首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphology, microstructure, and chemical composition of the nodular fraction of phosphatic sand from the outer Namibia shelf are considered. The nodules are divided into three varieties: concretions, phosphatic casts of shells pelecipod and gastropod, and phosphatized sea lion coprolites. A part of nodules shows massive homogeneous structure, whereas other nodules contain sand-size phosphatic grains derived from the host phosphatic sand. All nodules display the same spectrum of microstructures, including colloform, granular-globular, and crystallomorphic ones. The crystallomorphic nodules are composed of scattered and aggregated crystallites of isometric, rod-shaped, and dumbbell-shaped forms, as well as crystallized shells on grains incorporated into nodules. Phosphatized remains of diatoms, foraminifers, and embryonic gastropods, as well as vermicular and filamentous bacterial forms occur among biogenic components of the nodules. Framboidal pyrite is present in all nodules. In terms of phosphate microstructure, character of organic remains, and chemical composition, the nodules are similar to phosphate grains of the host sand, recent phosphorites from the inner Namibia shelf, and some ancient phosphorites.  相似文献   

2.
Abstract. The occurrence, lithology, and stratigraphic setting of buried manganese deposits and associated host sediments in cores obtained on Legs 123–210 of the Ocean Drilling Program (ODP) are examined in order to establish the formative environment and conditions of preservation. Fossil manganese nodule and crusts are found to have formed or deposited throughout the period from 100 Ma to the present, with an additional example of formation near 137 Ma, suggesting that the deep-sea environment has been oxic and suitable for the formation of manganese nodules and crusts since the Cretaceous. Many manganese nodules and crusts occur on horizons corresponding to hiatuses in sedimentation or periods of slow sedimentation, consistent with the environment in which modern nodules form (sedimentation rate less than 10 m/m.y.). Sediments overlying the fossil nodules and crusts are oozes or biogenic sediments with sedimentation rates of 1–18 m/m.y. Low total organic carbon (<0.1 wt%) in the overlying sediments and high sulfate content (>25 mM) in interstitial water around the manganese horizon suggest that no strong reduction occurred within the overlying sediments. Coverage by biogenic sediments containing only small amounts of organic matter is therefore considered important for the preservation of manganese nodules and crusts. Manganese carbonate occurs sporadically as nodules, concretions or thin layers in various host sediments, including clay, calcareous ooze and siliceous ooze with sedimentation rates of 6–125 m/m.y. Hiatuses are rare around the host sediments of manganese carbonate. Higher total organic carbon (0.2–1.8 wt%) in the host sediments and lower sulfate content (0–25 mM) in interstitial water around the manganese carbonate horizon suggest that reduction in association with decomposition of organic matter would have proceeded in the host sediments.  相似文献   

3.
Phosphorus-bearing rocks and sediments can be divided into two genetically distinct classes: phosphatic shales or limestones and phosphorites. Phosphatic shales are primary sediments in which phosphate nodules or micronodules have formed diagenetically by precipitation of calcium phosphates derived mainly from organic phosphorus. The nodules form in reducing environments at shallow depths within the sediments, where loss of phosphate by diffusion to the overlying water column is minimized. Highly biogenic sediments containing large amounts of organic matter and some fine clastic debris provide ideal environments for the formation of phosphate nodules.Phosphorites, in contrast, represent concentrated accumulations of reworked phosphate nodules which originated in phosphatic shales or limestones. Currents, wave action, recrystallization, and erosion and resedimentation are important mechanisms in the concentration process.Phosphatic shales and limestones may become excellent oil source rocks if thermal maturity is achieved. They are useful facies indicators for anoxic or nearly anoxic depositional environments, and are often associated with restricted basins, or, during certain geologic periods, with broad shelves developed during transgressions. Phosphorites, in contrast, are often correlated with sea-level regressions or uplifts. They are modest source rocks because of their low organic carbon contents and the fact that they were reworked under oxidizing conditions. Nevertheless, because phosphorites are derived from, and often grade into, phosphatic shales, they also are of potential utility in the search for oil source beds.  相似文献   

