共查询到20条相似文献,搜索用时 15 毫秒
1.
Basalt at Sassafras was erupted in the Middle Eocene. The K‐Ar ages average 45.3 ± 4.9 Ma on whole rock and 48.4 ± 1.9 Ma on plagioclase. The basalt is not limited to a plateau capping, but extends 150 m down into adjacent valleys. Comparison with nearby Eocene basalts shows that there was in excess of 250 m of local relief in the central Shoalhaven valley by the Early Tertiary. The basalts were extruded at high elevation, and denudation of the coastal margin of the upland was already well advanced. Post‐basaltic denudation has been very slow, and the Early Tertiary landscape is well preserved. 相似文献
2.
The Proterozoic Soldiers Cap Group, a product of two major magmatic rift phases separated by clastic sediment deposition, hosts mineralised (e.g. Pegmont Broken Hill‐type deposit) and barren iron oxide‐rich units at three main stratigraphic levels. Evaluation of detailed geological and geochemical features was carried out for one lens of an apatite‐garnet‐rich, laterally extensive (1.9 km) example, the Weatherly Creek iron‐formation, and it was placed in the context of reconnaissance studies of other similar units in the area. Chemical similarities with iron‐formations associated with Broken Hill‐type Pb–Zn deposit iron‐formations are demonstrated here. Concordant contact relationships, mineralogy, geochemical patterns and pre‐deformational alteration all indicate that the Soldiers Cap Group iron‐formations are mainly hydrothermal chemical sediments. Chondrite normalised REE patterns display positive Eu and negative Ce anomalisms, are consistent with components of both high‐temperature, reduced, hydrothermal fluid (≥250°C) and cool oxidised seawater. Major element data suggest a largely mafic provenance for montmorillonitic clays and other detritus during chemical sedimentation, consistent with westward erosion of Cover Sequence 2 volcanic rocks, rather than local mafic sources. Ni enrichment is most consistent with hydrogenous uptake by Mn‐oxides or carbonates. Temperatures inferred from REE data indicate that although they are not strongly enriched, base metals such as Pb and Zn are likely to have been transported and deposited prior to or following iron‐formation deposition. Most chemical sedimentation pre‐dated emplacement of the major mafic igneous sill complexes present in the upper part of the basin. Heating of deep basinal brines in a regional‐scale aquifer by deep‐seated mafic magma chambers is inferred to have driven development of hydrothermal fluids. Three major episodes of extension exhausted this aquifer, but were succeeded by a final climactic extensional phase, which produced widespread voluminous mafic volcanism. The lateral extent of the iron‐formations requires a depositional setting such as a sea‐floor metalliferous sediment blanket or series of brine pools, with iron‐formation deposition likely confined to much smaller fault‐fed areas surrounded by Fe–Mn–P–anomalous sediments. These relationships indicate that in such settings, major sulfide deposits and their associated chemical sediment marker horizons need not overlie major igneous sequences. Rather, the timing of expulsion of hydrothermal fluid reflects the interplay between deep‐seated heating, extension and magmatism. 相似文献
3.
P. Wellman 《Australian Journal of Earth Sciences》2013,60(4):471-474
Age determinations have been made on three occurrences of Fitzroy Lamproite using the potassium‐argon isotopic dating method. Within each body, well‐crystallised minerals gave consistent ages. It is inferred from these results that the three Fitzroy Lamproite bodies were emplaced 17.0 ± 0.2, 19.5 ± 0.6, and 20.8 ± 2.0 m.y. ago, in the Early Miocene. 相似文献
4.
