首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
34S/32S ratios have been measured in a suite of samples from the stratabound, volcanogenic massive sulphide deposit at Woodlawn, N.S.W. 34S values for the sulphides vary as follows: in the ore horizon, pyrite +6.7 to +9.2%. (mean +8.1‰), sphalerite +5.2 to +8.6‰. (mean +6.9‰), chalcopyrite +6.4 to +7.0‰ (mean +6.7‰) and galena +2.8 to +5.5‰ (mean +4.4‰); in the vein mineralization, the host volcanics—pyrite +8.7 to +11.4%. (mean +9.8‰), sphalerite +7.8 to + 10.3‰ (mean +9.2‰), chalcopyrite; +8.8 to +10.1‰ (mean +9.2‰) and galena +6.9 to +7.2‰ (mean +7.1‰). Barite from the upper ore horizon levels has an isotopic composition of +30.0‰, consistent with its having originated from Silurian ocean sulphate. The general order of 34S enrichment in the sulphides is pyrite > chalcopyrite sphalerite > galena. Isotopic fractionations in the systems galena/sphalerite/pyrite and chalcopyrite/pyrite indicate an equilibration temperature of 275–300°C. This temperature is considered to represent that of sulphide deposition.  相似文献   

2.
The volcanogenic Woodlawn Cu‐Pb‐Zn sulphide mineralization occurs within a low‐grade metamorphosed sequence of Middle to Upper Silurian felsic volcanics and fine‐grained sedimentary rocks. Studies on a total of 234 rock samples from diamond drill holes have delineated zones of hydrothermally altered rocks extending more than ~500 m laterally from the main ore lens, at least ~100 m into the foot wall and up to ~200 m into the hanging wall. These altered rocks contain virtually no remnants of primary feldspars and ferromagnesian minerals, and they are variably chloritized, sericitized and silicified. Chlorite and disseminated sulphide minerals are most abundant in zone I, a restricted zone of intense alteration immediately around the main ore lens, whereas sericitic muscovite is most abundant in the relatively extensive zone II, further from the ore. Silicification is also a feature of volcanics well beyond the limits of observed phyllosilicate‐rich alteration zones. Chemical changes within the hydrothermally altered rocks include major enrichment of Fe, Mg, S, Si and H2O, more sporadic enrichment of Ag, Ba, Bi, Cd, Cu, Mn, Pb, Sn and Zn, and major depletion of Ca, Na and Sr. K is depleted in zone I and shows considerable variation, but no overall depletion or enrichment, in zone II.

Lithological, mineralogical and geochemical features around the Woodlawn orebody are basically similar to those associated with the younger, unmetamorphosed Kuroko deposits.  相似文献   

3.
An extensive complex zoned skarn is developed at the contact of a leucoadamellite intrusive at Doradilla, NW New South Wales. The skarn is a disequilibrium assemblage resulting from a progressive sequence of replacement of a carbonate precursor. Early grossular‐clinopyroxene rocks are replaced by andradite with 0.5–3.5 wt.% SnO2 clinopyroxene and quartz. Later alteration along fractures and bedding planes of the garnet‐clinopyroxene quartz assemblage has produced calcite‐malayaite (CaSn0.95Ti0.05SiO5) veins. The final replacement stage was the overprinting of the silicate phases by assemblages containing sulphides, cassiterite, magnetite, titanite, fluorite, biotite and chlorite. The tin content of garent increases with increasing andradite component suggesting replacement of Fe3+ by Sn4+. Associated clinopyroxenes contain 0.1% SnO2. The coexistence of titanite and its tin isomorph malayaite with extremely limited solid solution indicates late stage skarn temperatures of less than 400°C.  相似文献   

4.
The results of potassium‐argon measurements are reported. Three samples from the southern end of the New England bathylith confirm its Permian age (240–245 m.y.). Two samples of the “pre‐Permian” granites are not younger than Lower Permian (Hillgrove, 270 m.y.; Barrington Tops, 260 m.y.). A sample of the analcite basalt from Spring Mountain gave an Oligocene age (34 m.y.) by measurements on two separate minerals.  相似文献   