4.
Paleoenvironmental analysis of the Cenozoic marine section cropping out near Gaiman (Chubut Province, Argentina) shows that most of the local succession was deposited in a shallow, storm-dominated marine environment, bearing well preserved Ophiomorpha fossil traces. Sequence-stratigraphic interpretation records the effect of three sea-level oscillations. Phosphatic strata are related to mostly in situ concretions developed within transgressive-early highstand system tracts (Type 1) and to reworked and winnowed lags associated with transgressive surfaces (Type 2) which display a concentration of phosphatic concretions, ooids, vertebrate bones, teeth and shells. Close association of Callianasid bioturbation (Ophiomorpha) and phosphatic levels suggest a genetic link for both, via improved early-diagenetic water circulation and Fe and P early-diagenetic cycling. Phosphogenesis would have taken place after cold and corrosive water, probably similar to the present Antarctic Intermediate Water (AAIW), flooded the continental shelf and mixed with warmer surficial waters. This mixing could explain the contrasting indications from the marine vertebrate fauna together with the general corrosion and replacement processes that are common in the Gaiman strata. The development of the phosphorites would have occurred at times of global climatic transition and increased oceanic circulation, probably during the Late Oligocene–Early Miocene.  相似文献   

5.
On the southeast Australian continental margin, mixed siliciclastic and temperate carbonate sediments are presently forming along the narrow 20–35 km‐wide northern New South Wales shelf over an area of 4960 km2. Here, year‐round, highly energetic waves rework inner and mid‐shelf clastic sediments by northward longshore currents or waning storm flows. The strong East Australian Current flows south, sweeping clastic and outer shelf biogenic sands and gravels. Quaternary siliciclastic inner shelf cores consist of fine to medium, lower shoreface sand and graded storm beds of fine to coarse sand. Physically abraded, disarticulated molluscs such as Donacidae and Glycymeridae form isolated gravel lags. Highstand inner shelf clastics accumulate at 0.53 m/103 y in less than 50 m water depth. Clastic mid‐shelf cores contain well‐sorted, winnowed, medium shoreface sands, with a fine sand component. Fine sand and mud in this area is discharged mainly from New South Wales’ largest river, the Clarence. The seaward jutting of Byron Bay results in weakened East Australia Current flows through the mid‐shelf from Ballina to Yamba allowing the fine sediments to accumulate. Quaternary carbonate outer shelf cores have uniform and graded beds forming from the East Australian Current and are also influenced by less frequent storm energy. Modern clastic‐starved outer shelf hardgrounds are cemented by coralline algae and encrusting bryozoans. Clay‐sized particles are dominantly high‐Mg calcite with minor aragonite and smectite/kaolinite. Carbonate sands are rich in bryozoan fragments and sponge spicules. Distinctive (gravel‐sized) molluscs form isolated shells or shell lag deposits comprising Limopsidae and Pectinidae. The upper slope sediments are the only significant accumulation of surficial mud on the margin (18–36 wt%), filling the interstices of poorly sorted, biogenic gravels. Pectinid molluscs form a basal gravel lag. During highstand the outer shelf accumulates sediment at 0.40 m/103 y, with the upper slope accumulating a lower 0.23 m/103 y since transgression. Transgression produced a diachronous (14–10 ka) wave‐ravinement surface in all cores. Relict marine hardgrounds overlie the wave‐ravinement surface and are cemented by inorganic calcite from the shallow and warm East Australian Current. Transgressive estuarine deposits, oxygen isotope Stage 3–5 barriers or shallow bedrock underlie the wave‐ravinement surface on the inner and mid shelf. Northern New South Wales is an example of a low accommodation, wave‐ and oceanic current‐dominated margin that has produced mixed siliciclastic‐carbonate facies. Shelf ridge features that characterise many storm‐dominated margins are absent.  相似文献   

6.
Part of a larger investigation of the sea bed off Sydney was a study of the extinct submarine volcano Mount Woolnough. It is located approximately 41 km east of Kurnell, NSW, and protrudes 175 m above the sediment cover at depths of approximately ?550 to ?375 m. Volcanic rock, approximately 2.2 km in diameter, is exposed above the sediment sea floor and is much smaller than its magnetic expression (approximately 13 km in diameter). Samples dredged from Mount Woolnough were conglomerates with phosphatic nodules and volcanic fragments set in a fine foraminiferal sediment matrix. Zircons within the mafic fragments yielded a minimum age of 261 Ma.  相似文献   