40Ar‐39Ar age spectra on minerals from granitic, metamorphic and hydrothermal rocks confirm that the Early Proterozoic Tennant Creek Block was affected by two thermal events during its evolution. Although extensive alteration of biotite and feldspar within the granites precludes the direct determination of their cooling history, 40Ar‐39Ar analyses for hydrothermal muscovite from several nearby gold‐copper deposits indicate that regional cooling to below ~ 300°C was not prolonged. Flat, uniform muscovite age spectra were obtained from gold deposits east of the Tennant Creek town site and indicate a minimum age of 1825–1830 Ma for their formation. These ages are within error of those for the felsic volcanism of the Flynn Subgroup, and a genetic relationship between the two may exist. Samples from gold deposits elsewhere in the area indicate disturbance of the K‐Ar isotope system. The second thermal event to affect the region occurred at around 1700 Ma, and is confirmed by the 40Ar‐39Ar muscovite ages for the ‘Warrego’ granite (1677 ± 4 Ma) and for the metamorphism of the Wundirgi Formation (1696 ± 4 Ma). 相似文献
5.
B. P. Thomson 《Australian Journal of Earth Sciences》2013,60(1):203-228
The stratigraphical problem of defining the lower boundary of the Adelaide System is discussed in relation to the geology of several critical areas in the Adelaide Geosyncline and adjacent shelf‐platform. The Precambrian stratigraphical succession and geological history is outlined with the aid of Rb/Sr age‐determinations made by Dr W. Compston of the Australian National University. It is concluded that the lower boundary of the Adelaide System is related to the collapse of older basement positive areas on which a regional erosional surface had developed. This surface is defined by the Callanna Beds, the oldest deposits of Willouran age. Willouran sedimentation began some time between 1,340 m.y. and 1,490 m.y. ago. Erosion of the basement rocks probably occupied a major early part of this time interval. 相似文献
6.
B. E. Bradshaw J. F. Lindsay A. A. Krassay A. T. Wells 《Australian Journal of Earth Sciences》2013,60(3):599-623
Sedimentary rocks of the Palaeoproterozoic Calvert and Isa Superbasins are exposed across a large area of northern Australia. Despite the extent of the exposures there is little to indicate the nature of the basin margins as most outcrop boundaries are structurally or erosionally defined, or the margins, where preserved, are concealed beneath younger basins. The Murphy Inlier, which forms the boundary between the Mt Isa and McArthur Basins, is unique in that on its southern flanks a basin‐margin succession is well‐preserved as the Fickling Group. A detailed sequence‐stratigraphic analysis of outcrop sections and well logs, supplemented by seismic reflection profiles and SHRIMP U–Pb zircon ages, shows that all seven supersequences of the Isa Superbasin and one supersequence from the older Calvert Superbasin are represented in the Fickling Group. Through this high‐resolution sequence‐stratigraphic framework, it is possible to accurately correlate chronostratigraphically equivalent strata from the McNamara Group on the central Lawn Hill Platform to the Fickling Group on the southern Murphy Inlier. Each supersequence thins substantially from the McNamara Group (~11 km thick) to the Fickling Group (<1 km thick). The combined effects of truncation and onlap of sequences over the Murphy Inlier basement high are responsible for the thinning. Major time breaks of up to 25 million years occur between supersequences in the Fickling Group. Erosional hiatuses are often manifested at the base of supersequences as conglomerate beds composed of silicified detritus from older strata. Sequences in the Fickling Group were generally deposited in a proximal basin‐margin setting, while sequences in the McNamara Group were deposited in distal basin depocentres. The proximal depositional setting of Fickling Group sequences reduces the number of thick carbonaceous shale and siltstone intervals, which often host Zn–Pb–Ag and Cu deposits in the McNamara Group. Many host sequences from the McNamara Group are also absent in the Fickling Group due to truncation and onlap pinchout. Consequently, the economic potential of Palaeoproterozoic strata on the southern Murphy Inlier is less than equivalent strata from the central Lawn Hill Platform. Despite this, potential does exist for future discoveries of economic mineral deposits in the Mt Les Siltstone and Walford Dolomite units of the Fickling Group. 相似文献
7.
