首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Hastings Block is a weakly cleaved and complexly folded and faulted terrain made up of Devonian, Carboniferous and Permian sedimentary and volcanic rocks. The map pattern of bedding suggests a major boundary exists that divides the Hastings Block into northern and southern parts. Bedding north of this boundary defines an upright box-like Parrabel Anticline that plunges gently northwest. Four cleavage/fold populations are recognised namely: E–W-striking, steeply dipping cleavage S1 that is axial surface to gently to moderately E- or W-plunging; F1 folds that were re-oriented during the formation of the Parrabel Anticline with less common N–S-trending, steeply dipping cleavage S2, axial surface to gently to moderately N-plunging F2 folds; poorly developed NW–SE-striking, steeply dipping cleavage S3 axial surface to mesoscopic, mainly NW-plunging F3 folds; and finally, a weakly developed NE–SW-striking, steeply dipping S4 cleavage formed axial surface to mainly NE-plunging F4. The Parrabel Anticline is considered to have formed during the D3 deformation. The more intense development of S2 and S3 on the western margin of the Northern Hastings Block reflects increasing strain related to major shortening of the sequences adjacent to the Tablelands Complex during the Hunter–Bowen Orogeny. The pattern of multiple deformation we have recorded is inconsistent with previous suggestions that the Hastings Block is part of an S-shaped orocline folded about near vertically plunging axes.  相似文献   

2.
The ENE-plunging macroscopic folds, traced by calc gneiss interbanded with marble and sillimanite schist within the Peninsular Gneiss around Suganapuram in the ‘Palghat gap’ in southern India, represent structures of the second generation (D2). They have folded the axial planes of a set of D1 isoclinal folds on stratification coaxially, so that the mesoscopic D1 folds range from reclined in the hinge zones, through inclined to upright in the limb zones of the D2 folds. Orthogonal relation between stratification and axial planar cleavage, and ‘M’ shaped folds on layering locate the hinge zones of the D1 folds, whereas folds on axial planar cleavage with ‘M’ shaped folds are the sites of the D2 fold hinges. Extreme variation in the shapes of the isoclinal D1 folds from class 1B through class 1C to nearly class 2 of Ramsay is a consequence of buckling followed by flattening on layers of widely varying viscosity contrast. The large ENE-trending structures in this supracrustal belt within the Peninsular Gneiss in the ‘Palghat gap’ could not have evolved by reorientation of NS-trending structures of the Dharwar tectonic province to the north by movement along the Moyar-Bhavani shear zone which marks the boundary between the two provinces. This is because the Moyar and Bhavani faults are steep dipping reverse faults with dominant dip-slip component. Deceased  相似文献   

3.
Foliations within a Miocene slumped bioclastic sandstone unit of the Pakhna Formation, southern Cyprus, were investigated in order to assess the importance of slump strain, liquifaction and compaction in their generation. There are two approximately orthogonal sets of folds, F1 and F2. F1 folds are upright to inclined slump folds formed during slope-failure translation of the sediment. The cores of upright F1 folds have a steeply dipping macroscopic fabric defined by the axial surfaces of small tight folds in compositional layering. F2 folds occur on steeply-dipping limbs of F1 folds. F2 folds are small and asymmetric with flat-lying axial surfaces, and are interpreted as compaction generated. A pervasive flat-lying microscopic fabric defined by grain and pore long axis orientation is found in both fold sets, and is probably a liquifaction fabric enhanced by compaction. A pervasive steeply-dipping microfabric parallel to the axial planes of slump folds is not present in any of the slumps investigated.  相似文献   

4.
First generation structures in greywackes of the Yuso Group from the Cantabrian Mountains of northern Spain show a distinct variation in geometry with depth in a regional synclinal structure (Curavacas and Lechada synclines); they are easily distinguished from other deformation events. In the structurally uppermost level we find ‘flap folds’. Flap folds are recumbent structures with the inverted limb preserved. Below this level ‘cascade folds’ are found. These structures have a vergence opposite to that of parasitic folds. The nomenclature adopted is from Harrison and Falcon. Characteristically, these structures have shallowly dipping axial surfaces, in agreement with the shallow dip of the axial plane (regional) cleavage. In the lowermost structural level, upright parasitic folds with a steep cleavage are present. The variation in fold geometry is accompanied by a general steepening of the regional cleavage with increasing depth. In the absence of overprinting relationships the F1 fold geometries are included in a single deformation event.The steepening of the cleavage with depth reflects the change in orientation of the maximum shortening direction from sub-vertical in the upper part of the syncline to sub-horizontal in the lower part. With increasing depth the deformation regime during F1 changed from bending to buckling. The deformation regime on the regional scale, however, is associated with basement subsidence and passive formation of the regional synclinal structure. Furthermore, the absence of a distinct microfabric for the different F1 folds indicates that on a small scale a similar deformation regime was present. We conclude, therefore, that the scale at which we study a structure only reflects the deformation regime at that particular scale. Consequently, the overall deformation regime cannot be determined from single outcrops or microstructural analysis alone.  相似文献   

