首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Recognition of partial melting in metamorphic rocks is a difficult task, as leucosomes can have a variety of origins. By comparing the observed values of the solid-solid dihedral angles with the known equilibrium values, and close examination of the shapes and compositions of feldspar grains, it is possible to unequivocally identify melt textures. Textural relations in a series of meta-arkose samples from the contact aureole of the Ballachulish Igneous Complex in the Scottish Highlands demonstrate that, when former melt pockets are not highly deformed, their presence can be recognized petrographically, by detailed examination of textures on the grain scale. Identification of melt textures and their distribution in the Ballachulish aureole has led to appreciation of the fundamental role of magmatically derived H2O in producing the partial melting. It has also allowed calculation of the H2O flux involved, and recognition that fractures were the major fluid pathways during metamorphism.  相似文献   

2.
In the low‐pressure, high‐temperature metamorphic rocks of western Maine, USA, staurolite porphyroblasts grew at c. 400 Ma, very late during the regional orogenesis. These porphyroblasts, which preserve straight inclusion trails with small thin‐section‐scale variation in pitch, were subsequently involved in the strain and metamorphic aureole of the c. 370 Ma Mooselookmeguntic pluton. The aureole shows a progressive fabric intensity gradient from effectively zero emplacement‐related deformation at the outer edge of the aureole ~2900 m (map distance) from the pluton margin to the development of a pervasive emplacement‐related foliation adjacent to the pluton. The development of this pervasive foliation spanned all stages of crenulation cleavage development, which are preserved at different distances from the pluton. The spread of inclusion‐trail pitches in the staurolite porphyroblasts, as measured in two‐dimensional (2‐D) thin sections, increases nonlinearly from ~16° to 75° with increasing strain in the aureole. These data provide clear evidence for rotation of the staurolite porphyroblasts relative to one another and to the developing crenulation cleavage. The data spread is qualitatively modelled for both pure and simple shear, and both solutions match the data reasonably well. The spread of inclusion‐trail orientations (40–75°) in the moderately to highly strained rocks is similar to the spread reported in several previous studies. We consider it likely that the sample‐scale spread in these previous studies is also the result of porphyroblast rotation relative to one another. However, the average inclusion‐trail orientation for a single sample may, in at least some instances, reflect the original orientation of the overgrown foliation.  相似文献   

3.
Abstract Biotite and cordierite occur in a 1-km wide zone of pelitic hornfelses around the McGerrigle pluton. These phases display systematic changes in X Fe that can be attributed to continuous reactions involving chlorite or andalusite in the system KFMASH. Through much of the zone biotite and cordierite were products of the 'breakdown'of chlorite. Close to the pluton this continuous reaction was terminated by a discontinuous reaction that introduced andalusite. Pelites which interdigitate with apophyses of the intrusive at the pluton margin contain assemblages that record a continuous reaction between biotite, cordierite, andalusite, muscovite, and quartz or, alternatively, the discontinuous breakdown of muscovite and quartz to K-feldspar and andalusite.
The mole fraction of Fe in biotite and cordierite increased significantly with the progress of the first continuous reaction and apparently decreased during the second continuous reaction. The K D of Fe-Mg between the minerals decreased and apparently increased, respectively, during the two reactions.
Biotite-cordierite-chlorite assemblages are interpreted to have been stable at temperatures between 525° C and 615° C and biotite-cordierite-andalusite assemblages stable at temperatures between 615° C and 635° C. The confining pressure was estimated to have been < 2 kbar.
The results of this study suggest that the K D of Fe-Mg between biotite and cordierite is a function of temperature, the Fe-Mg exchange characteristics of the controlling continuous reaction and non-ideal mixing of Fe and Mg.  相似文献   

4.
《International Geology Review》2012,54(11):1229-1240
Intrusion-bordering migmatites comprise a substantial, high-grade metamorphic part of the Alvand aureole near Hamadan, western Iran. Abundant Al-rich metasedimentary rocks and various granites occur in this region. Migmatites consist of Bt?+?Sill?+?Grt?+?Crd?+?Sp ± Opx melanosomes and Grt?+?Pl?+?Kfs?+?Qtz leucosomes. These assemblages reflect upper pyroxene hornfels to lower sanidinite facies physical conditions. The appearance of orthopyroxene in these rocks marks the pressure–temperature transition from the pyroxene hornfels to the sanidinite facies. Field relations, mineral parageneses, and pressure–temperature estimates suggest that intrusion of granitic magma and concomitant partial melting of metasedimentary wallrock units were the main processes involved in the migmatization. Peak metamorphism took place at 650–750°C and ~2–4 kbar; such high-temperature/low-pressure metamorphism was caused mainly by advective heat derived from the emplacement of plutons. Regional metamorphism, granitic magmatism, and contact metamorphism reflected arc construction and collision during subduction of a Neotethyan seaway and subsequent Late Cretaceous–early Tertiary oblique collision of Afro-Arabia (Gondwana) with the Iranian microcontinent.  相似文献   