E. A. Belousova S. Walters W. L. Griffin S. Y. O'Reilly 《Australian Journal of Earth Sciences》2013,60(4):603-619
The concentrations of trace elements in apatite from granitoid rocks of the Mt Isa Inlier have been investigated using the laser‐ablation inductively coupled plasma‐mass spectrometry (ICP‐MS) microprobe. The results indicate that the distribution of trace elements (especially rare‐earth elements (REE), Sr, Y, Mn and Th) in apatite strongly reflects the chemical characteristics of the parental rock. The variations in the trace‐element concentrations of apatite are correlated with parameters such as the SiO2 content, oxidation state of iron, total alkalis and the aluminium saturation index (ASI). The relative enrichment of Y, HREE and Mn and the relative depletion of Sr in the apatites studied reflect the degree of fractionation of the host granite. Apatites from strongly oxidised plutons tend to have higher concentrations of LREE relative to MREE. Manganese concentrations are higher in apatite from reduced granitoids because Mn2+substitutes directly for Ca2+. The La/Ce ratio of apatite is well‐correlated with the whole‐rock K2O and Na2O contents, as well as with the oxidation state and ASI. Because apatite trace‐element composition reflects the chemistry of the whole rock, it can be a useful indicator mineral for the recognition of mineralised granite suites, where particular mineralisation styles are associated with granitoids that have specific geochemical fingerprints. 相似文献
8.
Investigations described from three Victorian damsites indicate that weathering of Ordovician bedrock is increased where it is overlain by basalt, even though the basalt is little weathered. Sub‐basaltic weathering may account for the fact that weathered rock beneath a Jurassic lava flow gives a weathering remagnetization age of Mid‐Cainozoic, consistent with palaeomagnetically determined ages of lateritization from elsewhere in Australia. 相似文献
9.
M. M. Mitchell B. P. Kohn P. B. O'Sullivan M. J. Hartley D. A. Foster 《Australian Journal of Earth Sciences》2013,60(3):551-563
Apatite fission track results are reported for 26 outcrop samples from the Mt Painter Inlier, Mt Babbage Inlier and adjacent Neoproterozoic rocks of the northwestern Curnamona Craton of South Australia. Forward modelling of the data indicates that the province experienced variable regional cooling from temperatures >110°C during the Late Palaeozoic (Late Carboniferous to Early Permian). The timing of this cooling is similar to that previously reported from elsewhere in the Adelaide Fold Belt and the Curnamona Craton, suggesting that the entire region underwent extensive Late Palaeozoic cooling most likely related to the waning stages of the Alice Springs or Kanimblan Orogenies. Results from the Paralana Fault Zone indicate that the eastern margin of the Mt Painter Inlier experienced a second episode of cooling (~40–60°C) during the Paleocene to Eocene. The entire region also experienced significant cooling (less than ~40°C) during the Late Cretaceous to Palaeogene in response to unroofing and/or a decrease in geothermal gradient. Regional cooling/erosion during this time is supported by: geomorphological and geophysical evidence indicating Tertiary exhumation of at least 1 km; Eocene sedimentation initiated in basins adjacent to the Flinders and Mt Lofty Ranges sections of the Adelaide Fold Belt; and Late Cretaceous ‐ Early Tertiary cooling previously reported from apatite fission track studies in the Willyama Inliers and the southern Adelaide Fold Belt. Late Cretaceous to Palaeogene cooling is probably related to a change in stress field propagated throughout the Australian Plate, and driven by the initiation of sea‐floor spreading in the Tasman Sea in the Late Cretaceous and the Eocene global plate reorganisation. 相似文献
10.
A precise baddeleyite U‐Pb age of 2418 ± 3 Ma is reported for the westerly extension of the Binneringie Dyke in the south‐western Yilgarn Craton of Western Australia. The Binneringie Dyke is a member of the large and extensive Widgiemooltha dyke swarm that trends east‐west across the craton. This age is similar to ages of major dyke swarms In other Archaean Cratons and supports the hypothesis that dykes of the Widgiemooltha swarm are part of a worldwide Palaeoproterozoic mafic magmatic event at ca 2420 Ma. 相似文献
11.