7.
Clastic sediments deposited in caves and rock shelters bear peculiar sedimentological characteristics and have seldom been considered as a high‐resolution proxy record of climatic or environmental changes. The Romito Cave has its entrance at 275 m above sea level, about 25 km from the Tyrrhenian coast of Calabria, southern Italy. New archaeological excavation performed since 2000 has revealed a sedimentary succession spanning the record of Gravettian to Late Epigravettian cultures (Late Pleistocene). The present study focuses on the lower part (2.5 m thick) of the succession, where three main unconformity‐bounded stratigraphic units have been recognised (labelled RM1–3). Each unit consists of water‐lain deposits indicating high‐ to low‐competence flow, capped with anthropogenic deposits. The gradual deactivation and reactivation of the water drainage between 23 475 ± 190 and 16 250 ± 500 cal. a BP is correlated with regional precipitation changes due to the onset of dry climatic conditions of the Last Glacial Maximum. However, the deactivation of cave drainage after the deposition of unit RM3, around 15 400 ± 500 cal. a BP, deviates from the regional hydrological trend of progressively increasing water discharges and is attributed to the drainage cut‐off by probable cave wall collapses. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Carbonate concretions provide unique records of ancient biogeochemical processes in marine sediments. Typically, they form in organic‐rich mudstones, where a significant fraction of the bicarbonate required for carbonate precipitation is supplied from the decomposition of organic matter in the sediments. As a result, carbonates that comprise concretions are usually characterized by broad ranges in δ13C and include values that are significantly depleted relative to seawater. This article reports results from a physical, petrographic and geochemical analysis of 238 concretions from the Wheeler Formation (Cambrian Series 3), Utah, USA, which are unusual in several respects. Most prominently, they formed in organic‐poor mudstones (total organic carbon = 0·1 to 0·5%) and are characterized by a narrow range of δ13C that onlaps the range of contemporaneous seawater values. Subtle centre to edge trends in δ13C demonstrate that concretion precipitation was initiated by local chemical gradients set up by microbial activity in the sediments, but was sustained during growth by a large pool of inorganic bicarbonate probably derived from alkaline bottom waters. The large inorganic pool appears to have been important in facilitating rapid precipitation of the concretion matrix, which occurred via both displacive and replacive carbonate precipitation during early diagenesis. Stable isotope data from cogenetic pyrite (δ34S) and silica (δ18O) phases provide insight into the evolution of biogeochemical processes during concretion growth, and suggest that concretions were formed almost entirely during sulphate reduction, with only minor modification thereafter. Concretions of the Wheeler Formation appear to represent an end‐member system of concretion formation in which rapid growth was promoted by ions supplied from sea‐water. As such, they offer insight into the spectrum of processes that may influence the growth of carbonate concretions in marine sediments.  相似文献   

9.
Bottom sediments from the sea floor west of Barbados between depths of 110 and 324 m are composed of nodular or crusted carbonate deposits. Individual biogenic sediment grains and the cemented aggregates, nodules and crusts are usually more or less altered by bioerosion and may support one or more generations of encrusting organisms. On the basis of component analysis of the topmost part of the bottom sediments it is possible to recognize three facies: (1) a proximal slope facies down to a depth of about 140 m, rich in mollusc fragments, benthic foraminifera and bryozoans; (2) an upper distal slope facies between about 140 m and about 215 m, rich in benthic foraminifera, molluses and crustaceans; and (3) a lower distal slope facies from about 215 m to at least 300 m, dominated by molluscs, especially pelecypods, with subordinate scleractinians and tubes of the polychaete Lygdamus asteriformis. The appearance and quantitative importance of the cemented aggregates is also related to these facles. In the proximal slope facies, only relatively few irregular and very porous nodules are found, whereas in the lower distal slope facies, aggregates are very common. Most aggregates are crust-like with a smooth upper surface and a more or less irregular, knobby lower surface. The crusts are massive compared with the nodules of the proximal slope facies and, unlike the latter, the lower surfaces and walls of larger cavities are usually coated with Fe and/or Mn oxides. In the upper distal slope facies a gradual transition between the two types of aggregates is found. Petrographical and morphological evidence, together with carbon and oxygen isotopic data, indicates that the nodules and crusts were formed in situ by submarine lithification processes. Radiocarbon dating of two bulk samples suggests that the cementation took place during late Pleistocene and/or early Holocene.  相似文献   

