首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
王松山 《地质科学》1982,(2):226-234
常规的K-Ar法是基于40K通过K-层电子捕获衰变成40Ar*这一机理,应用衰变定律而定年的。它具有测定对象广、测定年龄范围大等优点,是同位素地质定年的主要方法之一。但是,由于40Ar*是气体,当岩石、矿物形成以后受到搅动时(如岩浆的侵入、构造活动、宇宙物质的冲击等),40Ar*容易丢失,使年龄值偏低。1962年由Sigurgeirsson提出的,后经Merrihue、Turner等人逐步完善的40Ar-39Ar快中子活化定年技术,很好地克服了K-Ar法的局限性。40Ar-39Ar定年分为两种:一是全熔融法(total fusion),样品被快中子照射后一次加热熔融,然后计算年龄,此值与常规K-Ar法结果相当;另一种是阶段加热法(step-heating),被照射的样品从低温到高温被逐步加热,分别计算各温度阶段的40Ar/39Ar视年龄,并进而得到一条年龄谱和一个坪年龄(plateau age)。后一种方法对研究地质体是否受过热的挠动、岩石矿物的早期结晶年代、后期热挠动次数、热挠动年代、岩石矿物对氢的保存性、过剩氩的存在状态等具有独特作用,它开辟了同位素地质年代学的一个新领域。本文将着重介绍应用40Ar-39Ar阶段加热技术研究地球物质及陨石受热历史的某些成果。  相似文献   

2.
Paleogene sediments in fault-bounded basins on Judge Daly Promontory, northeast Ellesmere Island, Canadian High Arctic, are rich in volcanogenic material. Volcanic pebbles within the Cape Back basin near Nares Strait were studied for their petrography, geochemistry, Sr and Nd isotopes, and geochronology to identify and characterize their parent rock. The pebbles are derived from lava flows and ignimbrites of a continental rift-related, strongly differentiated, highly incompatible element enriched, alkaline volcanic suite, the proposed Nares Strait volcanic suite, which is distinct from other alkaline volcanic suites on the northern coasts of Ellesmere Island and Greenland. 40Ar/39Ar amphibole and alkali feldspar ages indicate that volcanism was active around 61–58 Ma and was probably contemporaneous with sedimentation resulting in Middle to Late Paleocene age for deposition within the Cape Back basin and the other Paleogene basins on Judge Daly Promontory.  相似文献   

3.
The Newer Volcanics Province of Victoria and South Australia consists of a major region of mainly alkaline basalts within which are two restricted areas containing strongly differentiated flow‐rocks. Typical alkalic basalts from this widespread province have K‐Ar ages from 4.5 to 0.5 m.y. and initial 87Sr/86Sr ratios from 0.7038 to 0.7045. Contrastingly, in the Macedon area of differentiated lavas, flow compositions range from limburgite to soda trachyte, with K‐Ar ages from 6.8 to 4.6 m.y. and initial 87Sr/86Sr ratios from 0.7052 to 0.7127. These differentiated rocks therefore are older, and some of them may have been contaminated by reaction with more radiogenic basement rocks during differentiation. Alternatively, the variation in initial Sr‐isotope composition may have resulted from varying isotopic composition of partial melts from the immediate source rocks. The most felsic of the differentiated rocks, soda trachyte, is extremely enriched with Rb relative to Sr; one of the three restricted outcrops of this rock (Camel's Hump) yields a total‐rock Rb‐Sr isochron age of 6.3 ± 0.6 m.y. with an initial 87Sr/86Sr ratio of 0.7127. K‐Ar sanidine ages reported for the three outcrops of trachyte are identical to each other and to the Rb‐Sr isochron result.  相似文献   