5.
S1 cleavage in the Hawick Rocks of the Galloway area is non-axial planar, cutting obliquely across the F1 folds in a predominantly clockwise sense. Individual S1 cleavage planes within cleavage-fans in F1 folds strike clockwise, locally anti-clockwise, of axial surfaces, and the mean plane to the S1 cleavage-fans dips predominantly more steeply than the axial surface. F1 folds investigated at scattered localities in Silurian and Ordovician rocks north of the Hawick Rocks are also transected by the S1 cleavage, indicating that non-axial planar S1 cleavage is widespread in the Southern Uplands. The S1 cleavage is a composite fabric. Objects deformed within sandstones and tuffs indicate oblate strain. F1 fold plunge varies from NE to SW and fold hinges locally are markedly curvilinear. Steeply plunging and locally downward-facing F1 folds are present along the southeast margin of the Hawick Rocks. The non-axial planar S1 cleavage relationships persist in the steeply plunging F1 folds. Synchronous development of the non-axial planar S1 cleavage and the variably plunging F1 folds is proposed.  相似文献   

6.
Two well-developed mesoscopic folds, D_2 and D_3, which postdate the middle amphibolite metamorphism, were recognized in the western hinterland zone of Pakistan. NW–SE trending D_2 folds developed during NE–SW horizontal bulk shortening followed by NE–SW trending D_3 folds, which developed during SE–NW shortening. Micro- to mesoscopically the NW–SE trending S2 crenulation cleavage, boudins and mineral stretching lineations are overprinted by D_3. The newly established NW–SE trending micro- to mesoscopic structures in Munda termed D_2, which postdated F_1/F_2, is synchronously developed with F3 structures in the western hinterland zone of Pakistan. We interpret that D_2 and D_3 folds are counterclockwise rotated in the tectonic event that has evolved the Hazara Kashmir Syntaxis after the main phase Indian plate and Kohistan Island Arc collision. Chlorite replacement by biotite in the main matrix crenulation cleavages indicates prograde metamorphism related with D_2. The inclusion of muscovite and biotite in garnet porphyroblasts and the presence of staurolite in these rocks indicate that the Barrovian metamorphic conditions predate D_2 and D_3. We interpret that garnet, staurolite and calcite porphyroblasts grew before D_2 because the well developed S2 crenulation cleavage wraps around these porphyroblasts.  相似文献   

7.
Structures associated with soft‐sediment deformation are preserved in the Neoproterozoic Dalradian Supergroup of SW Scotland and NW Ireland. Clastic dykes display a range of age relationships to regional Caledonian D1 folds and fabrics from pre‐tectonic to hitherto unrecognized post‐tectonic. Evidence for the post‐D1 timing of some dykes includes the emplacement of centimetre‐scale injections along regional S1 cleavage, the disorientation and transport of cleaved wall‐rock clasts within larger dykes, and clastic dykes which markedly cross‐cut and transect F1 fold hinges and axial planes. Collectively, these observations are compatible with the earliest regional (D1) structures deforming a sequence which contained locally overpressured and unlithified pockets of sediment. These critical relationships indicate that overpressured pockets of unlithified sediment were possibly retained within the Dalradian for significant periods of time spanning at least 120 Ma given existing isotopic constraints. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
《Gondwana Research》2014,26(4):1599-1613
The map-view structure of the southern New England Orogen in the eastern Gondwanan margin is characterised by four tight orogenic-scale curvatures: Texas, Coffs-Harbour, Manning and Nambucca oroclines. Here we focus on the geometry of the Manning Orocline and examine whether the inner-arc area of the oroclinal structure is expressed within the accretionary wedge rocks of the Tablelands Complex. Our observations from the Tablelands Complex (Armidale–Walcha area) show that rocks were subjected to penetrative deformation (D1), which resulted in a regional slaty cleavage (S1) and related isoclinal folds. This was followed by subsequent deformation (D2) associated with minor gentle folds. In a larger scale, the steeply dipping S1 structural fabric shows a continuous map-view curvature, thus defining a macroscopic fold structure. We interpret this macroscopic fold as the expression of the Manning Orocline within the accretionary wedge complex. This interpretation is consistent with the contorted spatial distribution of other tectonic elements (serpentinite belt, forearc basin terranes and early Permian granitoids), which independently define the structure of the Manning Orocline. Our new structural data support the existence of the Manning Orocline and the quadruple oroclinal geometry of the whole southern New England Orogen. The origin of these oroclines is attributed to multiple stages of bending, possibly associated with an earlier phase of curvature during slab rollback (in the early Permian), followed by a subsequent (middle-late Permian) episode of contractional deformation that tightened the oroclinal structure.  相似文献   