10.
Anatomy and origin of a Cretaceous phosphorite-greensand giant, Egypt   总被引:4,自引:0,他引:4  
Late Cretaceous epicontinental phosphorites, porcelanites/cherts, dark-coloured shales, glauconitic sandstones and bioclastic and fine-grained carbonate rocks in Egypt are examined in terms of their overall depositional and diagenetic framework and stable isotopic and organic geochemical characteristics. Two main depositional realms are interpreted and correlated through sequence stratigraphic analysis: (1) a shallow hemipelagic environment accompanying initial stages of marine transgression and conducive to the formation of organic carbon-rich shales, biosiliceous sediments and thick phosphorites, and (2) a relatively high energy depositional regime accompanying sea-level fall during which deltas advanced, glauconites were reworked seaward and prograding oyster banks became periodically exposed to episodes of fresh water diagenesis, thereby promoting solution-collapse phenomena in associated cherts. Lenticular to massive phosphorites are viewed as the result of current winnowing and concentration of authigenic grains initially precipitated in associated reducing shales and biosiliceous sediments. In eastern Egypt the phosphorites form winnowed lag layers, some of which may have been redeposited down slope in structural lows. In the west, these sands were concentrated into giant phosphorite sand waves built by reworking of penecontemporaneously deposited phosphatic muds during marine transgression. Carbon isotopic results substantiate interpretations from modern deposits for limitation of phosphate mineral precipitation with depth in sediments as a result of lattice poisoning. However, direct desorption of phosphorus to pore waters from detrital iron-oxyhydroxide phases also may have been important in the Cretaceous setting, the iron reduced in this process being available for incorporation in glauconites. The main locus for authigenic glauconite precipitation appears to be where iron fluxes from regions of lateritic weathering were highest and near the boundary between oxygenated and reduced waters. This study suggests a model for the common coexistence of glauconites and phosphorites in the geological record. Although upwelling is often advocated as the origin of nearly all giant phosphorite deposits, we suggest that some of these may have been strongly influenced by fluvially derived phosphorus borne on particulates and desorbed from these compounds upon flocculation and/or reduction in bottom waters or pore waters.  相似文献   

11.
磷酸盐结核主要由磷质凝块、藻类碎屑和纤柱状磷灰石组成。呈特殊的栉壳状结构。结核中的凝块和藻屑与围岩中的氧化硅、粘土是同时在海底沉积的。纤状磷灰石则是在成岩期间从孔隙水中沉淀的。这些磷酸盐结核是由于纤状磷灰石在碱性微环境中不断淀积增长而成。  相似文献   

12.
海泡石(sepiolite)是很有发展前途的一门新兴矿种,是当今世界上用途很广的非金属矿物原料之一。在石油、油脂、酿造、轻工、化工、医药、国防、农牧业、环保、橡胶、涂料以及深井钻探泥浆等方面都有应用,就目前所知,其用途广达130余种,随着科学技术的发展,其用途还将不断地扩大。由于海泡石具有特殊的晶体结构、较好的纤维性质、较高的负电动电位、低的比磁化率,以及一定的耐酸碱腐蚀性、过滤性、阳离子交换性及吸附性等,因而世界上许多国家已越来越重视该矿物的找矿、开发和应用。我国在海泡石的找矿方面已有较大的进展,已找到海泡石矿床(点)五十余处,其中大型矿床六个,分布在江西、湖南、陕西等省。与四川邻近的陕西宁强、湖南石门陈家湾等都是大  相似文献   

13.
Extreme Enrichment of Tellurium in Deep-Sea Sediments   总被引:2,自引:0,他引:2  
Tellurium is a sort of scattered rare element on the earth. Its concentration is very low in earth's crust, only 1.0 ng/g. However, it has extremely high abundance in Co-rich crusts, marine polymetallic nodules, deep-sea sediments and aerolites. To find out the origin of tellurium enrichment in deep-sea sediments, we analyzed and compared tellurium concentrations and helium isotope compositions in the magnetic parts and those in the bulk parts of deep-sea sediments. The result indicates that the helium content, 3He/4He ratio and tellurium concentration are obviously higher in the magnetic parts than those in the bulk parts. The 3He abundance varies synchronously with the tellurium concentration. 3He and Te have a distinct positive correlation with each other. It is the first time that the paper brings forward that the extreme enrichment of tellurium in deep-sea sediments, like helium isotope anomalies, probably results from the input of interplanetary dust particles (IDPs). Similarly, the extreme enrichment of tellurium in marine polymetallic nodules and Co-rich crusts is possibly related to IDPs.  相似文献   