C. L. Fergusson 《Australian Journal of Earth Sciences》2013,60(4):475-490
Palaeolatitude data obtained from palaeomagnetic studies of Australian formations are described and compared with the palaeoclimatic zones inferred from geological observations. The two techniques produce results which agree for most of the Palaeozoic. Only for the Early Cambrian (and late Proterozoic) and Mesozoic do the climatic indicators appear to contradict the palaeolatitude evidence. It is pointed out that each of these geological intervals follows immediately a period of widespread glaciation. 相似文献
12.
Further evidence for ∼8 kbar amphibolite facies metamorphism in the Marymia Inlier,Western Australia
Pressure estimates for amphibolite-facies metamorphism at Plutonic Gold Mine (Plutonic), Marymia Inlier, Western Australia, were recently revised significantly upwards from ~4 ± 2 kbar/550–600°C to ≥8 kbar/~600°C, based on the calculated stability fields for mineral assemblages in garnet-free mafic rocks. These conditions are anomalous in the context of the Yilgarn Craton. Here, we present new mineral equilibria calculations for rare garnet-bearing rock types from Plutonic that confirm those higher pressure estimates, and provide confidence that the determinations of metamorphic conditions based only on results from metamorphosed mafic rocks are robust and reliable. Taken together, the new estimates (7.3–8.2 kbar/580–590°C) from the garnet-bearing rocks, and the existing results from the mafic rocks, provide evidence that, most probably during the late Archean, rocks now exposed along the northern margin of the Yilgarn Craton underwent substantial increases in pressure, which was likely followed by rapid exhumation. 相似文献
13.
N. C. N. Stephenson 《Australian Journal of Earth Sciences》2013,60(4):413-439
The Mt Manypeaks Adamellite is a composite, regionally concordant pluton at least 22 km long and 3 km wide, associated with Precambrian amphibolite facies gneisses of the Albany‐Esperance Block, and situated about 35 km east of Albany, Western Australia. The pluton is surrounded by a granitised aureole, and shows structural and mineralogical harmony with the country rocks. Contacts vary from grada‐tional to sharp. Hence field relations are consistent with syn‐ or late‐kinematic emplacement in the catazone. The normative composition of the pluton corresponds with the thermal trough in the system An‐Ab‐Or‐Q‐H2O at 7 kb PH2O, suggesting an origin involving crystal‐melt equilibria. The pluton is believed to have formed almost in situ by partial anatexis of the country rocks at 700–750°C and a depth of about 25 km during the orogenic episode responsible for regional metamorphism and deformation. 相似文献
14.
Oana Ionuş 《Central European Journal of Geosciences》2011,3(1):39-43
The present paper, with reference to the Motru catchment area, contributes to the hydrochemical studies at an international level and to the completion of the characteristics regarding the chemical flow in Romania. In this regard, it emphasizes once again the dependence between the content of dissolved salts (fixed residue — mg/l) on the one hand and the lithological conditions, human activity, flow and the surface of the catchments on the other hand. The calculation and the analysis of the chemical flow for the Motru catchment area (located in the south-west of Romania) was performed on the basis of two parameters: the average flow of dissolved chemical substances (mg/s) and specific average chemical flow (t/kmp year) recorded at the monitoring stations on the Motru River and its tributaries during the period 2005–2009. The values obtained (for example: 2.63 mg/s and 47.7 t/km2 year, at the Fata Motrului station, on the Motru River, in 2009) confirm the importance of the areal factors of natural background in the analysis of chemical flow as a morpho-dynamic process and implicitly for the chemical quality of surface waters. 相似文献
15.
