首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The peninsular shield of India is characterized by a number of intra-cratonic sedimentary basins of which the Cuddapah and Vindhyan Basins are conspicuous.The crescent-shaped Cuddapah Basin (~1400 m.y.) covering roughly 35,000 square kilometers in the southern peninsula and enclosing the Cuddapah formations (Precambrian) includes shallow marine shales, limestones, sandstones and quartzites. These sediments are overlain by the younger Kurnool formations of Vindhyan (Upper Precambrian) age in the western and northern marginal portions of the basin and are intruded by basaltic sils and dykes. The eastern margin of the basin is characterized by an overthrust with steeply folded beds, while in the remaining parts, the formations show a gentle eastward dip. Evidence for Recent epeirogenic movements is provided by geomorphic features and current seismicity.The Great Vindhyan Basin of north-central India covering more than 100,000 square kilometers encloses Vindhyan sediments including some marine shales and limestones in the lower parts and shallow-water deposits of red sandstones and shales in the upper parts. The beds are generally horizontal, but are strongly disturbed along the southern margin. There are intrusions of basaltic dykes and kimberlite pipes.The Gondwana basins (Upper Carboniferous to Jurassic) are relatively smaller cratonic units in Archaean faulted troughs.Gravity and magnetic investigations, both regional and detailed, supplemented by deep seismic sounding profiles in the Cuddapah Basin have brought out the deep structural features of the basin, including the Moho, indicating a total thickness of generally 5–8 km with a maximum thickness of sediments of nearly 12 km in the eastern part. The beds show both a layered structure in the horizontal and block structure in the vertical, disturbed by a low-angle thrust fault on the eastern margin. In the Vindhyan Basin, the gravity and magnetic data indicate about 5000 m of sediments in the central portions, with major, roughly faults over the western and southern margins.The deep structural features of these intra-cratonic basins, as indicated by the geophysical results, are discussed in relation to the geological theories proposed for their genesis and development.  相似文献   

2.
The Table Hill Volcanics of the Officer Basin were first dated as approximately 1100 m.y. from Rb‐Sr model ages for total‐rock samples of basalt from the Yowalga No. 2 bore. Later regional mapping, however, places the Volcanics as Marinoan (very late Precambrian) or younger, and receives support from discordant K‐Ar ages ranging from 330 m.y. to 445 m.y. New total‐rock analyses confirm the original Rb‐Sr data, but analyses of separated minerals do not confirm the low value for the initial 87Sr/86Sr that had been assumed to calculate the 1100 m.y. model age. Instead, apparently‐unaltered primary pyroxenes indicate that the initial 87Sr/86Sr could be as high as 0.718. Combined with the total‐rock results, this yields an apparent age for the basalt of 575 ± 40 m.y. It is possible in principle that the high 87Sr/86Sr in the pyroxenes could be due to Sr isotope exchange during a Palaeozoic metamorphism, but there is absolutely no field or petrological evidence for such an event. Consequently, and in view of the stratigraphic evidence for their age, the Rb‐Sr data are best interpreted as signifying an original extrusion of the basalts at 575 ± 40 m.y., together with a prehistory of the magma that includes contamination with radiogenic Sr and alkalis from Precambrian crustal material.  相似文献   

3.
K‐Ar and Rb‐Sr isotopic measurements have been made on the north‐south belt of igneous and metamorphic rocks from the Peninsula Ridge and Yambo Inlier of Cape York Peninsula. Four periods of Palaeozoic igneous activity appear to have been denned. These are (87’Rbλ = 1.39 X 10–11y–1) about 415 m.y., about 400 m.y., 385–390 m.y., and 255–280 m.y., with the youngest dates to the north and northeast. The largest volume of magma, the Kintore Adamellite was emplaced during the 285–390 m.y. period. Initial 87Sr/86Sr ratios range from 0.715 (a granodiorite) through 0.72–0.74 (muscovite adamellite) to 0.76 (leuco‐adamellite), which suggests a high component of old crustal material in the latter types.

The host metamorphics grade from greenschist facies in the west to almandine‐amphibolite facies in the centre and south. Limited direct data suggest that the greenschists are older than 1400 m.y. This is supported by intrusive dolerite dating greater than 1800 m.y. Rocks possibly 2000 m.y. old are thus adjacent to the Australian northeast coast and place drastic limitations on the possibility of continual continental growth to the east.