14.
New results of geomorphological, seismoacoustic, and lithological investigations on the upper continental slope off the Arkhipo-Osipovka Settlement are presented. Here, a large submarine slump was discovered by seismic survey in 1998. The assumed slump body, up to 200 m thick, rises 50–60 m above the valley floor that cuts the slope. Recent semiliquid mud that overlies laminated slope sediments with possible slump deformations flows down in the valley thalweg. Radiocarbon age inversion recorded in a Holocene sediment section of shelf facies recovered from the upper slope points to the gravity dislocation of sediments.  相似文献   

15.
The term ‘hiatus concretions’ was introduced for the first time by the late Ehrhard Voigt, a well‐known German bryozoan specialist, in 1968 (originally as Hiatus‐Konkretionen). Hiatus concretions are early diagenetic bodies that formed within the host sediment. In this respect, they are similar in composition to other concretions that are very common in siliciclastic deposits of different ages, some of which are known to contain fossils or minerals. Hiatus concretions, however, differ from conventional concretions in their complex post‐diagenetic history, including exhumation on the sea‐floor, colonization by various encrusting and/or boring organisms during a break in sedimentation, and final burial. Thus, the name ‘hiatus concretions’ refers to the fact that they indicate hiatal surfaces in sedimentary sequences ( Fig. 1 ). It is known that hiatus concretions may have developed during very different time‐spans: for example, within a part of one ammonite subzone (i.e. tens of thousands to a few hundreds of thousands of years) or much longer, during a time embracing more than a stage (i.e. several millions of years). The majority of the hiatus concretions known from the fossil record have carbonate cements, usually calcite, and these are the main focus of this article. Some hiatus concretions, however, are cemented by phosphate minerals.
Figure 1 Open in figure viewer PowerPoint Hiatus concretions in the field. A. A horizon of hiatus concretions weathered out from the Middle Jurassic (Bathonian) clay sediments at Krzyworzeka, Polish Jura, Poland. B. Close‐up of the hiatus concretions.  相似文献   

16.
Multiple intraformational discordances, recognized in the Tortonian (Upper Miocene) type area, occur at the top of a shelf sequence, directly overlain by slope sediments. The discordances display smooth, concave upward lower surfaces and are covered by sediments identical to the surrounding strata. Inferred lateral extent of single discordances is 500–700 m. Thickness of sediments overlying the discordances ranges from 5 to 25 m. The intraformational discordances are interpreted as scars formed by downslope sliding of whole packets of strata. The slumps may have been triggered by tectonic oversteepening of shelf sediments due to tilting of the sea floor. The slump scars appear comparable in position and size to some small scale modern examples recorded on margins near the shelf-break.  相似文献   

17.
Distribution of the major and trace elements in ferromanganese nodules, which are buried or exposed on the seafloor, and in host sediments was studied in ten concretion/sediment pairs by various physical and chemical methods. It has been established that, in addition to Fe and Mn, a limited number of the major and trace elements (P, Ca, Sr, Ba, Mo, Co, Zn, Ni, As, Pb, Sb, Tl, U, W, Y, and Ga included) is accumulated with a variable degree of intensity (relative to sediments) in the concretions. As compared to host sediments, the maximal content of Mn in concretions is 100 times higher, whereas maximal contents of all other elements listed above vary from more than one to 10–20 times. Manganese and, to a lesser extent, Ba and Sr are concentrated in the buried concretions. Other elements are primarily concentrated in concretions exposed on the sea-floor. The occurrence mode of concretions and compositional data on interstitial water suggest that metals in the concretions were derived from seawater and suspended particulates, in addition to sediments. Burial of concretions in the sediment pile is accompanied by the alteration of their composition, accumulation of Mn (relative to Fe), and loss of several associated metals.  相似文献   

