and rhyolites are characterised by their sodic mineralogy with aegirine-augite, richterite, and arfvedsonite phenocrysts. There is a large compositional gap between basaltic and felsic lavas, except the mugearites. Despite this gap, major- and trace-element distributions are in favour of a co-magmatic origin for the basaltic and felsic lavas. The Upper Benue valley basalts are similar in their chemical and isotopic features to other basalts from both the continental and oceanic sectors of the Cameroon Line. The Upper Benue valley basaltic magmas (87Sr/86SrƸ.7035; k Nd=+3.9) originate from an infra-lithospheric reservoir. The Sr-Nd isotopic composition and high Sr contents of the mugearites suggest that they are related to mantle-derived magmas and that they result from the mixing, at shallow crustal levels, of a large fraction of trachytic magma with a minor amount of basaltic magma. Major-element modelling of the basalt-trachyte evolution (through hawaiite and mugearite compositions) does not support an evolution through fractional crystallization alone. The fluids have played a significant role in the felsic lavas genesis, as attested by the occurrence of F-rich minerals, calcite and analcite. An origin of the Upper Benue valley rhyolitic magmas by fractional crystallization of mantle-derived primitive magmas of basaltic composition, promoted or accompanied by volatile, halogen-rich fluid phases, may be the best hypothesis for the genesis of these lavas. These fluids also interact with the continental crust, resulting in the high Sr-isotope initial ratios (0.710) in the rhyolites, whereas the Nd isotopic composition has been less affected (k Nd=+0.4).  相似文献   

15.
In Bundelkhand Craton of central India, mafic dykes intruded when granitoids was partly crystallized. Cuspate–lobate boundary along the contact of granitoids and mafic magma indicates magma mingling in outcrop scale while textural evidence of mingling is represented by acicular apatite morphologies, titanite–plagioclase ocelli and ophitic–subophitic texture, mafic clots, resorbed plagioclase, and hornblende–zircon associations. Mingling also caused thermal exchange and fluid activity along the boundary between two coeval magmas. Crystal size distribution analyses for hornblende in the mafic rocks yield concave up curves which is also consistent with interaction of felsic and mafic magmas.  相似文献   

16.
Two intrusive complexes are recognized at the Shakhtama deposit: Shakhtama and ore-bearing porphyry. The U–Pb zircon dates (SHRIMP II) are 161.7 ± 1.4 and 161.0 ± 1.7 Ma for the monzonites and granites of the Shakhtama complex and 159.3 ± 0.9 and 155.0 ± 1.7 Ma for the monzonite- and granite-porphyry of the ore-bearing complex. The igneous complexes formed in a complex geodynamic setting in the late Middle Jurassic and early Late Jurassic, respectively. The setting combined the collision of continents during the closure of the Mongol-Okhotsk ocean and the influence of mantle plume on the lithosphere of the Central Asian orogenic belt. The intrusion of the Shakhtama granitoids took place at the end of the collision, and the intrusion of porphyry of the ore-bearing complex, during the change of the geodynamic setting by a postcollisional (rifting) one. The complexes are composed of monzonite–granite series with similar geochemical characteristics of rocks. The performed geological, geochemical, and isotope-geochemical studies suggest that the sources of magmas were juvenile crust and Precambrian metaintrusive bodies. The juvenile mafic crust is considered to be the predominant source of fluid components and metals of the Shakhtama ore-magmatic system. The granitoids of both complexes include calc-alkalic high-K rocks with typical geochemical characteristics and with characteristics of K-adakites. These geochemical features indicate that the parental melts of the former rocks were generated at depths shallower than 55 km, and the melts of the latter, at depths of 55–66 km. K-adakite melts resulted from the melting of crust submerged into the mantle during the lithosphere delamination, which was caused by the crust thickening as a result of the repeated inflow of basic magma into the basement of the crust and tectonic deformations in its upper horizons. The high-Mg monzonitic magma produced under these conditions ascended and was mixed with melts generated in the upper horizons, which accounts for the high Mg contents of the Shakhtama granitoids. The similar compositions and petrogeochemical characteristics of the granitoids of the Shakhtama and porphyry complexes point to the same sources, transport paths, and evolution trend of their parental melts. This indicates that the igneous rocks of both complexes are products of the same long-living magmatic system, which produced Mo mineralization at the final stage. The favorable conditions for the ore production in the magmatic system during the formation of the porphyry complex appeared as early as the preceding stage—during the formation of the Shakhtama complex, which we regard as a preparatory stage in the evolution of the ore-magmatic system.  相似文献   

17.