Rb/Sr measurements on minerals of the almandine amphibolite rocks record the major Kintore event. Total rock measurements have high uncertainties but give only slightly older figures. Initial 87Sr/86Sr ratios of these apparent total rock isochrons are high, 0.735–0.745. Gross isotopic redistribution must have occurred during the Palaeozoic metamorphism.

The Rb/Sr isotopic and geochemical relationships suggest that some of the granitic rocks have been derived from the equivalent of the present greenschist facies suite, and that the almandine amphibolite facies was, in part, remetamorphosed during the Palaeozoic and is possibly partly residual after metamorphic segregation.

The region has been examined from the plate tectonic point of view and shows that many of the requirements of a cordilleran‐type mountain belt of Dewey & Bird (1970) existed during the mid‐upper Palaeozoic. The Palmerville Fault and the Hodgkinson Basin are key units in this interpretation.

Dolerite, possibly 2000 m.y. old, could be contemporaneous with voluminous dolerites of similar age from the Kimberley region (Australia) and of Venezuela and Guyana. They may be a useful continental breakup indicator, as are the Gondwana dolerites.  相似文献   

4.
Rb‐Sr and K‐Ar measurements have been made on five glauconite samples from the near basal Treuer Member of the Vaughan Springs Quartzite of the Ngalia Basin, Northern Territory, Australia. Comparison of results between and within the two groups of data demonstrates that variable losses of radiogenic strontium and argon have occurred, but allows a minimum age of 1280 m.y. to be calculated for the member. Sedimentation began in the Ngalia Basin shortly before the time of deposition of this member.

Regional correlations suggest that this minimum age applies to the adjacent Amadeus Basin as well.

Measurements were also made on glauconite from a single sample of the Lower Palaeozoic Djagamara Formation which is in the same sequence. It yields a mid‐Ordovician K‐Ar age which generally agrees with the broad range of post‐Lower Cambrian to pre‐Carboniferous age determined from fossil evidence in bounding formations. A low Rb/Sr ratio prevented calculation of a Rb‐Sr age, but the combination of K‐Ar age and Rb‐Sr measurements allowed an accurate initial 87Sr/86Sr ratio of .739 to be determined. This is much greater than ocean water values, and it appears that such information on young samples and/or those of low Rb/Sr ratio could help define the source material for glauconite formation.  相似文献   

5.
Rb‐Sr isotopic age measurements relate emplacement of the Pieman and Meredith Granites (356 ± 9 and 353 ± 7 m.y., respectively), and the Bischoff and Renison Bell Porphyries (349 ±4 and 355 ± 4 m.y., respectively) to the Tabberabberan Orogeny. The genetic relationship of the Bischoff Porphyry to mineralization and the agreement between the age of this porphyry and the age of the adjacent Meredith Granite, strongly suggests that the Bischoff mineralization resulted from granite intrusion.

The Pieman Granite is closely similar to the white Heemskirk Granite in displaying a high initial 87Sr/86Sr ratio (0.7354 ± 0.0018), feldspar discordance patterns and open system total‐rock behaviour. The high initial 87Sr/86Sr ratio is attributed to contamination during intrusion by Precambrian metasediments containing appreciable radiogenic strontium.

A basic intrusion (McIvors Hill Gabbro) gave a pre‐Tabberabberan age (518 ±133 m.y.) and a high initial 87Sr/86Sr ratio (0.7132 ± 0.0031).  相似文献   

6.
The stratigraphical problem of defining the lower boundary of the Adelaide System is discussed in relation to the geology of several critical areas in the Adelaide Geosyncline and adjacent shelf‐platform.

The Precambrian stratigraphical succession and geological history is outlined with the aid of Rb/Sr age‐determinations made by Dr W. Compston of the Australian National University.