4.
岩石分类一直是人们长期探索的课题。由于油气勘探的需要,针对储层研究的盆地火山岩分类已经成为火成岩研究的重要新方向。在综合分析国内外火山岩分类研究的基础上,根据3条野外剖面和21口钻井岩心岩屑的观察描述、岩石薄片鉴定和化学成分分析等资料,依照结构-成分-成因分类原则,建立了适于储层评价的准噶尔盆地石炭系火山岩及其他岩类的岩性分类体系和识别标准。将本区火山岩划分为火山熔岩、火山碎屑熔岩、火山碎屑岩、沉火山碎屑岩等4大类;同时将盆地内与火山岩共生的其他岩类也进行分类和识别,共划分出8大类45种基本类型。与我国东部的中新生代盆地火山岩不同,本区古生代火山岩普遍遭受较长期风化改造和蚀变作用,常见有绿泥石化、碳酸盐化和黏土矿化。这些蚀变会影响到TAS图解岩性判别的结果,因此笔者探讨了蚀变条件下的岩石识别和定名方法。本文分类体系针对火山岩储层研究,结果显示,基于该分类体系岩性与储集空间的类型及其变化规律呈现明显相关性,不同岩性的储集空间类型、组合方式和发育程度存在差异,由此可指导火山岩油气勘探。  相似文献   

5.
The Liaonan metamorphic core complex (mcc) has a three-layer structure and is constituted by five parts, i.e. a detachment fault zone, an allochthonous upper plate and an supradetachment basin above the fault zone, and highly metamorphosed rocks and intrusive rocks in the lower plate. The allochthonous upper plate is mainly of Neoproterozoic and Paleozoic rocks weakly deformed and metamorphosed in pre-Indosinan stage. Above these rocks is a small-scale supradetachment basin of Cretaceous sedimentary and volcanic rocks. The lower plate is dominated by Archean TTG gneisses with minor amount of supracrustal rocks. The Archean rocks are intruded by late Mesozoic synkinematic monzogranitic and granitic plutons. Different types of fault rocks, providing clues to the evolution of the detachment fault zone, are well-preserved in the fault zone, e.g. mylonitic gneiss, mylonites, brecciated mylonites, microbreccias and pseudotachylites. Lineations in lower plate granitic intrusions have consistent orientation that indicate uniform top-to-NW shearing along the main detachment fault zone. This also provides evidence for the synkinematic characteristics of the granitic plutons in the lower plate. Structural analysis of the different parts in the mcc and isotopic dating of plutonic rocks from the lower plate and mylonitic rocks from detachment fault zone suggest that exhumation of the mcc started with regional crustal extension due to crustal block rotation and tangential shearing. The extension triggered magma formation, upwelling and emplacement. This event ended with appearance of pseudotachylite and fault gauges formed at the uppermost crustal level. U-Pb dating of single zircon grains from granitic rocks in the lower plate gives an age of 130±5 Ma, and biotite grains from the mam detachment fault zone have 40Ar-39Ar ages of 108-119 Ma. Several aspects may provide constraints for the exhumation of the Liaonan mcc. These include regional extensional setting, cover/basement contact, temporal and spatial coupling of extension and magmatism, basin development and evolution of fault tectonites along detachment fault zone. We propose that the exhumation of the Liaonan mcc resulted from regional extension and thinning of crust or lithosphere in eastern North China, and accompanied with synkinematic intrusion of granitic plutons, formation of detachment fault zone, uplifting and exhumation of lower-plate rocks, and appearance of supradetachment basin.  相似文献   

6.
Early Miocene (ca.?21–18 Ma) volcanism in the Karacada? area comprises three groups of volcanic rocks: (1) calcalkaline suite (andesitic to rhyolitic lavas and their pyroclastics), (2) mildly-alkaline suite (alkali basalt, hawaiite, mugearite, benmoreite and trachydacite), and (3) a single trachyandesitic flow unit. Field observations, 40Ar/39Ar ages and geochemical data show that there was a progressive temporal transition from group 1 to 3 in a post-collisional tectonic setting. The calcalkaline suite rocks with medium-K in composition resemble those of subduction-related lavas, whereas the mildly-alkaline suite rocks having a sodic tendency (Na2O/K2O=1.5–3.2) resemble those of within-plate lavas. Incompatible element and Sr-Nd isotopic characteristics of the suites suggest that the lithospheric mantle beneath the Karacada? area was heterogeneously enriched by two processes before collision: (1) enrichment by subduction-related processes, which is important in the genesis of the calcalkaline volcanism, (2) enrichment by small degree melts from the astenosphere, which dominates the mildly alkaline volcanism. Perturbation of the enriched lithosphere by either delamination following collision and uplift or removal of the subducted slab following subduction and collision (i.e., slab breakoff) is the likely mechanism for the initiation of the post-collision volcanism.  相似文献   