18.
The precipitation/replacement of Ca‐phosphate is a complex process that commonly takes place during the early diagenesis in marine sediments. The unusual occurrence of shallow marine, early diagenetic phosphatic deposits associated with glassy tuffs in the Neogene Gaiman Formation, in the Chubut Province, Patagonia, Argentina, constitutes a good case example for the study of replacement and precipitation of Ca‐phosphate on an unstable substrate. Isocon diagrams illustrate that chemical changes during glass diagenesis include gains in loss on ignition and Ca, and losses of K. These changes are the result of glass hydration during sea water–glass interaction, together with adsorption and diffusion of ions into the bulk shard; combined, these represent an incipient process of volcanic glass replacement by Ca‐phosphate. Subsequent early diagenetic P enrichment in the pore solutions led to phosphate precipitation, associated with pitting on the glass shards and pumice. The associated development of a reactive surface promoted the incorporation of P and Ca into their margins. Lastly, precipitation of calcium phosphate filled the vesicles and other open cavities, inhibiting further glass dissolution. The high porosity and reactivity of the volcanic glass provided an appropriate substrate for phosphate precipitation, leading to the development of authigenic apatite concretions in the volcanic‐glass bearing strata of the Gaiman Formation. This research is of significance for those concerned with marine phosphatic deposits and sheds light on the processes of early diagenetic phosphate precipitation by replacement of an atypical, unstable substrate like hydrated volcanic glass.  相似文献   

19.
Concretions from the Kimmeridge Clay Formation are of three types: calcareous concretions, septarian calcareous concretions and pyrite/calcite concretions and nodules, which occur within different mudstone facies. Isotopic and chemical analysis of the concretionary carbonates indicate growth in the Fe-reduction, sulphate-reduction and decarboxylation zones. The septarian concretions show a long and complex history, with early initiation of growth and development spanning several phases of burial, each often resulting in the formation of septaria. Growth apparently ceased in the transitional zone between the sulphate-reduction and the methanogenesis zones. Very early growth in the Fe-reduction zones is also seen in one sample. The non-septarian concretions began growth later within the sulphate-reduction zone and have had a simpler burial history while the pyrite/calcite concretions show carbonate cementation in the sulphate-reduction-methanogenesis transition zone. A ferroan dolomite/calcite septarian nodule with decarboxylation zone characteristics also occurs. Development of concretions appears to be indirectly controlled by the sedimentation rate and depositional environment, the latter determining the organic matter input to the sediments. Calcareous concretions predominate in swell areas and during periods of low sedimentation rate in the basins with poor organic matter preservation and deposition of calcareous mudstones. Pyrite/calcite concretions occur in organic-rich mudstones deposited under higher sedimentation rates in the basins, while the ferroan dolomite nodule grew under very high sedimentation rates.  相似文献   

20.
Manganese nodules and manganese carbonate concretions occur in the upper 10–15 cm of the Recent sediments of Loch Fyne, Argyllshire in water depths of 180–200 m. The nodules are spherical, a few mm to 3 cm in diameter, and consist of a black, Mn-rich core and a thin, red, Fe-rich rim. The carbonate occurs as irregular concretions, 0.5–8 cm in size, and as a cement in irregular nodule and shell fragment aggregates. It partially replaces some nodule material and clastic silicate inclusions, but does not affect aragonitic and calcitic shell fragments.The nodules are approximately 75% pure oxides and contain 30% Mn and 4% Fe. In the cores, the principal mineral phase is todorokite, with a Mn/Fe ratio of 17. The rim consists of X-ray amorphous Fe and Mn oxides with a Mn/Fe ratio of 0.66. The cores are enriched, relative to Al, in K, Ba, Co, Mo, Ni and Sr while the rims contain more P, Ti, As, Pb, Y and Zn.The manganese carbonate has the composition (Mn47.7 Ca45.1 Mg7.2) CO3. Apart from Cu, all minor elements are excluded from significant substitution in the carbonate lattice.Manganese nodules and carbonates form diagenetically within the Recent sediments of Loch Fyne. This accounts for the high Mn/Fe ratios in the oxide phases and the abundance of manganese carbonate concretions. Mn concentrations in the interstitial waters of sediment cores are high (ca. 10 ppm) as also, by inference, are the dissolved carbonate concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号