Palaeozoic intrusive rocks of the New England Batholith from the Rockvale district in the southern New England Orogen form three distinct associations: (i) the Carboniferous Rockvale Adamellite, a member of the Hillgrove Suite of deformed S‐type granitoids; (ii) a small I‐type igneous complex on the northwestern margin of the Rockvale Adamellite: several members of this complex have similar chemical compositions to the most mafic members of the Moonbi Suite of New England Batholith I‐types; and (iii) a suite of dyke rocks ranging in composition from calc‐alkaline lamprophyre through hornblende and biotite porphyrite to aplite. Ion‐microprobe U‐Pb zircon analysis indicates intrusion of the Rockvale Adamellite at 303 ±3 Ma (weighted mean 206Pb/238U age; 95% confidence limits). Preliminary investigation of zircon inheritance within the Rockvale Adamellite is consistent with chemical and isotopic indications of derivation of New England Batholith S‐type granitoids from a relatively juvenile protolith. Deformation of the Rockvale Adamellite occurred after complete crystallization of the pluton and prior to emplacement of dykes and I‐type intrusives. K‐Ar biotite and hornblende ages show broadly synchronous intrusion of I‐type magmas and lamprophyre dykes at ca 255 Ma, indicating that mantle magmatism associated with lamprophyres was contemporaneous with the crustal production of I‐type melts. Chemical similarities between the most mafic Moonbi Suite members and calc‐alkaline lamprophyres may also indicate a direct mantle contribution to some I‐type magmas.  相似文献   

18.
Roger Bateman 《Tectonophysics》1984,110(3-4):211-231
Only bodies of magma with a high crystal content and partially molten (crustal) country rocks can ascend as diapirs; once such an envelope is pierced, the diapiric ascent of the pluton is arrested by the high viscosity of a solid aureole. Deformation by shortening of the carapace of these bodies may lead to the expulsion of a magma with a relatively low crystal content, which may then continue ascent via fractures and dykes.

The details of the mechanisms of granitoid magma segregation are still unknown, but it appears that many magmas hegin their ascent through the crust as mushes with at least 50% melt, and that such magmas are rheologically able to ascend through a thickness of crust. This ascent mechanism explains the dearth of structures attributable to the ascent of granitoids, in contrast to the abundance of structures that developed during their final emplacement.

When a magma becomes too crystalline (melt < 25%) to continue its ascent via dykes, it is immobilised. At approximately this stage, a hydrous magma may become saturated with water and release fluids into the aureole, making it particularly susceptible to deformation. Magma that continues to arrive at this level is also immobilised, and the pluton grows as a ballooning diapir. These characteristically deform themselves and their aureoles by bulk shortening.

Magmas that are able to ascend to shallow depths, largely by virtue of lower water contents and higher initial temperatures, tend to become finally accommodated by such brittle processes as stoping and cauldron subsidence. High level intrusions lend to be tabular, are also fed by dykes or conduits, and assemble in tabular batholiths.  相似文献   


19.
The Upper Proterozoic ophiolite complex of Bou Azzer, Morocco, includes ultramafic rocks, cumulate gabbros, sheeted dykes, pillow lavas and diorite-quartz diorite intrusions and an overlying volcano-sedimentary sequence. The gabbroic cumulates, basaltic flows and dykes have compositions similar to recent ocean-floor rocks (N- and/or T-type). Among other features, they have comparable light REE-depleted patterns and relations of Ti-Zr and La-Nb. Although fractional crystallization played an important role in the evolution of these rocks, the large variations in their chemical compositions require generation from a heterogeneous upper mantle source and/or by a dynamic partial melting process. Diorites, quartz diorites and the volcanic rocks of the overlying sequence are calc-alkaline, genetically unrelated to the tholeiitic suite and indicative of an island arc setting. A possible tectonic model for the ophiolite complex is a marginal basin just behind a still active island arc.  相似文献   

20.
A. nal 《Geological Journal》2008,43(1):95-116
The Middle Miocene Orduzu volcanic suite, which is a part of the widespread Neogene Yamadağ volcanism of Eastern Anatolia, consists of a rhyolitic lava flow, rhyolitic dykes, a trachyandesitic lava flow and basaltic trachyandesitic dykes. Existence of mafic enclaves and globules in some of the volcanic rocks, and microtextures in phenocrysts indicate that magma mingling and mixing between andesitic and basaltic melts played an important role in the evolution of the volcanic suite. Major and trace element characteristics of the volcanic rocks are similar to those formed in convergent margin settings. In particular, incompatible trace element patterns exhibit large depletions in high field strength elements (Nb and Ta) and strong enrichments in both large ion lithofile elements (Ba, Th and U) and light rare earth elements, indicating a strong subduction signature in the source of the volcanic rocks. Furthermore, petrochemical data obtained suggest that parental magmas of rhyolite lava and dykes, and trachyandesite lava and basaltic trachyandesite dykes were derived from subduction‐related enriched lithospheric mantle and metasomatized mantle (± asthenosphere), respectively. A detailed mineralogical study of the volcanic suite shows that plagioclase is the principal phenocryst phase in all of the rock units from the Orduzu volcano. The plagioclase phenocrysts are accompanied by quartz in the rhyolitic lava flows and by two pyroxenes in the trachyandesitic lava flows and basaltic trachyandesitic dykes. Oxide phases in all rocks are magnetite and ilmenite. Calculated crystallization temperatures range from 650°C to 800°C for plagioclase, 745°C–1054°C for biotite, 888°C–915°C for pyroxene and 736°C–841°C for magnetite–ilmenite pairs. Calculated crystallization pressures of pyroxenes vary between 1.24–5.81 kb, and oxygen fugacity range from −14.47 to −12.39. The estimates of magmatic intensive parameters indicate that the initial magma forming the Orduzu volcanic unit began to crystallize in a high‐level magma chamber and then was stored in a shallow reservoir where it underwent intermediate‐mafic mixing. The rhyolitic lava flow and dykes evolved in relatively shallower crustal magma chambers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号