7.
安徽繁昌盆地中生代火山岩锆石LA-ICPMS U-Pb年龄及其意义   总被引:16,自引:10,他引:6  
袁峰  周涛发  范裕  黄贻梅  张乐骏 《岩石学报》2010,26(9):2805-2817
繁昌盆地是长江中下游地区重要的陆相火山断陷盆地之一。本文对繁昌火山岩盆地中分村组粗安岩、赤沙组黑云母粗安斑岩、蝌蚪山组流纹岩、三梁山组黑云母粗面岩进行了锆石LA-ICPMSU-Pb测年,获得其年龄分别为134.4±2.9、131.3±1.8、130.8±2.2、128.1±3.1Ma,显示盆地内火山岩浆活动的时限约在135~128Ma之间,火山岩均为早白垩世岩浆活动的产物。同时在火山岩中测得了多颗继承或捕获锆石的古老年龄,其中最大的为2894Ma,可能对应了2.7Ga峰值年龄的全球性岩浆活动和大陆生长,一定程度上为繁昌盆地可能存在太古宙基底提供了证据。对比显示,繁昌盆地中生代火山岩与长江中下游地区其它断陷盆地火山岩几乎形成于同一时期,与庐枞、宁芜盆地的4个旋回火山活动可以完全对应,而135Ma可以作为长江中下游地区陆相火山断陷盆地早白垩世火山岩浆活动全面展开的时间。盆地内中生代火山活动期(135~128Ma)处于中国东部岩石圈减薄的高峰期,火山岩正是这一地球动力背景下深源岩浆活动的产物。  相似文献   

8.
The Songliao basin (SB) is a superposed basin with two different kinds of basin fills. The lower one is characterized by a fault-bounded volcanogenic succession comprising of intercalated volcanic, pyroclastic and epiclastic rocks. The volcanic rocks, dating from 110 Ma to 130 Ma, are of geochemically active continental margin type. Fast northward migration of the SB block occurred during the major episodes of the volcanism inferred from their paleomagnetic information. The upper one of the basin fill is dominated by non-marine sag-style sedimentary sequence of siliciclastics and minor carbonates. The basin center shifted westwards from the early to late Cretaceous revealed by the GGT seismic velocity structure suggesting dynamic change in the basin evolution. Thus, a superposed basin model is proposed. Evolution of the SB involves three periods including (1) Alptian and pre-Aptian: a retroarc basin and range system of Andes type related to Mongolia-Okhotsk collisional belt (MOCB); (2) Albian to Companian: a sag-like strike-slip basin under transtension related to oblique subduction of the Pacific plate along the eastern margin of the Eurasian plate; (3) since Maastrichtian: a tectonic inverse basin under compression related to normal subduction of the Pacific plate under the Eurasian plate, characterized by overthrust, westward migration of the depocenter and eastward uplifting of the basin margin.  相似文献   