It is concluded that the lower boundary of the Adelaide System is related to the collapse of older basement positive areas on which a regional erosional surface had developed. This surface is defined by the Callanna Beds, the oldest deposits of Willouran age. Willouran sedimentation began some time between 1,340 m.y. and 1,490 m.y. ago. Erosion of the basement rocks probably occupied a major early part of this time interval.  相似文献   

7.
Palaeomagnetic correlation in southern Africa predicts that the age of the Mashonaland dolerites of Rhodesia is confined within the limits of the age of the Waterberg System of South Africa, viz., between 1,950 m.y. and about 1,750 m.y. Rb-Sr data from the dolerites confirm this prediction. One sample gave a mineral isochron of 1,850 ± 20 m.y., which may be the true age of emplacement and is certainly a reliable minimum estimate for it. Total rock samples from nine dykes define an isochron of age 1,910 ± 280 m.y. and initial 87Sr/86Sr of 0.705 ? 0.002. In addition to variation in initial 87Sr/86Sr between dykes, there is also variation between minerals within single dykes presumeably due to contamination during crystallization and/or deuteric alteration.  相似文献   

8.
The Newer Volcanics Province of Victoria and South Australia consists of a major region of mainly alkaline basalts within which are two restricted areas containing strongly differentiated flow‐rocks. Typical alkalic basalts from this widespread province have K‐Ar ages from 4.5 to 0.5 m.y. and initial 87Sr/86Sr ratios from 0.7038 to 0.7045. Contrastingly, in the Macedon area of differentiated lavas, flow compositions range from limburgite to soda trachyte, with K‐Ar ages from 6.8 to 4.6 m.y. and initial 87Sr/86Sr ratios from 0.7052 to 0.7127. These differentiated rocks therefore are older, and some of them may have been contaminated by reaction with more radiogenic basement rocks during differentiation. Alternatively, the variation in initial Sr‐isotope composition may have resulted from varying isotopic composition of partial melts from the immediate source rocks. The most felsic of the differentiated rocks, soda trachyte, is extremely enriched with Rb relative to Sr; one of the three restricted outcrops of this rock (Camel's Hump) yields a total‐rock Rb‐Sr isochron age of 6.3 ± 0.6 m.y. with an initial 87Sr/86Sr ratio of 0.7127. K‐Ar sanidine ages reported for the three outcrops of trachyte are identical to each other and to the Rb‐Sr isochron result.  相似文献   

9.
The Precambrian geologic history of Peninsular India covers nearly 3.0 billion years of time. India is presently attached to the Eurasian continent although it remains (for now) a separate plate. It comprises several cratonic nuclei namely, Aravalli–Bundelkhand, Eastern Dharwar, Western Dharwar, Bastar and Singhbhum Cratons along with the Southern Granulite Province. Cratonization of India was polyphase, but a stable configuration between the major elements was largely complete by 2.5 Ga. Each of the major cratons was intruded by various age granitoids, mafic dykes and ultramafic bodies throughout the Proterozoic. The Vindhyan, Chhattisgarh, Cuddapah, Pranhita–Godavari, Indravati, Bhima–Kaladgi, Kurnool and Marwar basins are the major Meso to Neoproterozoic sedimentary repositories. In this paper we review the major tectonic and igneous events that led to the formation of Peninsular India and provide an up to date geochronologic summary of the Precambrian. India is thought to have played a role in a number of supercontinental cycles including (from oldest to youngest) Ur, Columbia, Rodinia, Gondwana and Pangea. This paper gives an overview of the deep history of Peninsular India as an introduction to this special TOIS volume.  相似文献   

10.
A detailed Rb‐Sr total‐rock and mineral and U‐Pb zircon study has been made on suites of Proterozoic silicic volcanic rocks and granitic intrusions, from near Mt Isa, northwest Queensland. Stratigraphically consistent U‐Pb zircon ages within the basement igneous succession show that the oldest recognized crustal development was the outpouring of acid volcanics (Leichhardt Metamorphics) 1865 ± 3 m.y. ago, which are intruded by coeval, epizonal granites and granodiorites (Kalkadoon Granite) whose pooled U‐Pb age is 1862 +27 ‐21 m.y. A younger rhyolitic suite (Argylla Formation) within the basement succession has an age of 1777 ± 7 m.y., and a third acid volcanic unit (Carters Bore Rhyolite), much higher again in the sequence, crystallized 1678 ± 1 m.y. ago.

