首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 277 毫秒
1.
Analysis of radioactive (210Pb) and stable lead isotopes in near-surface samples has been tested as a method of uranium exploration in the Pine Creek Geosyncline, Northern Territory, Australia. The lead isotopes were extracted from the samples by a mild leaching agent and were measured by alpha spectrometry for 210Pb and by mass spectrometry for stable lead isotopes. The results are compared with those obtained by conventional methods utilizing measurements of radioactivity and radon (Track Etch) in situ and 226Ra, 228Ra and U contents of soils. The major problems addressed were whether the lead isotopic methods are more sensitive than the conventional methods and whether they can discriminate “real” anomalies from the common barren anomalies found in black soils and swamps which contain radium in excess of the uranium present.Four test areas, representing a range of exploration problems, were chosen in the vicinity of the Koongarra uranium deposits and 25 samples from each area were analyzed. Most samples have more 226Ra than uranium. Radium analyses of several water samples show the source of this radium to be non-uraniferous rocks within the Kombolgie sandstone. The results for soil 226Ra, radon, scintillometry and 219Pb were generally closely correlated, and as a result, the 210Pb method was not considered to have any advantages over the conventional methods.At the Koongarra X prospect, which has a weak surface expression, the ratio gave the strongest indication of the underlying uranium mineralization with an anomaly to background ratio of 12.5. However, this ratio is correlated with uranium content and does not offer any particular advantages over uranium analyses alone. More subtle indications of uranium mineralization were found by relating the radiogenic lead (206Pb) and the thorium-derived lead (208Pb) to the common lead content (204Pb). A plot of versus (horizontal axis) is linear for country rock samples, irrespective of the amount of more recently introduced 226Ra. Samples above uranium mineralization lie off this trend, along a line of near-zero slope. By the use of this plot, indications were found of the Koongarra No. 2 orebody, which is concealed by about 40 m of barren overburden; none of the other techniques detected this mineralization.  相似文献   

2.
贝新宇 《铀矿地质》2016,(3):180-185
文章阐述了铀矿地质勘探设施及其环境影响特点、主要工程子项退役治理方案。深入分析了铀矿地质勘探设施退役治理工程的实施过程中环境影响关注重点,包括废石堆稳定性、坑口废水等。结合实施的项目提出针对性措施建议,为进一步提高此类项目治理的环境效果、减轻环境影响提供技术支撑。  相似文献   

3.
The isotopic (U-Pb, 238U-235U, 234U-238U) and chemical study of whole-rock samples and finegrained fractions of rocks in a vertical section of the terrigenous sequence at the Dybryn uranium deposit in the Khiagda ore field shows that a wide U-Pb isotopic age range (26.9-6.5 Ma) is caused by oxidation and disturbance of the U-Pb isotopic system in combination with protracted uranium ore deposition. The oxidation of rocks resulted in the loss of uranium relative to lead and eventually to an overestimated 206Pb/238U age at sites with a low U content. The 238U/235U ratios in the studied samples are within the range of 137.74–137.88. Samples with a high uranium content are characterized by a decreasing 238U/235U ratio with a decrease in 207Pb/235U and 206Pb/238U ages. A nonequilibrium 234U/238U ratio in most studied samples furnishes evidence for young (<1.5 Ma) transformation of the Miocene uranium ore, which is responsible for uranium migration and its redeposition.  相似文献   

4.
A small-scale hydrothermal uranium mineralization hosted within the siderite deposit at Hüttenberg (Eastern Alps, Austria) was re-investigated using modern scanning electron microscope (SEM) and microprobe (EMPA) methods. The uranium mineralization comprises brannerite, coffinite and uraninite, and is spatially associated with Fe-, Ni- and Co-arsenides (loellingite, rammelsbergite, safflorite), bismuth and bismuthinite, as well as rare accessory silver-bearing minerals and gold locally. The U-bearing fluids also carried P, Y and REEs, which precipitated as xenotime and P–Y coffinite. The uranium mineralization paragenetically postdates the metasomatic formation of the host siderite ore.Uraninite allows for precise single spot EMPA ages to be calculated (±2 Ma) due to its high radiogenic lead content. There is an excellent internal consistency in the uraninite data with calculated dates ranging between 77 and 84 Ma. We interpret that these record the crystallization age of the uraninite, and that any influences of lead loss or common Pb are minimal. Brannerite was also analyzed but U-total Pb microprobe data scatter (c.30–80 Ma) with evidence of lead loss, particularly in altered domains. It does, however, provide a minimum constraint on the timing of mineralization that is consistent with the crystallization age of the uraninite. Coffinite proved completely unsuitable for U-total Pb geochronology due to extreme lead loss. However, hydrothermal xenotime yields a U-total Pb age of 78 ± 5 Ma, consistent with the uraninite age. Therefore, the U-total Pb geochronological data support a late Cretaceous age for the U-mineralization of c. 80 Ma. Considering this timing constraint together with other geological and indirect thermochronological aspects, we conclude that the siderite deposit of Hüttenberg is older and formed at c. 90−80 Ma.  相似文献   