9.
薛怀民  董树文  马芳 《岩石学报》2010,26(9):2653-2664
庐-枞和宁-芜火山岩盆地是长江中下游地区在中生代发育的一系列断陷型火山岩盆地中规模最大的两个,以发育一套别具特色的橄榄玄粗岩系列火山岩/潜火山岩,并产有丰富的铁矿、硫铁矿及非金属等矿产资源为特征,其中又以玢岩型铁矿最著名。两个盆地内主要的成矿作用(玢岩型铁矿)都与第二旋回(分别为庐-枞盆地的砖桥旋回和宁-芜盆地的大王山旋回)的潜火山岩关系密切,其岩性在庐-枞盆地为正长斑岩,而在宁-芜盆地为辉石闪长玢岩。本文应用SHRIMP锆石U-Pb测年方法分别对庐-枞盆地内的巴家滩正长斑岩和焦冲正长斑岩以及宁-芜盆地内的阴山辉石闪长玢岩进行了精确的定年。结果表明,巴家滩正长斑岩和焦冲正长斑岩中锆石的206Pb/238U加权平均年龄分别为131.0±1.1Ma和131.5±1.6Ma,阴山辉石闪长玢岩中锆石的206Pb/238U加权平均年龄为127.8±1.8Ma。庐-枞和宁-芜盆地(乃至整个长江中下游地区)的火山岩-潜火山岩是在很短的时间内形成的,意味着"突发性的"岩石圈减薄可能是区内岩浆作用和大规模成矿的主要机制。  相似文献   

10.
雷州半岛第四纪火山岩激光40Ar/39Ar等时线定年研究   总被引:2,自引:1,他引:1  
雷州半岛是我国新生代火山岩最重要的分布地区之一,火山活动主要集中在中晚更新世。前人对雷州火山岩的年代学研究以K-Ar法为主。研究表明,雷州火山岩测年结果大致分布在0.38~3.04Ma范围内。根据地层和火山岩层的叠置关系,雷州第四纪火山岩由于覆盖在被确定是1.87Ma和0.76Ma沉积的地层之上,故火山岩年龄应小于该地层年龄。K-Ar法定年结果与雷州地区地层叠置关系存在矛盾。本文通过对雷州半岛第四纪火山岩进行野外考察及采样,利用激光40Ar/39Ar年代学方法进行了精细定年。结果表明,雷州火山岩的喷发主要集中18万年前后。定年结果还表明,对于年轻样品,基于尼尔值计算的K-Ar年龄及40Ar/39Ar表观年龄偏老,等时线年龄相对较为可靠。对同一样品的斑晶、基质作斑晶-基质等时线计算,只有在斑晶基质满足同源条件时才有意义。本文首次提出,通过对比未照射样品的初始36Ar/38Ar值的均一性,以检验样品是否同源,确认斑晶-基质等时线年龄的可信度。据此,等时线的处理方法可以推广应用于特定区域内全部同源同时样品。  相似文献   

11.
In southern India the older Precambrian is overlain unconformably in the Cuddapah Basin by the Cuddapah and Kurnool Systems. The former is tilted and unmetamorphosed in the west but eastwards becomes strongly folded and metamorphosed. It contains lavas and sills, particularly in the lower two groups, is intruded by dolerites and at Chelima by diatremes of kimberlitic affinities related to those intruding the older gneisses west of the Cuddapah Basin in the Wajrakarur area. The Kurnool System lacks any igneous rocks; its basal conglomerate is diamondi‐ferous.

Rb‐Sr dating of lava samples from the lowest group of the Cuddapah System shows that the age of the base of the system may be as great as 1,700 m.y. Together with data for a granite which intrudes probable Cuddapah rocks near the disturbed eastern margin of the basin the data imply that the base is unlikely to be younger than 1,555 m.y. Metamorphism affected some lavas at about 1,360 m.y. The diatremes have two ages of intrusion, about 1,225 m.y. and 1,140 m.y., the latter being the age of the Majhgawan pipe near Panna in northern India. Pre‐Kurnool dolerites have an age of 980 ±110 m.y.

The lavas and dolerites show a range of initial 87Sr/86Rb ratios from about 0.704 to 0.708 and possibly 0.712.