Geochemical and Sm‐Nd isotopic data, and 19 ion‐microprobe U‐Pb zircon dates are reported for gneiss and granite from the eastern part of the Albany‐Fraser Orogen. The orogen is dominated by granitic rocks derived from sources containing both Late Archaean and mantle‐derived components. Four major plutonic episodes have been identified at ca 2630 Ma, 1700–1600 Ma, ca 1300 Ma and ca 1160 Ma. Orthogneiss, largely derived from ca 2630 Ma and 1700–1600 Ma granitic precursors, forms a belt along the southeastern margin of the Yilgarn Craton. These rocks, together with gabbro of the Fraser Complex, were intruded by granitic magmas and metamorphosed in the granulite facies at ca 1300 Ma. They were then rapidly uplifted and transported westward along low‐angle thrust faults over the southeastern margin of the Yilgarn Craton. Between ca 1190 and 1130 Ma, granitic magmas were intruded throughout the eastern part of the orogen. These new data are integrated into a review of the geological evolution of the Albany‐Fraser Orogen and adjacent margin of eastern Antarctica, and possibly related rocks in the Musgrave Complex and Gawler Craton. 相似文献
16.
U‐series ages from thermal ionisation mass spectrometry are reported here for the raised coral reefs of Futuna Island, which lies adjacent to the eastern margin of the backarc Futuna Trough in south Vanuatu, southwest Pacific. U‐series ages from coral from the lowest raised reef indicate that its upper part is most likely to be ca 210 ka, whereas the most elevated raised reef has a likely age of ca 520 ka (range 600–440 ka). The inferred Pliocene‐Quaternary history for Futuna Island and the adjacent Futuna Trough is: (i) formation of the Pliocene—Early Quaternary basaltic‐andesite cone in a southeast part of the Vanuatu Island Arc; (ii) inception of the Futuna Trough (adjacent to the west margin of Futuna Island) since 1.8 Ma; (iii) subsequent uplift of the volcanic cone above sea‐level caused ~500 m of its upper part to be removed by marine erosion; (iv) the island then subsided and at least 160 m of limestone was deposited on the truncated cone; and (v) during the period 520 ka to ca 210 ka seven fringing reefs formed at the margin of the cone as the island was uplifted. Since ca 210 ka Futuna further subsided and, as a result, the post ca 210 ka history of the island is obscure. 相似文献
17.
In southwest Victoria thin sequences of upper Cainozoic marine to non‐marine mainly calcareous sediments occur at Portland and in the Glenelg River valley near Dartmoor. At Portland the Whalers Bluff Formation is shown to lie wholly within foraminiferal zone N19 (early Pliocene) which has age limits of about 3.0 to 4.8 m.y. Basalts overlying this formation give consistent K‐Ar ages averaging 2.51 ± 0.04 m.y. In the Glenelg River valley, subaerial basalts yielding K‐Ar ages of 2.24 to 2.46 m.y. are overlain by shallow neritic sands and littoral calcarenites which belong to the type Werrikooian of F. A. Singleton, here included in the Werrikoo Limestone. Some distance above the base of the Werrikoo Limestone, Globorotalia truncatulinoides appears, the incoming of which defines the base of planktonic foraminiferal zone N22. The base of zone N22 closely approximates the beginning of the Pleistocene defined as the base of the Calabrian stage in Italy, and has an age of about 1.7 m.y. Thus the Werrikoo Limestone was deposited during late N21 and N22 time, straddling the Pliocene‐Pleistocene boundary and providing a reference standard for southeastern Australia as a whole. It is shown that the Whalers Bluff Formation and the Werrikoo Limestone are separated in both space and time, contrary to the conclusions of earlier workers. 相似文献
18.