5.
Chemical compositions and geochronological data utilising the laser ablation ICP-MS technique are presented for zircon megacrysts found in alluvial gem corundum deposits associated with Upper Cretaceous–Cenozoic alkali basalts in the Inverell district-New England field, New South Wales, eastern Australia. Three localities, Kings Plains, Swan Brook and Mary Anne Gully, produce gem-quality transparent dark brown and yellow zircon megacrysts, mostly under 10 mm in size. Although brown zircon shows relative enrichment in Hf and REE, there are no differences in relative transition metal concentrations between the colours. Chemical homogeneity within a single crystal indicates stable crystallisation conditions. The 206Pb/238U age of zircon megacrysts from these three localities define older and younger groups of 216–174 Ma and 45–37.7 Ma, respectively. The ?Hf values of zircon megacrysts from Kings Plains show +7.51±0.34 in the older group and +10.72±0.31 in the younger group. Swan Brook zircons give +11.54±0.47 and +8.32±0.58, and Mary Anne Gully zircons are +13.67±0.63 and +8.50±0.48, respectively. These zircons from New England alluvial gem deposits have two main formational events around Upper TriassicLower Jurassic and Eocene episodes. Most originated from lithospheric mantle and all were brought-up by later host basaltic magmas.  相似文献   

6.
An early Ludlovian (early eβ1) to early Gedinnian (early eγ) age is assigned to the Cliftonwood Limestone—Elmside Formation strata of the Yass Basin, New South Wales. Several Australian sequences are correlated with the Yass Basin succession.  相似文献   

7.
Zircons from two igneous and two sedimentary units in the Bombala area of southeastern New South Wales have been examined by the sensitive high resolution ion microprobe (SHRIMP) to establish a timeframe in which to interpret these rocks. Previous studies have correlated these rocks with Late Devonian units of the south coast, solely upon the basis of stratigraphy and lithology as palaeontological evidence was absent. The two igneous units are the Hospital Porphyry and Paradise Porphyry occurring beneath the sedimentary units. Both give a Frasnian age that can be correlated with the Boyd Volcanic Complex. The sedimentary samples are from the basal and upper sections of the Rosemeath Formation, a fluvial ‘redbed’ consisting of conglomerate, coarse sandstone, and associated red siltstone and mudstone. Detrital zircons from the basal conglomeratic section at Kilbrechin indicate a dominant provenance from local Silurian granites and volcanics and a maximum depositional age that can be correlated with the Frasnian‐Famennian Merrimbula Group. However, detrital zircons from the upper coarse sandstone section of the Rosemeath Formation at Endeavour Lookout challenge the positive correlation trend with a lack of Silurian‐age grains and a presence of grains ranging from Late Devonian to Early Carboniferous in age. These results imply either that the south coast correlation is not valid for the upper sequences, or that the Merrimbula Group sequences also extend upward into the Carboniferous. The general coarseness of the Rosemeath Formation also suggests a relatively local provenance. No Early Carboniferous source is known in the immediate vicinity suggesting that Early Carboniferous igneous activity in this region of the Lachlan Orogen may have been more extensive than is currently realised.  相似文献   

8.
During the Cainozoic there was widespread volcanism, mainly basaltic, in eastern New South Wales. Numerous new K‐Ar ages, together with previously published results, provide information on the age of virtually all the main volcanic provinces, and indicate that the volcanism started about 70 m.y. ago in the Late Cretaceous, and was continuous from about 60 m.y. ago (Palaeocene) until about 10 m.y. ago (middle Miocene). There has been no volcanic activity since 10 m.y. ago.