The age data suggest that no simple correlation can be made with other Precambrian sequences in northern peninsular India. Deposition of the Cuddapah System appears to have started well before the start of the deposition of the Vindhyan System, while the Kurnool System is coeval with only part of the Upper Vindhyan. The data also suggest that present interpretations of the structural development of the Cuddapah Basin may need some revision.  相似文献   

12.
The basement volcano-sedimentary rocks of northeast Sudan form part of the Nubian Shield of northeast Africa. Volcanic rocks from the Kadawēb area yield Rb—Sr wholerock isochron ages of 718 and 722 Ma and initial 87Sr/86Sr ratios of 0.7027 and 0.7029. In the Homogar area, 150 km to the south, volcanic rocks yield a Rb—Sr whole-rock isochron age of 671 Ma and an initial 87Sr/86Sr ratio of 0.7034. Although all of these lavas have been altered by a low-grade greenschist facies event, isotopic and geochemical evidence indicates limited open system behaviour. Thus these dates most probably represent extrusive ages indicating two episodes of volcanic activity during the evolution of the Nubian Shield. These results place some important constraints on the nature of crustal evolution in northeast Africa.  相似文献   

13.
Well Drilling shows that the volcanic rocks from the Carboniferous Batamayineishan Formation in the Eastern Junggar basin are mainly composed of volcaniclastic rocks (av. 52%) and volcanic lavas (32%), with a small amount of volcanic pyroclastic lavas (av. 11%). The volcanic lavas are basalt‐basaltic andesite‐andesite‐dacite assemblage. The LA‐ICP‐MS zircon U‐Pb dating of the andesite and the dacite yielded 325~321 Ma and 310 Ma ages, respectively, which is of high agreement with the published age (300 Ma) of basalts from this Formation, it is implied that an important volcanic activity occurred in Junggar basin in the late Carboniferous. The lavas have low TiO2 and high Na2O, indicating a calc‐alkaline series. Geochemical data show that they are characterized by LREE‐enriched patterns with slightly negative Eu anomalies. The rocks have high large ion lithophile element (LILE), and low high field strength element (HFSE) concentrations, with strong negative Nb, Ta and Ti anomalies. From basic through intermediate to felsic, the depletions in Sr, Ti and P of the studied volcanic rocks increase gradually. These geochemical characteristics indicate that the volcanic rocks are magmatic evolution products attributed to partial melting of mantle‐derived spinelle lherzolite related to oceanic subduction in an island‐arc setting. In combination with the LA‐ICP‐MS zircon U‐Pb dating, it is inferred that subduction of the Junggar Ocean in eastern Junggar basin lasted to the Late Carboniferous. Consequently, the final closure of the Junggar Ocean occurred most likely after 310 Ma.  相似文献   

14.
K‐Ar ages of biotite and hornblende from undeformed granodiorite plutons and of slaty and phyllitic rocks, ranging from prehnite‐pumpellyite metagreywacke to greenschist fades, have been determined in an attempt to define the age of orogenesis in the eastern part of the Nambucca Slate Belt. The plutons have K‐Ar ages of 226–227 m.y. (biotite) and 228–231 m.y. (hornblende) that provide a younger age limit for deformation. The lower grade metamorphic rocks yield a range of ages including some comparable with the depositional age of the rocks as indicated by fossils. Rocks of pumpellyite‐actinolite and greenschist facies give a more coherent group of ages which suggest orogenesis at about 250–255 m.y. Specimens of these latter rocks that have been affected by a later structural episode than that during which slaty cleavage formed, yield slightly older ages, which may result from the inclusion of minor amounts of environmental excess 40Ar.

Support for the 250–255 m.y. age comes from previously determined radiometric ages from the western part of the Slate Belt, although the presence of granitic bodies perhaps as old as 289 m.y., some closely associated with high‐grade regional metamorphic rocks, may indicate the presence of additional earlier orogenic movements in this region.  相似文献   

15.
The geochronology and genesis of the Qingyang batholith were investigated using40Ar/39Ar and Rb-Sr isotopic techniques. The Qingyang is a composite batholith consisting of two major rock types granodiorite and granite in the Yangtze fold belt.40Ar/39Ar spectra for biotite and amphibole separates are internally concordant. The concordance of the minerals and spectra indicate no thermal disturbance of the ages, and rapid cooling of the rocks. The granodiorite has an age of 137.6±1.4 m.y. and the granite 122.7±1.2 m.y. Whole-rock Rb-Sr analysis yields ages consistent with the40Ar/39Ar dates. Thus, the Qingyang batholith was formed in two major stages in the late Jurassic and early Cretaceous. The batholith is not Triassic as was previously proposed. Special40Ar/39Ar analysis of two granodiorite samples has precisely documented a 1.0 m.y. apparent age difference between these samples. Several factors could account for this difference, but different emplacement times seem most convincible. The granodiorite and granite show little variation in initial87Sr/86Sr ratio (about 0.7085). The high initial Sr ratios suggest that the magmas were formed by anatexis of older crustal materials.  相似文献   