5.
仙石铀矿床位于粤北贵东复式花岗岩体东部,矿体赋存于NWW向辉绿岩与NEE向硅化带交接部位。矿床中黄铁矿以富集放射成因铀铅为特征,3组比值分别为(^208Pb/^304Pb).=18.756—23.883,(^207Pb/^304Pb)1=15.676~15.932,(^208Pb/^204Pb),=38.530—38.938,主要位于基底变质岩铅范围内;矿床中方解石δ^18C值为-8.5‰~-3.1‰,相似于地幔值((-5±2)‰);黄铁矿δ^18C值为-10.1‰~-8.3‰,它与花岗岩中黄铁矿δ^18C值(-10.9‰--7.1‰)相似,而与辉绿岩中黄铁矿δ^18C值(-0.03‰~2.1‰)区别明显。上述同位素特征表明仙石铀矿床的成矿物质具多源特征。  相似文献   

6.
Abrasion combined with an improved paramagnetic separation technique eliminates 90 to 100 percent of discordance so that ages of unprecedented accuracy (±1 to 3 m.y.) can be achieved for virtually all 2700 m.y. old zircon populations from plutonic or volcanic rocks. The procedures work even better for younger zircons. Besides removing outer layers that may have been leached, high-U parts are preferentially removed by abrasion because they are softened by radiation damage. Altered and cracked zircons also tend to be eliminated.In most cases, the new concordant data move up the line established by previously analysed paramagnetic fractions but a number of anomalies have been found where old data give upper intersections that are in error by as much as 25 m.y. Reducing or eliminating paramagnetically correlated Pb loss greatly enhances our ability to define mixing lines for igneous or metamorphic rocks when two ages of zircon are present.The abrasion technique allows detection of an inherited component if it exists by enhancing the sample in core material. Abrasion in many cases removes about 80 percent of the common lead, thus allowing a direct evaluation of this component.When the outer parts of grains are removed, the correlation between magnetic susceptibility and uranium content is maintained but the usual correlation of uranium level with lead loss is reduced or eliminated. Therefore, only near surface uranium is involved in the classic discordance versus uranium level correlation of Silver (1963).  相似文献   

7.
苗儿山矿田为中南地区五大铀矿田之一,其内分布有我国最大规模碳硅泥岩型的铲子坪铀矿床及诸多花岗岩型铀矿床,沙子江矿床为矿田内重要的花岗岩型铀矿床之一。沥青铀矿是理想的铀矿床直接定年样品,同时,也是U-Pb同位素研究的理想矿物。本次研究以沥青铀矿为对象进行U-Pb同位素分析,获得了沙子江矿床早、晚两期铀成矿作用的年代分别为104.4Ma和53.0±6.4Ma,结合铲子坪矿床主成矿期年代74.1±9.9Ma,它们可能分别代表了苗儿山矿田3期主要铀成矿作用的时代。沙子江矿床等时线拟合所得高的初始Pb值反映了该期成矿作用之前存在铀的预富集作用。3期成矿作用与华南地区基性脉岩年代数据统计反映的岩石圈伸展期次相对应,暗示了铀成矿受控于华南岩石圈伸展这一大的动力学环境。  相似文献   