9.
The wedge‐shaped Moornambool Metamorphic Complex is bounded by the Coongee Fault to the east and the Moyston Fault to the west. This complex was juxtaposed between stable Delamerian crust to the west and the eastward migrating deformation that occurred in the western Lachlan Fold Belt during the Ordovician and Silurian. The complex comprises Cambrian turbidites and mafic volcanics and is subdivided into a lower greenschist eastern zone and a higher grade amphibolite facies western zone, with sub‐greenschist rocks occurring on either side of the complex. The boundary between the two zones is defined by steeply dipping L‐S tectonites of the Mt Ararat ductile high‐strain zone. Deformation reflects marked structural thickening that produced garnet‐bearing amphibolites followed by exhumation via ductile shearing and brittle faulting. Pressure‐temperature estimates on garnet‐bearing amphibolites in the western zone suggest metamorphic pressures of ~0.7–0.8 GPa and temperatures of ~540–590°C. Metamorphic grade variations suggest that between 15 and 20 km of vertical offset occurs across the east‐dipping Moyston Fault. Bounding fault structures show evidence for early ductile deformation followed by later brittle deformation/reactivation. Ductile deformation within the complex is initially marked by early bedding‐parallel cleavages. Later deformation produced tight to isoclinal D2 folds and steeply dipping ductile high‐strain zones. The S2 foliation is the dominant fabric in the complex and is shallowly west‐dipping to flat‐lying in the western zone and steeply west‐dipping in the eastern zone. Peak metamorphism is pre‐ to syn‐D2. Later ductile deformation reoriented the S2 foliation, produced S3 crenulation cleavages across both zones and localised S4 fabrics. The transition to brittle deformation is defined by the development of east‐ and west‐dipping reverse faults that produce a neutral vergence and not the predominant east‐vergent transport observed throughout the rest of the western Lachlan Fold Belt. Later north‐dipping thrusts overprint these fault structures. The majority of fault transport along ductile and brittle structures occurred prior to the intrusion of the Early Devonian Ararat Granodiorite. Late west‐ and east‐dipping faults represent the final stages of major brittle deformation: these are post plutonism.  相似文献   

10.
The Late Ordovician Abercrombie Beds, south of Reids Flat, New South Wales, and adjacent to the Wyangala Batholith, show evidence of three successive fold episodes. First generation folds are tight to isoclinal, with fold axes ranging from vertical to horizontal and north‐trending, and steep axial‐plane slaty cleavage. Second generation folds are steeply plunging, tight to open with north‐striking axial planes. In pelitic rocks the axial plane structure is a crenulation cleavage which overprints the slaty cleavage. The first two fold episodes were accompanied by greenschist‐facies metamorphism. Granite emplacement occurred prior to the second fold episode. A third deformation was of relatively mild intensity and produced open, north‐trending folds with axial planes dipping moderately to the east, and crenulation cleavage as the axial plane structure in pelitic rocks. These latest folds are correlated with the latest folds in the Abercrombie Beds north of the Abercrombie River. The mapped area has no apparent macroscopic structure and may be considered as a single domain.  相似文献   