All of these rocks are altered in various degrees by low‐grade metamorphic events, and in at least one area, these events were accompanied by, and can be partly related to, emplacement of a syntectonic, foliated granitic batholith (Wonga Granite) between 1670 and 1625 m.y. ago. Rocks that significantly predate this earliest recognized metamorphism, have had their primary Rb‐Sr total‐rock systematics profoundly disturbed, as evidenced by 10 to 15% lowering of most Rb‐Sr isochron ages, and a general grouping of many of the lowered ages (some of which are in conflict with unequivocal geological relationships) within the 1600–1700 m.y. interval. Such isochrons possess anomalously high initial 87Sr/86Sr ratios, and some have a slightly curved array of isotopic data points. Disturbance of the Rb‐Sr total‐rock ages is attributed primarily to mild hydrothermal leaching, which resulted in the loss of Sr (relatively enriched in 87Sr in the Sr‐poor (high Rb/Sr) rocks as compared with the Sr‐rich rocks).  相似文献   

11.
Rb-Sr isochron ages have been determined for two suites of Precambrian dikes in the Bidadi-Harohalli area of southeast Mysore State. Whole-rock samples of unmetamorphosed dolerites yield an age of 2420±246 (2σ) m.y., which is a minimum value for the intruded Peninsular Gneiss and Closepet Granite. The dolerite magma originated in the mantle, as indicated by the initial 87Sr/86Sr ratio of 0.7012±0.0010 (2σ). A suite of alkaline dikes, also referred to as felsite and feldspar porphyry dikes, has an age of 832±40 (2σ) m.y., which correlates with the intrusion of the Chamundi Hill Granite and the feldspar porphyry dikes near Srirangapatnam. One of the alkaline dikes has a K-Ar age of 810±25 m.y., indicating an absence of subsequent thermal events in the area.  相似文献   

12.
A major west‐trending lineament marked by a wide belt of highly deformed rocks (the Redbank Zone), lies in the Arunta Complex, north of the Amadeus Basin. Along its southern margin the Zone has been progressively affected by, and is hence older than, migmatization and granite intrusion. The migmatization event yields a Rb‐Sr isochron age of 1076 ± 50 m.y. Within the migmatite complex, relicts of a pre‐migmatite metasedimentary sequence around the Chewings Range yield a Rb‐Sr isochron age of 1620 ± 70 m.y. The migmatites are unconformably overlain by the basal unit of the Amadeus Basin sequence, the Heavitree Quartzite. The 1076 ± 50 m.y. date thus provides a maximum age for the start of sedimentation along the northern margin of the Basin. The existence of a major zone of weakness in the basement probably exerted a strong control on basement and cover deformation during the Palaeozoic Alice Springs Orogeny.  相似文献   

13.
The wadi Kid pluton of Iqna Granite, Southern Sinai, which was intruded during the last Precambrian magmatic phase, yields a Rb-Sr total rock isocrhon age of 580±23 m.y., and an initial 87Sr/ 86Sr ratio of 0.7028±0.0028. The magma of the Iqna Granite was derived from a low Rb/Sr source shortly before its crystallization. Partial resetting of biotite ages is detected by both Rb-Sr and K-Ar methods. Mineral isochrons yield higher initial values (0.7045–0.7065) as a result of Sr isotopic redistribution within a closed total rock system. The Rb-Sr resetting of the biotites is expressed by radiogenic Sr loss accompanied by a proportional enrichment of common Sr. The Rb content was unaffected by this process. Oxidation of the iron within the biotite indicates the opening of the biotite interlayer space, thus making the Sr exchange possible. These effects are attributed to a thermal event some 510–540 m.y. ago.  相似文献   

14.
Strontium isotope data are reported for primitive lavas (leucitites, tephritic leucitites, K-rich basalts, and related types) from the Roccamonfina volcano. A strong positive correlation is found between 87Sr/86Sr and the abundances of K, Rb, Sr, Ba and Zr. It is argued that the present contents of these elements in the lavas are not far removed from their concentrations in their parental primary magmas. Models involving disequilibrium and equilibrium melting of respectively homogeneous and heterogeneous source rocks are discussed. It is concluded that a heterogeneous source highly enriched in incompatible elements at some stage in the past (? 300 m.y.) is indicated.  相似文献   