8.
冷湖铀矿床是近年来在柴达木盆地北部新发现的具有工业价值的砂岩型铀矿床,为了研究该地区铀矿物的类型、成分特征、赋存形式及铀成矿作用,本文在野外地质调查的基础上,对下侏罗统小煤沟组相关蚀变矿物进行了矿相学、电子探针、背散射电子成像分析.研究发现,冷湖小煤沟组矿石主要包括杂砂岩型及碳质砂岩型两种,整体发育后生蚀变.铀矿物主要...  相似文献   

9.
为探讨贵州黑色岩系多金属矿层的成因和成矿物质来源,文章对镇远江所出露的黑色岩系多金属层铅同位素进行了测试。结果表明,黑色岩系多金属矿石铅来源于壳源混合铅,且具有富铀铅贫钍铅的特点,下寒武统牛蹄塘组的下伏灯影组富铀铅而贫钍铅的化学沉积物可能提供了较多的成矿物质。成矿物质主要来源于地壳,具有地幔铅混染的特点,是岩浆作用,化学沉积作用,海底热水作用共同参与的结果。黑色岩系多金属矿层的形成是多种成矿作用过程叠加的结果,具有多来源,多期次的成矿特点。  相似文献   

10.
西秦岭降扎地区金、铀矿床年代学对比研究   总被引:9,自引:0,他引:9       下载免费PDF全文
刘家军 《地质科学》1998,33(3):300-309
西秦岭降扎地区寒武、志留系中的金、铀矿床,是我国相当重要的碳硅泥岩型矿床。根据金矿床中岩石和矿石异常铅模式年龄、氩-氩同位素年龄和钾-氩同位素年龄等,获得了一批有益的年代学信息。金矿床的各种同位素年龄数据主要有2组:(1)242-186Ma;(2)137-47Ma.结合区域地质发展史、成矿热液脉与岩脉的穿切关系以及矿床产出的其它宏观特征等,确定金矿床的成矿时代为137-47Ma,与区域铀矿床形成的主要时代(117-55Ma)相比,二者成矿时间大体相同。  相似文献   

11.
The Absaroka volcanic field is comprised of predominant andesitic volcaniclastic rocks and less abundant potassium-rich mafic lavas (shoshonites and absarokites). Strontium and lead isotopic variations preclude a simple derivation from an isotopically uniform source: Sr87/Sr86, 0.7042 to 0.7090; Pb206/Pb204, 16.31 to 17.30; Pb208/Pb204, 36.82 to 37.64. We postulate that these rocks were derived from a lower crust or upper mantle which underwent a preferential loss of uranium relative to lead approximately 2800±200 m.y. ago. Variations in lead and strontium isotopic compositions are thought to reflect small inhomogeneities in U/Pb and Rb/Sr ratios in the source.Publication authorized by the Director, U.S. Geological Survey.  相似文献   

12.
巢小林 《铀矿地质》2007,23(5):305-309,315
在苗儿山地区已知花岗岩型铀矿床上的试验结果显示,在矿化规模较大、品位较高的钻孔岩心剖面上观察到了分布范围大大超过矿体,且强度较高的210Po异常。据此认为,在勘探最后阶段通过测定钻孔岩心的210Po可以判断钻孔深部以及周围是否还存在隐伏矿体,以指导进一步钻探。本技术有望用于花岗岩型铀矿床的勘查工作。  相似文献   

13.
Sorption and diffusion of uranium in sodium bentonite MX-80 were measured in aerobic conditions. The batch method was used for the sorption measurements and the steady state method for the diffusion measurements. Clear sorption was noticed only when high uranium concentrations were used so that the pH of the solution decreased.

The diffusivities of uranium were strongly dependent on the compaction of bentonite so that in the highly compacted samples the diffusion was very restricted. Uranium shows both features of ion-exclusion and sorption. Further studies are, however, needed to explain the diffusion mechanisms of uranium.  相似文献   