11.
The lead-zinc bearing Proterozoic rocks of Zawar, Rajasthan, show classic development of small-scale structures resulting from superposed folding and ductile shearing. The most penetrative deformation structure noted in the rocks is a schistosity (S 1) axial planar to a phase of isoclinal folding (F 1). The lineations which parallel the hinges ofF 1 folds are deformed by a set of folds (F 2) having vertical or very steep axial planes. At many places a crenulation cleavage (S 2) has developed subparallel to the axial planes ofF 2 folds, particularly in the psammopelitic rocks. The plunge and trend ofF 2 folds vary widely over the area. Deformation ofF 2 folds into hook-shaped geometry and development of another set of axial planar crenulation cleavage are the main imprints of the third generation folds (F 3) in the region. In addition to these, there are at least two other sets of cleavage planes with corresponding folds in small scales. More common among these is a set of recumbent and reclined folds (F 4), developed on steeply dipping early-formed planes. Kink bands and associated sharp-hinged folds represent the other set (F 5). Two major refolded folds are recognizable in the map pattern of the Zawar mineralised belt. The larger of the two, the Main Zawar Fold (MZF), shows a broad hook-shaped geometry. The other large-scale structure is the Zawarmala fold, lying south-west of the MZF. Both the major structures show truncation of lithological units along their respective east ‘limbs’, and extreme variation in the width of formations. The MZF is primarily the result of superimposition ofF 3 onF 2.F 1 folds are relatively smaller in scale and are recognizable in the quartzite unit which responded to deformation mainly by buckle shortening. Large-scale pinching-and-swelling that appears in the outcrop pattern seems to be a pre-F2 feature. The structural evolutionary model worked out to explain the chronology of the deformational features and the large-scale out-crop pattern envisages extreme east-west shortening following formation ofF 1 structures, resulting in the formation of tight and isoclinal antiforms (F 2) with pinched-in synforms in between. These latter zones evolved into a number of ductile shear zones (DSZs). The east-west refolding of the large-scaleF 2 isoclinal antiforms seems to be the consequence of a continuous deformation and resultant migration of folds along the DSZs. The main shear zone which wraps the Zawar folds followed a curved path. Because of the penetrative nature of theF 2 movement, the early lineations which were at high angles to the later ones (as is evident in the west of Zawarmala), became subparallel to the trend ofF 2 folding over a large part of the area. Further, the virtually coaxial nature ofF 2 andF 3 folds and the refolding ofF 3 folds by a new set of N-S folds is an indication of continuous progressive deformation.  相似文献   

12.
Transpressional deformation has played an important role in the late Paleozoic evolution of the western Central Asian Orogenic Belt (CAOB), and understanding the structural evolution of such transpressional zones is crucial for tectonic reconstructions. Here we focus on the transpressional Irtysh Shear Zone with an aim at understanding amalgamation processes between the Chinese Altai and the West/East Junggar. We mapped macroscopic fold structures in the southern Chinese Altai and analyzed their relationships with the development of the adjacent Irtysh Shear Zone. Structural observations from these macroscopic folds show evidence for four generations of folding and associated fabrics. The earlier fabric (S1), is locally recognized in low strain areas, and is commonly isoclinally folded by F2 folds that have an axial plane orientation parallel to the dominant fabric (S2). S2 is associated with a shallowly plunging stretching lineation (L2), and defines ∼NW-SE tight-close upright macroscopic folds (F3) with the doubly plunging geometry. F3 folds are superimposed by ∼NNW-SSE gentle F4 folds. The F3 and F4 folds are kinematically compatible with sinistral transpressional deformation along the Irtysh Shear Zone and may represent strain partitioning during deformation. The sub-parallelism of F3 fold axis with the Irtysh Shear Zone may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation (F3) in fold zones. The strain partitioning may have become less efficient in the later stage of transpressional deformation, so that a fraction of transcurrent components was partitioned into F4 folds.  相似文献   

13.
Four phases of deformation are recorded by minor structures in the New Harbour Group (NHG) of southern Holy Island. The regional schistosity in these rocks is a differentiated crenulation cleavage of D2 age. An earlier preferred orientation (S1) is commonly preserved as crenulations within the Q-domain microlithons of the S2 schistosity and is demonstrably non-parallel to bedding. F3 folds are widely developed in S2 and, to a lesser extent, in bedding. S3 crenulation cleavage is sporadically developed but can be intense locally. A major antiformal fold exists in the NHG near Rhoscolyn. This fold is of D3 age since it clearly deforms S2 schistosity and is consistent with the vergence of F3 minor structures. All planar structures are deformed by folds of D4 age. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
Transected F1 fold structures in eastern Ireland are associated with subhorizontal stretching in the S1, cleavage whereas axial planar cleavage contains a vertical elongation direction. This suggests that the non-axial planar cleavage was influenced by a distributed strike-slip ductile shear. A major NE-SW trending F1 syncline is described in which the minor F1 folds show systematic variations in cleavage transection parameters. On the steep limb of the major syncline the cleavage transects the minor F1 folds in a consistently clockwise sense, whereas on the normal limb anticlockwise transected folds are seen. Axial planar cleavage occurs at the core of the major syncline. Fold profile analysis indicates that the buckling of the layers began before the initiation of the cleavage. Open, parallel folds at the major synclinal hinge zone are progressively ‘flattened’ on the steep limb towards a major D1 sinistral transcurrent fault. The angular transection, A, attains a maximum of 15° clockwise which diminishes to <5° at higher strains adjacent to the major fault. Incremental fibre growth in pressure shadows show a two-stage tectonic strain superposition of vertical pure shear followed by sinistral transcurrent simple shear during the development of the clockwise transecting cleavage. Anticlockwise transected folds were influenced by local dextral strike-slip on the southern margins of a rigid terrane. As a regional feature, the clockwise transection is explained by a sinistral transpressive deformation of end-Silurian age.  相似文献   