15.
Pb isotopic ages of some Precambrian rocks from North China were determined. New data from the Chuanlinggou Formation of the Great Wall Group in the Yanshan region, together with published data, show that their whole-rock Pb-Pb isochron age is 1,922±92 (δ) m.y. Thus, 2,000±100 m.y. as the lowest age of the Sinian Geochronological Scale of China is important. In view of the fact that the whole-rock Pb-Pb isochron age from the Liaohe Group in Liaoning Province is estimated to be 1,977±49 (δ) m.y., which is in agreement with the possible maximum deposition age calculated from Rb?Sr data, we prefer to consider the Liaohe Group to be Sinian rather than pre-Sinian in age. Zircon, apatite and other minerals from the Tiejiashan granitic gneiss at Anshan, Liaoning Province, lie on two U-Pb discordant lines with ca. 3,300 and 2,800 m.y. respectively. Zircon, on the discordia with 3,300 m.y., is non-magnetic and free from dark inclusions. Apatite with common Pb isotopic composition, lying on the line of older age, is close to the concordia, indicating that it has not undergone any geological thermal events since it was formed. Zircon and apatite with inclusions and magnetism lie on the discordia of younger age. A U-Pb age of ca. 3,300 m.y. for the Tiejiashan granitic gneiss seems to be possible. However, it is necessary to examine the ages of these rocks with Rb?Sr and other methods in the future. A precursory Precambrian Geochronological Scale of China is propsed based on the Sinian Geochronological Scale of China published in 1977[1] as well as on new data from this study.  相似文献   

16.
Volcanism along the northwest boundary of the Arabian Plate found in the Gaziantep Basin, southeast Turkey, is of Miocene age and is of alkaline and calc-alkaline basic composition. The rare earth element data for both compositional series indicates spinel–peridotite source areas. The rare earth and trace elements of the alkaline lavas originate from a highly primitive and slightly contaminated asthenospheric mantle; those of the calc-alkaline lavas originate from a highly heterogeneous, asthenospheric, and lithospheric mantle source. Partial melting and magmatic differentiation processes played a role in the formation of the petrological features of these volcanics. These rocks form two groups on the basis of their ~(87) Sr/~(86) Sr and ~(143) Nd/~(144) Nd isotopic compositions in addition to their classifications based on their chemical compositions(alkaline and calc-alkaline). These isotopic differences indicate a dissimilar parental magma. Therefore, high Nd isotope samples imply a previously formed and highly primitive mantle whereas low Nd isotope samples may indicate comparable partial melting of an enriched heterogeneous shallow mantle. Other isotopic changes that do not conform to the chemical features of these lavas are partly related to the various tectonic events of the region, such as the Dead Sea Fault System and the Bitlis Suture Zone.  相似文献   

17.
A small andesitic intrusion, previously considered to be a Middle Cambrian lava, cuts fossiliferous upper Middle Cambrian sediments in the Leven Gorge section of the Dial Range Trough, northwestern Tasmania. Sixteen total‐rock samples of this intrusion produce a perfect‐fit, rubidium‐strontium isochron, which gives an Early Ordo‐vician age of 490 ± 18 m.y. for λ87Rb = 1.39 × 10‐11y‐1, and NBS 70A feldspar = 522 ppm Rb and 65.3 ppm Sr respectively. The initial 87Sr/86Sr ratio of 0.7112 ± 0.0003 suggests a continental type intrusion rather than an island‐arc andesite. Rather similar intermediate igneous rocks, at least some of which are intrusive, are common in the Dial Range Trough and could be largely post‐Cambrian in age. From the geological time‐scale point of view, the only definite information obtained in this work is that the Middle‐Late Cambrian boundary is older than the date given above.  相似文献   