14.
Chemical, isotopic, radiographic, and rock-leaching data are combined to describe the effects of rock-water interactions in core samples of petrographically fresh, 1.43 b.y.-old Sherman Granite. The data serve to identify sensitive indicators of incipient alteration and to estimate the degree, pathways, and timing of element mobilization. Unfractured core samples of Sherman Granite are remarkably fresh by most chemical or isotopic criteria, but incipient alteration is indicated by the abundance and distribution of uranium and the degree of radioactive equilibration of uranium with its decay products. Uranium abundances which are out of equilibrium with lead decay products indicate remobilization of a portion (3 to 60 percent) of original uranium in late Phanerozoic time. Association of uranium with minor but pervasive secondary alteration products also indicates some remobilization. The amount of apparent uranium mobility in unfractured Sherman Granite (3 to 60 percent) is small compared to the results of similar studies of Archean granites from nearby localities. Chemical and isotopic data evaluated as a function of core-sample depth suggest a uranium migrational pathway involving near-surface leaching and reconcentration at depth. Movement of solutions through the upper 200 ft (60 m) of Sherman Granite is fracture controlled, and brecciated granite shows more obvious petrographic, chemical, and isotopic evidence of alteration and multi-element redistribution. Laboratory experiments using freshly crushed Sherman Granite confirm that uranium is leached in preference to elements such as Si, Mg, Ca, and K, and that leachable uranium is situated close to the solid-liquid interface; perhaps as uranium along grain boundaries, in crystal defects, or on cleavage traces of minerals that exclude uranium from their structure.  相似文献   

15.
相山铀矿田铀源的地球化学证据   总被引:8,自引:0,他引:8  
孙占学 《矿物学报》2004,24(1):19-24
相山矿田矿石、沥青铀矿及伴生的黄铁矿的铅同位素具有明显的异常铅特征,成矿物质源区年龄为140Ma,与该区碎斑熔岩的年龄一致,说明铀源系由火山岩提供。矿石中U、Th、Mo、P的分布特征显示成矿铀源来自围岩。水-岩反应的模拟实验结果表明,铀成矿热液可以由本区火山岩与地下水在成矿期地质地热背景条件下的相互作用产生。  相似文献   

16.
The Hornby Bay sandstone basin of the Northwest Territories represents one of three areas in Canada in which the geological environment is favourable for the occurrence of unconformity-type uranium deposits. The project area lies within the zone of continuous permafrost and is associated with relatively thin and locally derived tills and abundant outcrops. Topographic relief is normally in the order of 100 m but may locally exceed 300 m/km in more rugged areas.Geochemical case histories for soil and lake-sediment surveys illustrate: identification of regional anomaly, anomaly follow-up, and detailed investigations. Success in locating uranium occurrences using geochemical surveys is high. Orientation studies trace anomalous dispersion trains 10 to 200 m downslope of recognized sources. Anomaly generation is favoured by active hydromorphic processes in geochemically homogeneous overburden containing an average background of 0.5 ppm uranium (using a 4N nitric acid leach). Anomaly contrasts are typically 2 Xto 3 X this value, and anomalous values exceeding 1.5 ppm uranium are highly reproducible.Copper and radium anomalies act as pathfinders for uranium. Lead is present in anomalous concentrations in specimens from the uranium occurrences but lead enrichment in overburden is not sufficiently great to permit its use as a pathfinder element. Preliminary work based on radon and 210Po has not led to identification of anomalies other than those recognized by more routine geochemical surveys.Association of geochemical anomalies with faults within the sandstone basin constitutes one of four conditions elevating an area to drill target status. Methods for drill testing of geochemical soil anomalies depend on the relationship between the geochemical anomaly and an identifiable fault zone.  相似文献   

17.
It has been shown that the main uranium ore mineral, pitchblende (uranium dioxide), is a natural analog of synthetic uraninite (also uranium dioxide), which constitutes 96% of spent nuclear fuel (SNF). Geochronological studies of the U‐Pb isotope systems in unaltered pitchblende from the orebodies reveal that these systems remained completely closed over the entire period (approximately 135 Ma) since the formation of the deposits. The bulk of the primary uranium ores within the Streltsovskoye ore field was influenced to various degrees by post‐ore hydrothermal solutions that led to pitchblende spherulites being replaced by pseudomorphs of an amorphous phase with a U‐Si composition; this phase also re‐precipitated in veinlets proximal to the pitchblende pseudomorphs. A technique specially developed by the authors was used to carry out quantitative counts of the abundance of uranium minerals by calculating the uranium mass balance in one of the orebodies subjected to hydrothermal alteration. The calculations reveal minimal uranium loss from the orebody. Uranium liberated in the process of the pseudomorphic replacement of pitchblende was immediately fixed, in situ, in the newly formed coffinite‐like amorphous U‐Si phase as a result of the development of an efficient geochemical barrier that prevented the long‐distance migration of uranium. In assessing the long‐term safety of underground SNF repositories, the results of the present study give us confidence that SNF uraninite, in terms of the preservation of its integrity as a mineral phase, provides for the reliable long‐term isolation of uranium, transuranium elements, and fission products that are “sealed” in the uraninite matrix. In the case of the mineral transformation of the uraninite matrix by hydrothermal solutions, the liberated uranium would be efficiently immobilized by the newly formed amorphous U‐Si phase.  相似文献   