15.
Marble, calc-silicate rock, quartzite and mica schist of Precambrian age in the ‘main Raialo syncline’ in the Udaipur district of central Rajasthan, India, have been affected by folding of four main generations (F1–F4), the first two of which are seen in the scale of map to microsection. The very tight to isoclinal F1 folds with long limbs and thickened hinges are generally reclined or inclined, and plunge gently castward or westward where least reoriented. The axial planes of the F1 folds have been involved in upright warps on east-west axes (F1′), nearly coaxial with the F1 folds, in some sectors. These folds have been overprinted by upright F2 folding of varying tightness with the axial planes striking north to northeast, resulting in interference patterns of different types in all scales. A penetrative axial plane foliation related to F1 folding and a crenulation cleavage parallel to the F2 axial pianes are seen in the micaceous rocks. Two sets of conjugate folds and kink bands of smail scale have been superimposed on the F1–F2 folds in thinly foliated rocks. The first of these sets (F3) has its conjugate axial planes dipping gently northeast and southwest, whereas the paired axial planes of the later set (F4) are vertical with north-northwest and east-west strikes.  相似文献   

16.
In the Shoalhaven River Gorge, in the eastern Lachlan Fold Belt, the Ordovician quartz‐turbidite succession (Adaminaby Group) is affected by one major phase of deformation with northerly trending, gently plunging, upright, close to tight folds (F1) characterised by a range in half wavelengths up to 3 km. Several anticlinoria and synclinoria are developed and folds occur in at least four orders; these characteristics are consistent with buckling occurring at several scales and are controlled by the thickness of competent units in the multilayered succession. F1 folding is thick‐skinned in style with the whole crust probably having been affected by deformation. D1 occurred during the Silurian to Middle Devonian interval and was associated with crustal thickening and the shallowing of depositional environments over time. Locally, F1 is overprinted by south‐southeast‐trending, steeply to moderately inclined F2 that reorients F1 to recumbent attitudes. D2 is of Early to Middle Carboniferous age. Both deformations are related to convergence in an intra‐arc to backarc region and occurred inboard of a subduction zone, remnants of which occur in the New England Fold Belt.  相似文献   

17.
Three deformation phases are recognizable within the Lower Ordovician metasedimentary sequence of the Aberdaron area and they are similar to those described for Lower Palaeozoic sequences in other parts of North Wales. There is no certain evidence however for a major Aberdaron Syncline as described by some previous workers. The first deformation phase produced southcast verging mesoscopic folds with steep to moderate dipping axial surfaces and a sporadic axial plane cleavage. The second deformation was relatively weak and produced only a low-dipping crenulation cleavage at a few favoured localities. The third phase gave rise to numerous small buckle folds, kinks in some pelitic units where the first cleavage was well developed, an axial plane cleavage, and a suite of quartz veins. The orientation of the third phase minor structures is not uniform and the fold trend and strike of axial plane cleavage varies from east-northeast to south-southeast, although retains a constant angular relationship to the local strike of bedding. The distribution of the third cleavage is bimodal and the third deformation phase may have been brought about by conjugate shears during a late brittle fracture stage of NW–SE compression. The structural sequence affecting the Ordovician cannot be correlated with that in the Mona Complex and it seems likely that the Mona Complex was deformed before the Arenig.  相似文献   