The ages of uplift of the Eastern Highlands are estimated from the relationship of the dated basaltic flows to the topography. A major uplift is deduced some time between the mid‐Cretaceous and late Oligocene, followed by a quiescent period. A further uplift started some time after the middle Miocene, and it continues to the present day. The highland was uplifted differentially both along and transverse to the axis.  相似文献   

9.
The southern part of the Sydney Basin of New South Wales is comprised mainly of Permian and Triassic marine to freshwater clastic sedimentary rocks. Within this sequence there are six latite extrusive units, several medium‐sized monzonite intrusions and a large number of small to medium‐sized basic to intermediate intrusions. Thin basaltic flows were extruded onto the Tertiary topographic surface. All of these rocks are relatively undeformed.

Radiometric (K‐Ar) dating has previously been carried out on Mesozoic and Tertiary intrusions and flows of the southwestern portion of the Sydney Basin. However, relatively few Permian, and no post‐Permian, K‐Ar dates have been published for the southeastern portion of the basin. The present investigation provides nine K‐Ar dates from the latter area.

Four extrusive and intrusive units have been confirmed as Permian in age (238 ± 6; 241 ± 4; 245 ± 6; and 251 ± 5 m.y.). Five post‐Permian (on stratigraphic criteria) intrusions yielded Tertiary ages (26.2 ± 3.0; 47.9 ± 2.5; 49.0 ± 4.0; 49.4 ± 2.0; and 58.8 ± 3.5 m.y.). The Permian ages agree with previously published K‐Ar data from the southeastern Sydney Basin, and the Tertiary ages complement and extend the data from the southwestern portion of the basin. However, no Mesozoic K‐Ar dates were obtained from the southeastern Sydney Basin. The Tertiary intrusions may have been emplaced as a result of rifting between Australia and New Zealand, or between Australia and Antarctica, or both.  相似文献   

10.
The characterization of river–aquifer connectivity in karst environments is difficult due to the presence of conduits and caves. This work demonstrates how geophysical imaging combined with hydrogeological data can improve the conceptualization of surface-water and groundwater interactions in karst terrains. The objective of this study is to understand the association between the Bell River and karst-alluvial aquifer at Wellington, Australia. River and groundwater levels were continuously monitored, and electrical resistivity imaging and water quality surveys conducted. Two-dimensional resistivity imaging mapped the transition between the alluvium and karst. This is important for highlighting the proximity of the saturated alluvial sediments to the water-filled caves and conduits. In the unsaturated zone the resistivity imaging differentiated between air- and sediment-filled karst features, and in the saturated zone it mapped the location of possible water- and sediment-filled caves. Groundwater levels are dynamic and respond quickly to changes in the river stage, implying that there is a strong hydraulic connection, and that the river is losing and recharging the adjacent aquifer. Groundwater extractions (1,370 ML, megalitres, annually) from the alluvial aquifer can cause the groundwater level to fall by as much as 1.5 m in a year. However, when the Bell River flows after significant rainfall in the upper catchment, river-leakage rapidly recharges the alluvial and karst aquifers. This work demonstrates that in complex hydrogeological settings, the combined use of geophysical imaging, hydrograph analysis and geochemical measurements provide insights on the local karst hydrology and groundwater processes, which will enable better water-resource and karst management.  相似文献   

11.
The recent discovery of dickite, intimately associated with ordered and disordered kaolinite, in quartzose sandstones and conglomerates of the Illawarra Coal Measures is of interest since in terms of the phase rule the co‐existence of two or more of these polytypes is evidence of either an unstable or metastable assemblage. A study has, therefore, been undertaken of the host rocks and accompanying strata in an attempt to gain insight into the mechanism of formation of the dickite and the reason for its development in preference to either of the other generally more abundant polytypes. From the results it would appear that although much still remains unresolved, the dickite is authigenic and precipitated from migrating groundwaters. Due probably to unusually low concentrations of silica in the groundwaters the rate of precipitation was inordinately slow and this apparently facilitated growth of relatively coarse crystals and development of the most stable phase.  相似文献   