18.
Crustal or mantle xenoliths are not common in evolved, tholeiitic flood basalts that cover huge areas of the Precambrian shields. Yet, the occasional occurrences provide the most direct and unequivocal evidence on basement composition. Few xenolith occurrences are known from the Deccan Traps, India, and inferences about the Deccan basement have necessarily depended on geophysical studies and geochemistry of Deccan lavas and intrusions. Here, we report two basalt dykes (Rajmane and Talwade dykes) from the central Deccan Traps that are extremely rich in crustal xenoliths of great lithological variety (gneisses, quartzites, granite mylonite, felsic granulite, carbonate rock, tuff). Because the dykes are parallel and only 4 km apart, and only a few kilometres long, the xenoliths provide clear evidence for high small-scale lithological heterogeneity and strong tectonic deformation in the Precambrian Indian crust beneath. Measured 87Sr/86Sr ratios in the xenoliths range from 0.70935 (carbonate) to 0.78479 (granite mylonite). The Rajmane dyke sampled away from any of the xenoliths shows a present-day 87Sr/86Sr ratio of 0.70465 and initial (at 66 Ma) ratio of 0.70445. The dyke is subalkalic and fairly evolved (Mg No. = 44.1) and broadly similar in its Sr-isotopic and elemental composition to some of the lavas of the Mahabaleshwar Formation. The xenoliths are comparable lithologically and geochemically to basement rocks from the Archaean Dharwar craton forming much of southern India. As several lines of evidence suggest, the Dharwar craton may extend at least 350–400 km north under the Deccan lava cover. This is significant for Precambrian crustal evolution of India besides continental reconstructions.  相似文献   

19.
Stratigraphic and structural observations indicate that the Encounter Bay Granites concordantly intruded the youngest formations of the Kanmantoo Group in the Mount Lofty Ranges metamorphic belt prior to the culmination of the first phase of folding and associated schistosity development recorded during the early Palaeozoic Delamerian Orogeny. Metamorphic textures in the metasediments of the Kanmantoo Group suggest that cordierite crystallized locally near the granites prior to and during the F 1 folding, whereas andalusite crystallized on a regional scale during the F 1 folding and in the post‐F 1 and pre‐F 2 static phase.

Rb‐Sr isotope data for total‐rock, feldspar, and muscovite samples of the meta‐sediment‐contaminated border facies and the uncontaminated inner facies of the Encounter Bay Granites indicate that the granites were emplaced between 515 ± 8 m.y. and 506 ± 6 m.y. ago in the Late Cambrian epoch. Rb‐Sr and K‐Ar data for biotite from the granites record variable radiogenic Sr loss until about 469 m.y. ago and comparatively uniform radiogenic Ar loss until 460–475 m.y. ago. Rb‐Sr data for Kanmantoo Group metasediments and a metamorphic pegmatite indicate crystallization ages between 459–463 m.y. ago. Thus the regional andalusite‐grade temperatures and pressures, which appear responsible for the leakage of radiogenic Sr and Ar from biotite in the granites and the redistribution of Rb and Sr in the metasediments, seem to have persisted for some 50 m.y. after emplacement of the granites until the Early Ordovician epoch. There is evidence for further leakage of Sr and Ar from biotite in deformed granites from the margins of the intrusion more than 50 m.y. afterwards in the Late Silurian or Early Devonian, possibly during the F 2 folding.

Geological observations and radiometric data for other granitic rocks in southeastern South Australia, including the Palmer Granite, are consistent with this structural and metamorphic history of the Encounter Bay region.  相似文献   

20.
Nineteen samples of granites, orthogneisses and paragneisses from the High Himalaya basement nappe(s) of the Mount Everest region have been dated by the Rb/Sr method. The post-metamorphic tourmaline leucogranites of the upper Imja Drangka (Nuptse, Lhotse Glacier) have high initial Sr87/Sr86 characteristic of an anatectic origin from crustal material. A whole-rock isochron age of 52 m. y. (Early Eocene) has been obtained for the samples from the granite body of Lhotse Glacier; apparently Sr isotopic homogenization was not reached throughout the much larger Nuptse granite. The granite precursor of the migmatitic orthogneisses from the upper Dudh Kosi valley has an age of 550 ± 16 m. y. (whole rock isochron) and a high initial Sr87/Sr86 ratio indicating its origin from an older basement complex. The Rb/Sr data on paragneisses from the south face of Lhotse do not define an isochron, possibly reflecting isotopic hetero-geneity in the sedimentary protoliths and incomplete homogenization during a late Precambrian metamorphism. All the mineral ages fall in the time span from 15 to 17 m. y. They represent cooling ages reflecting a regional phase of major uplift in the Middle Miocene and post-dating the peak of the Himalayan metamorphism which the data from the Mt. Everest region place in pre-Eocene times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号