5.
The grain‐scale spatial arrangement of melt in layer‐parallel leucosomes in two anatectic rocks from two different contact aureoles located in central Maine, USA, is documented and used to constrain the controls on grain‐scale melt localization. The spatial distribution of grain‐scale melt is inferred from microstructural criteria for recognition of mineral pseudomorphs after melt and mineral grains of the solid matrix that hosted the melt. In both rocks, feldspar mimics the grain‐scale distribution of melt, and quartz is the major constituent of the solid matrix. The feldspar pockets consist of individual feldspar grains or aggregates of feldspar grains that show cuspate outlines. They have low average width/length ratios (0.54 and 0.55, respectively), and are interstitial between more rounded and equant (width/length ratios 0.65 for both samples) quartz grains. In two dimensions, the feldspar pockets extend over distances equivalent to multiple quartz grain diameters, possibly forming a connected three‐dimensional intergranular network. Both samples show similar mesoscopic structural elements and in both samples the feldspar pockets have a shape‐preferred orientation. In one sample, feldspar inferred to replace melt is aligned subparallel to the shape‐preferred orientation of quartz, indicating that pre‐ or syn‐anatectic strain controlled the grain‐scale distribution of melt. In the other sample, the preferred orientation of feldspar inferred to replace melt is different from the orientations of all other mesoscopic or microscopic structures in the rock, indicating that differential stress controlled grain‐scale melt localization. This is probably facilitated by conditions of higher differential stress, which may have promoted microfracturing. Grain‐scale melt distribution and inferred melt localization controls give insight into possible grain‐scale deformation mechanisms in melt‐bearing rocks. Application of these results to the interpretation of deep crustal anatectic rocks suggests that grain‐scale melt distribution should be controlled primarily by pre‐ or syn‐anatectic deformation. Feedback relations between melt localization and deformation are to be expected, with important implications for deformation and tectonic evolution of melt‐bearing rocks.  相似文献   

6.
青藏高原西北缘的南羌塘地块(班公湖-怒江结合带西段北侧)中发育着规模巨大的白垩纪花岗岩带,红其拉甫岩体是该花岗岩带中典型岩体之一,主要由花岗闪长岩和少量闪长岩组成。结合锆石阴极发光(CL)图像和Th、U、REE元素特征,利用LA-ICP-MS锆石U-Pb定年,测得岩体年龄为107.2±0.9Ma,属于早白垩世晚期。地球化学特征显示,岩体偏中性,富Al、Ca和K,稀土元素含量低,轻重稀土分馏明显,中等或弱的负铕异常,富集大离子亲石元素(Rb、Th、K和LREE),亏损高场强元素(Nb、Ta、P、Ti和HREE),属于高钾钙碱性准铝质—弱过铝质I型花岗岩。在岩浆演化过程中,部分熔融与结晶分异作用均起重要作用,并发生了以斜长石、磷灰石和钛铁矿为主的分离结晶作用。岩体的CaO、CaO/Na2O值较高,Nb、Ta亏损、Mg#值较小、相对富钾以及Sr同位素等特征说明岩体源岩应来自下地壳角闪岩相的变玄武岩。根据岩体较低的Y、HREE含量和较高的Al2O3、Sr、Sr/Y比值,发育石英与碱性长石的交生结构,以及SiO2对Mg#和Al2O3图解,推测岩浆源区压力>1.5GPa(地壳厚度至少50km),通过对锆石饱和温度的计算和锆石结构、U-Pb同位素分析,得出岩体初始岩浆温度>788℃,这与高Sr低Yb型花岗岩(埃达克岩)的形成温压条件一致,残留相应为石榴子石+角闪石+金红石(无斜长石)。综合区域地质资料分析,该岩体应是与班公湖-怒江洋闭合有关的冈底斯地块与羌塘地块之间的碰撞造山,导致地壳加厚的产物,表明班公湖-怒江洋西部与中东部的闭合时限可能具有一致性。  相似文献   

7.
周丽云  王瑜 《地质通报》2012,31(04):541-548
在片麻岩地区识别后期侵位的岩浆的流动特征,识别岩浆流动形成的岩浆岩、变质作用形成的片麻岩、韧性变形条件下形成的糜棱岩三者的差异和进行野外、室内不同环境下的判别,是现代岩石学、构造地质学需要重新审视的问题。通过对华北北缘大光顶岩体的塑性流动特征、相关的后期叠加韧性变形特征和区域变质片麻岩特征的比较,结合国内外对于岩浆塑性变形(magmatic flow)与韧性变形(solid-state flow)的比较研究,分析了在强变质岩石中如何分析和识别出岩浆的流动,这些岩浆的流动并不是区域变质作用形成的,也不是高温环境下韧性变形作用形成的,而是形成于岩浆侵位后期的冷却结晶作用。对于如何识别和分析岩浆流动提出了野外和室内的标志。  相似文献   

8.
周丽云  王瑜 《地质通报》2012,31(4):541-548
在片麻岩地区识别后期侵位的岩浆的流动特征,识别岩浆流动形成的岩浆岩、变质作用形成的片麻岩、韧性变形条件下形成的糜棱岩三者的差异和进行野外、室内不同环境下的判别,是现代岩石学、构造地质学需要重新审视的问题。通过对华北北缘大光顶岩体的塑性流动特征、相关的后期叠加韧性变形特征和区域变质片麻岩特征的比较,结合国内外对于岩浆塑性变形(magmatic flow)与韧性变形(solid-state flow)的比较研究,分析了在强变质岩石中如何分析和识别出岩浆的流动,这些岩浆的流动并不是区域变质作用形成的,也不是高温环境下韧性变形作用形成的,而是形成于岩浆侵位后期的冷却结晶作用。对于如何识别和分析岩浆流动提出了野外和室内的标志。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号