12.
The stratigraphic succession of formations in the Myall district comprises in ascending order the Bunyah Beds, Wallanbah Formation, Kataway Mudstone, Boolambayte Formation (new names), Nerong Volcanics (E'ngel, 1962), Booti Booti Sandstone, Yagon Siltstone, Koolanock Sandstone, Muirs Creek Conglomerate (new names) and Alum Mountain Volcanics (Engel, 1962). The units range in age from possibly Devonian to possibly Permian, most being Carboniferous. The Mograni (new name), Tugrabakh (Voisey, 1940) and Mayers Flat Limestones (new name) are members of the Wallanbah Formation. The Violet Hill Volcanics (new name) is a member of the Yagon Siltstone. The Burdekins Gap Basalt Member and Lakes Road Rhyolite are members of the Alum Mountain Volcanics.

Environments of deposition range from nonmarine (Nerong Volcanics, Alum Mountain Volcanics, Muirs Creek Conglomerate, upper part of Koolanock Sandstone) through shallow marine (Booti Booti Sandstone, lower part of Koolanock Sandstone, calcareous parts of Wallanbah Formation) to deep marine (most other units). Facies relationships indicate a progressive deepening of the sedimentary environment to the east throughout most of the Carboniferous sequence. The Tournaisian sequence is readily correlated with a similar sequence in the Rocky Creek and Belvue Synclines. Higher units are correlated with sequences at Gloucester (Campbell & McKelvey, 1972) and Booral (Campbell, 1962).  相似文献   

13.
In the Buckambool area, Cobar, New South Wales, the boundary between dominantly shallow‐water, shelf sediments of the Winduck Group and fluviatile sediments of the Mulga Downs Group has been established as a small hiatus not resolvable by available fossil age data. Although dips are parallel over much of the area, disconformable and locally angular unconformable relations are present. This hiatus, late‐Early to Middle Devonian in age, marks a period of uplift, localised folding and erosion. These reflect movement of basement blocks along major fractures that are now revealed as lineaments.

Terminal deformation in the area, reflected by folding and re‐activation of lineaments, postdated deposition of the Mulga Downs Group, and is probably Carboniferous in age.  相似文献   

14.
The Jindabyne Thrust has been mapped south of Lake Eucumbene, along the eastern side of Lake Jindabyne and thence southwards to the gorge of the Snowy River in Byadbo Lands. It is marked by a crush zone and a west‐facing scarp. Structure contours on the Thrust where it enters the gorge of the Snowy River in the Byadbo region indicate an easterly dip of about 20°.

The north‐south erosional valley now occupied by Lake Jindabyne is controlled by the Thrust and the gorge below the Jindabyne Dam has been rejuvenated by recent movement.

The nature of the Jindabyne Thrust and other faults in the Jindabyne‐Berridale region can be deduced from their effects on the Silurian granitoid plutons. Where a pluton, circular or elliptical in plan and with vertical walls, is transected by a thrust, a semi‐elliptical or semi‐circular shape results; granitoid rock types cannot be matched across the fault. Wrench faults in the region either curve into or are transected by the thrusts, depending upon the geometrical relationships of both.

It is suggested that the north‐south dividing line between granitoids derived from igneous rocks (I‐types) to the east and granitoids derived from metasedimentary rocks (S‐types) to the west is a major tectonic feature of eastern Australia. The line coincides with a transition from a regime where wrench faulting predominates to one dominated by thrust faulting. These changes in both tectonics and granitoid lithology suggest that the I‐S line marks the eastern boundary of crystalline basement, possibly of Precambrian age.  相似文献   

15.
Two lithofacies maps of the Lachlan Fold Belt, one for the Ordovician and one for the Silurian, are illustrated. Both maps indicate shorelines in western New South Wales, Victoria and Tasmania.