18.
Structural studies of Lower Permian sequences exposed on wave‐cut platforms within the Nambucca Block, indicate that one to two ductile and two to three brittle — ductile/brittle events are recorded in the lower grade (sub‐greenschist facies) rocks; evidence for four, possibly five, ductile and at least three brittle — ductile/brittle events occurs in the higher grade (greenschist facies) rocks. Veins formed prior to the second ductile event are present in some outcrops. Further, the studies reveal a change in fold style from west‐southwest‐trending, open, south‐southeast‐verging, inclined folds (F1 0) at Grassy Head in the south, to east‐northeast‐trending, recumbent, isoclinal folds (F1 0; F2 0) at Nambucca Heads to the north, suggesting that strain increases towards the Coffs Harbour Block. A solution cleavage formed during D1 in the lower grade rocks and cleavages defined by neocrystalline white mica developed during D1 and D2 in the higher grade rocks. South‐ to south‐southwest‐directed tectonic transport and north‐south shortening operated during these earlier events. Subsequently, north‐northeast‐trending, open, upright F3 2 folds and inclined, northwest‐verging, northeast‐trending F4 2 folds developed with poorly to moderately developed axial planar, crenulation cleavage (S3 and S4) formed by solution transfer processes. These folds formed heterogeneously in S2 throughout the higher grade areas. Later northeast‐southwest shortening resulted in the formation of en échelon vein arrays and kink bands in both the lower and higher grade rocks. Shortening changed to east‐northeast‐west‐southwest during later north‐northeast to northeast, dextral, strike‐slip faulting and then to approximately northwest‐southeast during the formation of east‐southeast to southeast‐trending, strike‐slip faults. Cessation of faulting occurred prior to the emplacement of Triassic (229 Ma) granitoids. On a regional scale, S1 trends east‐west and dips moderately to the north in areas unaffected by later events. S2 has a similar trend to S1 in less‐deformed areas, but is refolded about east‐west axes during D3. S3 is folded about east‐west axes in the highest grade, multiply deformed central part of the Nambucca Block. The deformation and regional metamorphism in the Nambucca Block is believed to be the result of indenter tectonics, whereby south‐directed movement of the Coffs Harbour Block during oroclinal bending, sequentially produced the east‐west‐trending structures. The effects of the Coffs Harbour Block were greatest during D1 and D2.  相似文献   

19.
The Dating rocks and Darjeeling gneisses, which constitute the Sikkim dome in eastern Himalaya, as well as the Gondwana and Buxa rocks of ‘Rangit Window’, disclose strikingly similar sequences of deformation and metamorphism. The structures in all the rocks belong to two generations. The structures of early generation are long-limbed, tight near-isoclinal folds which are often intrafolial and rootless. These intrafolial folds are associated with co-planar tight folds with variably oriented axes and sheath folds with arcuate hinges. Penetrative axial plane cleavage and mineral lineation are related structures; transposition of bedding is remarkable. This early phase of deformation (D 1) is accompanied by constructive metamorphism. The structures of later generation are open, asymmetrical or polyclinal; a crenulation cleavage or discrete fracture may occur. The structures of early generation are distorted by folds of later generation and recrystallized minerals are cataclastically deformed. Recrystallization is meagre or absent during the later phase of deformation (D 2). The present discussion is on structures of early generation and strain environment during theD 1 phase of deformation. The concentration of intrafolial folds in the vicinity of ductile shear zones and decollement or detachment surface (often described as ‘thrust’) may be considered in this context. The rocks of Darjeeling-Sikkim Himalaya display minor structures other than intrafolial folds and variably oriented co-planar folds. The state of finite strain in the rocks, as observed from features like flattened grains and pebbles, ptygmatic folds and boudinaged folds indicate combination of flattening and constrictional type strain. The significance of the intrafolial folds in the same rocks is discussed to probe the environment of strain during progressive deformation (D 1).  相似文献   

20.
Low grade metasediments and metavolcanics of the Hill End Synclinorial Zone within the Rockley district, NSW have experienced two phases of macroscopic folding (D1 and D2), both of which are post‐latest Silurian in age. No hiatus is evident between D1 and D2. D1 produced large Fi folds (λ/2 usually > 2 km) lacking mesoscopic elements and having variable axial trends. D2 was associated with the development of regional slaty cleavage (S2) and mesoscopic folds which are parasitic on plunging macroscopic F2 folds (λ/2=0.4–2 km). D2 strain is variable, being most intense in the north of the district where slaty cleavage and tight mesoscopic F2 folds are well developed, and weakest in the south where mesoscopic folds are absent or usually gentle and cleavage is often feebly developed even in mica‐rich rocks, which are stratigraphic equivalents to slates and schists in the north. The F1 fold mechanism may involve multiple folding, simultaneous folding in more than one direction, or complex buckling of layers of variable thickness. D1 and D2 are tentatively correlated with folding events elsewhere in the Hill End Synclinorial Zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号