A. A. Krassay B. E. Bradshaw J. Domagala M. J. Jackson 《Australian Journal of Earth Sciences》2013,60(3):533-562
The River Supersequence represents a 2nd‐order accommodation cycle of approximately 15 million years duration in the Isa Superbasin. The River Supersequence comprises eight 3rd‐order sequences that are well exposed on the central Lawn Hill Platform. They are intersected in drillholes and imaged by reflection seismic on the northern Lawn Hill Platform and crop out in the McArthur Basin of the Northern Territory. South of the Murphy Inlier the supersequence forms two south‐thickening depositional wedges on the Lawn Hill Platform. The northern wedge extends from the Murphy Inlier to the Elizabeth Creek Fault Zone and the southern wedge extends from Mt Caroline to the area south of Riversleigh Station. On the central Lawn Hill Platform the River Supersequence attains a maximum thickness of 3300 m. Facies are dominantly fine‐grained siliciclastics, but the lower part comprises a mixed carbonate‐siliciclastic succession. Interspersed within fine‐grained facies are sharp‐based sandstone and conglomeratic intervals interpreted as lowstand deposits. Such lowstand deposits represent a wide range of depositional systems and palaeoenvironments including fluvial channels, shallow‐marine shoreface settings, and deeper marine turbidites and sand‐rich submarine fans. Associated transgressive and highstand deposits comprise siltstone and shale deposited below storm wave‐base in relatively quiet, deep‐water settings similar to those found in a mid‐ to outer‐shelf setting. Seismic analysis shows significant fault offsets and thickness changes within the overall wedge geometry. Abrupt thickness changes across faults over small horizontal distances are documented at both the seismic‐ and outcrop‐scales. Synsedimentary fault movement, particularly along steeply north‐dipping, largely northeast‐trending normal faults, partitioned the depositional system into local sub‐basins. On the central Lawn Hill Platform, the nature of facies and their thickness change markedly within small fault blocks. Tilting and uplift of fault blocks affected accommodation cycles in these areas. Erosion and growth of fine‐grained parts of the section is localised within fault‐bounded depocentres. There are at least three stratigraphic levels within the River Supersequence associated with base‐metal mineralisation. Of the seven supersequences in the Isa Superbasin, the River Supersequence encompasses arguably the most dynamic period of basin partitioning, syndepositional faulting, facies change and associated Zn–Pb–Ag mineralisation. 相似文献
19.
Sphene is very common in rocks including albitized granite, dioritic porphyrite, calcsilicate rock and breccia from the eastern fold belt of Mount Isa Inlier, Cloncurry. Two stages of sphenes are present in these rocks. First-staged sphene is relatively fine, euhedral, some grains show round or patchy zoning; second-staged sphene is relatively large, anhedral to subhedral, some grains show patchy zoning;both possibly contain rutile, ilmenite and magnetite inclusions. All sphenes are of low-Al type. The second-staged sphene has lesser Fe apfu than the first-staged sphene. Light-color part of the sphene has bigger Fe apfu than the dark-color part, as observed on one individual grain of sphene with patchy zoning, the average Xro of the sphene with patchy zoning is greater than that of the sphene without patchy zoning. Because the sphenes are taken from different types of rocks, Si, Ti, and Al have variable relations with F OH apfu. Si and Ti are not correlated with OH F in all analyzed samples ; Fe is correlated with OH F in the sphene just from granite and dioritic porphyrite; Al is correlated with OH F in the sphene fromgranite and breccia and is not correlated with OH F in the sphene from the dioritic porphyrite and calcsilicate rocks. The first-staged sphenes were possibly formed in the processes of magmatism and metamorphism. The second-staged sphenes were formed as a result of the breakdown of hornblendes and biotites in the process of Na (Ca) -metasomatism. 相似文献
20.
The Olary Block comprises a set of Palaeoproterozoic to Mesoproterozoic basement inliers that were deformed together with the Neoproterozoic sedimentary cover of the Adelaide Geosyncline during the ca 500 Ma Cambro‐Ordovician Delamerian Orogeny. Balanced and restored structural sections across this region show shortening of less than 20%. These basement inliers represent the interface between a region of thick‐skinned deformation bordering the Curnamona Craton to the north and a region of thin‐skinned deformation to the south and west in the Nackara Arc. The basement inliers represent upthrust segments of the subsided basin margin with the sedimentary package thickening to the south and to the west. Earlier formed extensional faults provided the major strain guides during Delamerian shortening. An early phase of east‐west shortening is interpreted to be synchronous with dextral strike‐slip deformation along basement‐relay structures (e.g. Darling River lineament). During progressive shortening the tectonic transport direction rotated into a northwest to north direction, coeval with the onset of the main phase of thin‐skinned fold deformation in the adjacent Nackara Arc. 相似文献