The Ordovicoan map suggests open‐sea conditions eastwards from the shoreline with one major and two minor andesitic volcanoes (or volcanic centres). The Silurian map suggests segmentation of the Lachlan Fold Belt into the Melbourne Basin, Omeo Land, Newell Basin, and Budawang Land. The Newell Basin displays a nearshore (Louth‐Mitta Mitta) coarse clastics facies and an offshore (Wellington‐Cooma) platform carbonate facies. Acid volcanism was widespread over the Newell Basin in Silurian time, but did not occur in the Melbourne Basin.

The Louth‐Mitta Mitta and Wellington‐Cooma facies boundary coincides with the position of the Coolac‐Honeybugle Serpentine Belt and the outcrop area of the Girilambone Beds, suggesting that these features were already in some way prominent during the Silurian Period: the Serpentine Belt may have been a fault, and the Girilambone Beds may have been land.

The origin of base‐metal deposits in the Silurian rocks is thought to be somehow related to the heat generated in the subsurface during Silurian time as is indicated by the volcanism and granite intrusion; and also to the fact that the deposits occur in a transgressive sequence which contains the first phase of acid volcanism in the known geological history of the Lachlan Fold Belt.  相似文献   

16.
The 3.09 to 2.97 Ga Murchison Greenstone Belt is an important metallotect in the northern Kaapvaal Craton (South Africa), hosting several precious and base metal deposits. Central to the metallotect is the Antimony Line, striking ENE for over 35?km, which hosts a series of structurally controlled Sb–Au deposits. To the north of the Antimony Line, hosted within felsic volcanic rocks, is the Copper–Zinc Line where a series of small, ca. 2.97 Ga Cu–Zn volcanogenic massive sulfide (VMS)-type deposits occur. New data are provided for the Malati Pump gold mine, located at the eastern end of the Antimony Line. Crystallizations of a granodiorite in the Malati Pump Mine and of the Baderoukwe granodiorite are dated at 2,964?±?7 and 2,970?±?7?Ma, respectively (zircon U–Pb), while pyrite associated with gold mineralization yielded a Pb–Pb age of 2,967?±?48?Ma. Therefore, granodiorite emplacement, sulfide mineral deposition and gold mineralization all happened at ca. 2.97?Ga. It is, thus, suggested that the major styles of orogenic Au–Sb and the Cu–Zn VMS mineralization in the Murchison Greenstone Belt are contemporaneous and that the formation of meso- to epithermal Au–Sb mineralization at fairly shallow levels was accompanied by submarine extrusion of felsic volcanic rocks to form associated Cu–Zn VMS mineralization.  相似文献   

17.

Strontianite (SrCO3), witherite (BaCO3) and alstonite (CaBa[CO3]2) were among the range of epigenetic coal cleat/fracture carbonates identified within the Wittingham Coal Measures, Jerrys Plains Subgroup in the Hunter Valley. Three stages of diagenetic cement development, all related to basin evolution, are postulated. Material for the development of the various carbonates was derived from: basinal pore fluids, surrounding rock and organic matrix as a result of diagenetic exchange, active mass transport or devolatilization of basement rocks during metamorphism, including plutonic intrusion.  相似文献   

18.
Recognition of the degraded state of rivers across the world has prompted the development of management programmes which promote river repair through rehabilitation practices. Efforts to date have emphasised concerns for biophysical attributes of rivers to the relative exclusion of socio-cultural values. Ultimately, the process of river repair must move beyond this technical focus and incorporate collective societal engagement, participation and ownership. However, the inherent complexities of informing and managing this process limit the prospects that engagement will be translated into an effective and sustained practice. This qualitative case study research analyses the community’s knowledge, views and opinions regarding geomorphic river change and river works projects undertaken in the Upper Hunter catchment, New South Wales, Australia. The responses and views expressed by the participants highlight how ineffective communication and limited understanding of past river work practices has inhibited the connection and ownership between the people and their river. Essentially, historical river management was viewed as a technical process that failed to incorporate social values and aspirations, and which gave inadequate consideration to local knowledge and experience. Participants identified the need to address both diversity and commonality in vision-building and the need for greater confidence and transparency in river science and management. In light of these responses, this paper argues for the adoption of a geo-social, transdisciplinary approach to river rehabilitation.  相似文献   