16.
The Mesoproterozoic Kunyang rift, which is located on the western margin of the Yangtze platform and the southern section of the Kangdian axis, is a rare massive Precambrian iron-copper polymetallic mineralization zone in China. The Mesoproterozoic Wulu (Wuding-Lufeng) basin in the middle of the rift is an elliptic basin controlled by a ring fracture system. Moreover, volcanic activities in the basin display zonation of an outer ring, a middle ring and an inner ring with carbonatitic volcanic rocks and sub-volcanic dykes discovered in the outer and middle rings. The Sm-Nd isochron ages have been determined for the outer-ring carbonatitic lavas (1685 Ma) and basaltic porphyrite of the radiating dyke swarm (1645 Ma) and the Rb-Sr isochron ages for the out-ring carbonatitic lavas (893 Ma) and the middle-ring dykes (1048 Ma). In combination of the U-Pb concordant ages of zircon (1743 Ma) in trachy-andesite of the corresponding period and stratum (1569 Ma) of the Etouchang Formation, as well as the Rb-Sr iso  相似文献   

17.
钻探勘查揭露表明,粤东北仁差盆地基底主要由古生代变质岩和文象花岗岩组成。为进一步查明其基底岩体形成的时代,提高对该地区地质演化的认识,对盆地内2个勘查钻孔内的文象花岗岩岩心取样,进行LA-ICP-MS锆石U-Pb同位素定年,测得谐和年龄为179±1Ma和186Ma。此结果表明,仁差盆地基底文象花岗岩的形成时代为早侏罗世晚期,即其为燕山期第一幕岩浆活动的产物。此年龄不仅加深了对仁差盆地形成演化的认识,也为粤东北地区早侏罗世时期缺乏岩浆岩活动的报道提供了新的年代学资料。  相似文献   

18.
The Mount Widderin shield volcano is located near Skipton, western Victoria, in the Western Plains subprovince of the monogenetic Pliocene–Holocene Newer Volcanic Province (NVP). Radiometric ages for lavas in the Hamilton–Skipton–Derrinallum area are few, owing to limited suitable outcrop for K–Ar or 40Ar/39Ar geochronology studies. Existing age constraints for flows in this area have been inferred from Regolith Landform Units (RLUs), complemented by a small number of K–Ar studies on ≥1 Ma flows. Although the RLU approach provides a valuable overview of relative eruption ages across the NVP, it is of limited use in eruption frequency studies. Additional radio-isotopic ages are required to refine age ranges for individual RLUs, and to validate previous assignment of individual flows to specific RLUs. We report a new, high-precision 40Ar/39Ar age of 389 ± 8 ka (2σ) for a Mount Widderin basalt sample. Based on this age and geomorphic observations, we propose that both the Widderin and Elephant lava flows be reassigned from the Eccles RLU to the Rouse RLU. We use the 389 ± 8 ka (2σ) age for Widderin, along with published K–Ar ages, to anchor a stratigraphic sequence of 15 individual flows in the Hamilton–Skipton–Derrinallum area, demonstrating that intermittent volcanism has occurred in this area from ≥3 Ma to ≤0.389 Ma. Within the limits of available data for the NVP, this time span of volcanic activity is second only to that of the Melbourne area. We consider the significance of the Widderin eruption age, in conjunction with published age constraints for maars and scoria cones of the Western Plains subprovince, building on previous studies that have focused solely on lava flow ages. The inclusion of the additional data weakens the argument for a decrease in volcanic activity after ca 0.9 Ma as implied by published ages for lava flows only. Additional detailed combined geochronology–geomorphology studies of lavas, scoria cones and maars in strategically selected small areas are advocated to better understand eruption frequency across the NVP.  相似文献   