18.
Fine-grained tuffaceous sediments of the White River Formation (Oligocene) are evaluated as a possible source of uranium for the sedimentary uranium deposits of Wyoming. The evaluation is based upon a model in which volcanic glass is considered to be a major host of uranium and thorium and in which uranium and silica are released during alteration of glass to montmorillonite. The evaluation scheme is applicable to other tuffaceous sediments in similar geologic settings. The average uranium and thorium contents of glass separates and glassy air-fall ashes of the White River Formation are 8 ppm and 22.4 ppm respectively, and these values approximate the average composition of glass deposited in Wyoming basins in Oligocene time. Comparison of these values with the uranium and thorium concentrations in montmorillonite separates indicates little change in thorium concentrations but reductions in uranium concentrations which average 3.3 ppm. In spite of the apparent major removal of uranium during alteration of glass to montmorillonite, whole-rock samples of tuffaceous siltstones show an average uranium loss of only 0.4 ± 0.4 ppm, because of generally small amounts of clay alteration. This conclusion is generated by comparisons between glassy ash and partially altered vitric siltstones, the latter corrected for dilution of glass and clay-altered glass with uranium- and thorium-poor primary and detrital materials. The original volume of the White River Formation is adequate to generate economically significant quantities of mobile uranium, even with such modest losses. Uranium and silica which are mobilized during glass alteration can coprecipitate as uraniferous secondary silica in areas where solutions become silica saturated. These precipitates indicate pathways of ancient, uranium-rich solutions in tuffaceous rocks. Exploration efforts in the White River Formation and underlying units should concentrate on areas where such pathways intercept reducing environments. Intercepts of this type are present at some uranium deposits in the study area and this lends support to a tuffaceous source rock model.  相似文献   

19.
新疆十红滩砂岩型铀矿床基本特征及成因分析   总被引:29,自引:9,他引:29  
权志高  李占双 《地质论评》2002,48(4):430-436
新疆十红滩铀矿床是中国近年发现的层间氧化带型砂岩铀矿床。该矿床位于吐鲁番—哈密盆地西南部的艾丁湖斜坡带西侧,赋矿地层为中侏罗统西山窑组辫状河—曲流河相的含煤碎屑岩系;矿体严格受发育于河道砂体中的层间氧化带前锋线控制,矿体形态呈卷状或板状;含矿岩石主要为灰—深灰色疏松和次疏松细—粗粒长石石英砂岩,铀主要以吸附形式存在;全岩Pb同位素测定的主成矿年龄为24 Ma。研究认为:晚侏罗世后,持续干热气候条件下,层间氧化带的充分发育,高含氧水在富铀地层砂体中持续向前运移,在富还原剂地球化学障形成铀沉淀富集,是该铀矿床的成因。  相似文献   

20.
The concentrations of uranium, thorium and lead and the lead isotopic composition of Luna 20 soil were determined. The data indicate that the Luna 20 soil is mainly a mixture of highland anorthosites and low-K basalt, but little KREEP basalt. The U-Th-Pb systematics are discussed in comparison with other lunar soils, especially with Apollo 16 soils which were collected from a ‘typical’ highland region. The data fit well in the Apollo 16 soil array on a U-Pb evolution diagram, and they exhibit excess lead relative to uranium. This relationship appears to be a characteristic of highland localities. Considering the previous observations of lunar samples, we infer that lead enrichment in the soil relative to uranium occurred between 3.2 and 3.9 b.y. ago and that the soil was disturbed by ‘third events’ about 2.0 b.y. ago. A lunar evolution model is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号