19.
The Mount Black Pb‐Zn deposit is a quartz‐galena‐sphalerite replacement body in the Silurian Cooleman Limestone. Fluid inclusion homogenisation temperatures range from 120° to 170°C for paragenetically early sphalerite, to 210° to 315°C for late quartz, and 245° to 320°C for calcite from contiguous recrystallised limestone. Fluid salinities increased with rising temperature, during deposition of the minerals, and the fluid composition changed from NaCl‐rich to possibly CaCl2‐NaCl (‐?MgCl2)‐rich brines.

δ34S values of sphalerite and galena range from —8.1 to —2.7 per mil, and —13,5 to —4.4 per mil respectively. Although a magmatic source for sulphur is not excluded, it is suggested that most probably the sulphur was derived by biogenic reduction of sea‐water sulphate during diagenesis. Carbon and oxygen isotope data for the Cooleman Limestone range from compositions typical of Silurian marine carbonate in samples distant from the deposit, to fluctuating, but 12C‐ and 16O‐enriched in recrystallised material adjacent to the quartz‐sulphide rocks. 12C‐enrichment probably reflects organic carbon oxidation during karst formation, continuing later during limestone recrystallisation and accompanied by 16O‐enrichment during the action of saline formation waters.

The process of formation of the Mount Black deposit may have been analogous to that of Mississippi Valley‐type deposits, but modified by and/or resulting from, an increasing geothermal gradient caused by nearby synchronous intrusions.  相似文献   

20.
The Proterozoic Soldiers Cap Group, a product of two major magmatic rift phases separated by clastic sediment deposition, hosts mineralised (e.g. Pegmont Broken Hill‐type deposit) and barren iron oxide‐rich units at three main stratigraphic levels. Evaluation of detailed geological and geochemical features was carried out for one lens of an apatite‐garnet‐rich, laterally extensive (1.9 km) example, the Weatherly Creek iron‐formation, and it was placed in the context of reconnaissance studies of other similar units in the area. Chemical similarities with iron‐formations associated with Broken Hill‐type Pb–Zn deposit iron‐formations are demonstrated here. Concordant contact relationships, mineralogy, geochemical patterns and pre‐deformational alteration all indicate that the Soldiers Cap Group iron‐formations are mainly hydrothermal chemical sediments. Chondrite normalised REE patterns display positive Eu and negative Ce anomalisms, are consistent with components of both high‐temperature, reduced, hydrothermal fluid (≥250°C) and cool oxidised seawater. Major element data suggest a largely mafic provenance for montmorillonitic clays and other detritus during chemical sedimentation, consistent with westward erosion of Cover Sequence 2 volcanic rocks, rather than local mafic sources. Ni enrichment is most consistent with hydrogenous uptake by Mn‐oxides or carbonates. Temperatures inferred from REE data indicate that although they are not strongly enriched, base metals such as Pb and Zn are likely to have been transported and deposited prior to or following iron‐formation deposition. Most chemical sedimentation pre‐dated emplacement of the major mafic igneous sill complexes present in the upper part of the basin. Heating of deep basinal brines in a regional‐scale aquifer by deep‐seated mafic magma chambers is inferred to have driven development of hydrothermal fluids. Three major episodes of extension exhausted this aquifer, but were succeeded by a final climactic extensional phase, which produced widespread voluminous mafic volcanism. The lateral extent of the iron‐formations requires a depositional setting such as a sea‐floor metalliferous sediment blanket or series of brine pools, with iron‐formation deposition likely confined to much smaller fault‐fed areas surrounded by Fe–Mn–P–anomalous sediments. These relationships indicate that in such settings, major sulfide deposits and their associated chemical sediment marker horizons need not overlie major igneous sequences. Rather, the timing of expulsion of hydrothermal fluid reflects the interplay between deep‐seated heating, extension and magmatism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号