19.
Diagenetically altered volcanic ash deposits (bentonites) found in Cretaceous terrestrial and marine foreland basin sediments have the potential to be used for chronostratigraphy and subsurface correlation across Alaska's North Slope. Detailed age and geochemical studies of these volcanogenic deposits may also shed light on the tectonic evolution of the Arctic. Though these bentonites have been previously studied, there are few published results for regional bentonite ages and geochemistry due to challenges of dating weathered volcanic ash. We analyzed mineral separates from cored bentonites recovered from wells in the National Petroleum Reserve Alaska. The analyses confirm that an intense period of volcanic ash deposition on Alaska's North Slope began by the late Albian and persisted throughout the Cenomanian, an interval of rapid progradation and aggradation in the Colville basin. These results also add to a sparse record of radioisotopic ages from the Nanushuk Formation. A bentonite preserved in delta plain sediments in the upper Nanushuk Formation dates to 102.6 ± 1.5 Ma (late Albian), while a bentonite near the base of the overlying Seabee Formation was deposited at 98.2 ± 0.8 Ma, in the early Cenomanian. The two ages bracket a major flooding surface at the base of the Seabee Formation near Umiat, Alaska, placing it near the Albian-Cenomanian boundary (100.5 Ma). Several hundred feet up-section, the non-marine Tuluvak Formation contains bentonites with 40Ar/39Ar ages of 96.7 ± 0.7 to 94.2 ± 0.9 Ma (Cenomanian), several million years older than previously published K–Ar ages and biostratigraphic constraints suggest.Major and trace element geochemistry of a sub-sample of six bentonites from petroleum exploration wells at Umiat show a range in composition from andesite to rhyolite, with a continental arc source. The bentonites become more felsic from the late Albian (∼102 Ma) to late Cenomanian (∼94 Ma). A likely source for the bentonites is the Okhotsk-Chukotka Volcanic Belt (OCVB) of eastern Siberia, a continental arc which became active in the Albian and experienced episodes of effusivity throughout the Late Cretaceous. Chronostratigraphically anomalous 40Ar/39Ar ages coincide with peaks of magmatic activity in the OCVB, suggesting that these anomalously old ages may be due to magmatic contribution of xenocrysts or recycling of detrital minerals from older volcanic events. An alternative explanation for the chronostratigraphically anomalous ages is mixing of bentonites with detrital sediment derived from unroofing and erosion of metamorphic rocks in the Brooks Range, Herald Arch, and Chukotka throughout the mid to Late Cretaceous.  相似文献   

20.
New 40Ar/39Ar age data are determined for Cenozoic basaltic rocks from the Thuringian Rhön and Heldburg Gangschar (area also referred to as Grabfeld), integral parts of the Central European Volcanic Province. Applying the incremental heating technique on groundmass and plagioclase separates provided data which considerably specify our knowledge on the eruption ages in these volcanic fields and narrow down the duration of volcanic activity compared to earlier studies. All data but one outlier range between 20 and 14 Ma, being thus similar to those of the neighbouring Vogelsberg volcanic complex. The spectrum of ages is clearly divided into two distinct subsets: the Rhön ages are between 20 and 18 Ma, those of the Heldburg Gangschar are between 16 and 14 Ma. Thus, the present data clearly indicate a striking regional and temporal division of the Thuringian Miocene volcanism. The composition of the volcanic rocks in the two volcanic fields is remarkably diverse, ranging from tholeiitic basalts over alkali basalts and basanites to nephelinites. However, radiometric ages do not correlate with geochemical or petrological characteristics of the volcanics within each volcanic field, indicating that the different magma types erupted broadly contemporaneously.The outlier in age (29 Ma) is from a volcanic dyke of the NE Rhön area close to the NW end of the Thuringian Forest. However, more data are required to approve the significance of this age value, in particular since the rock showed isotopic age disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号