首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 246 毫秒
1.
V. Corchete 《地学学报》2008,20(6):489-493
The gravimetric geoid computed in the northern part of Iberia, is presented in this paper. This computation has been performed considering two study windows fitted to the areas with higher density of gravity data, to reduce the computation errors associated to the scarcity of gravity data, as much as possible. The bad influence of a bathymetry with poorer resolution than the topography is also reduced considering the smallest marine area possible. Moreover, the computation of this gravimetric model is based on the most recent geopotential model: EIGEN‐GL04C (obtained in 2006). The method used in the computation of the new gravimetric geoid has been the Stokes integral in convolution form. The terrain correction has been applied to the gridded gravity anomalies, to obtain the corresponding reduced anomalies. Also the indirect effect has been taken into account. Thus, a new geoid model has been calculated and it is provided as a data grid in the Geodetic Reference System of 1980, distributed for the northern part of Iberia from 40 to 44 degrees of latitude and ?10 to 4 degrees of longitude, on a 161 × 561 regular grid with a mesh size of 1.5′ × 1.5′. This new geoid and the previous geoid Iberian Gravimetric Geoid 2005, are compared with the geoid undulations measured for eight points of the European Vertical Reference Network (EUVN) on Iberia. The new geoid shows an improvement in precision and reliability, fitting the geoidal heights of these EUVN points with more accuracy than the previous geoid. Moreover, this new geoid has a smaller standard deviation (12.6 cm) than that obtained by any previous geoid developed for the Iberian area up to date. This geoid obtained for the northern part of Iberia will complement the previously obtained geoid for South Spain and the Gibraltar Strait area; both geoids jointly will give a complete picture of the geoid for Spain and the Gibraltar Strait area. This new model will be useful for orthometric height determination by GPS over this study area, because it will allow orthometric height determination in the mountains and remote areas, in which levelling has many logistic problems. This new model contributes to our knowledge of the geoid, but the surrounding areas must be better known to constrain the lithospheric and mantle models.  相似文献   

2.
The topographic surface is a measure of static equilibrium from the actual density distribution within the outmost Earth's lithosphere. The natural height reference of this surface, known as geoid, reflects the mixed mass-density effects, caused by the same sources, without the contribution of topographic mass. Geoid undulation and topography are output signals, which carry in common a large part of the contribution from the causal “sources”. This contribution appears in both types of signal. Comparisons between the signals depict the geographical location and an estimation of the depth occurrence of areas with geophysical and tectonic formations depending on their correlation rate. We present results from the Greek region, known for its complex diversity in topography, tectonics and dynamics. The tests are in point and “surface” concept, from local and global signals of geoid and topography. Local geoid is represented at 91 GPS points and EGM 96 coefficients compute its global representation. The topography is point values within the area, and the ETOPO5 5′X5′ data within the geographical frame.  相似文献   

3.
The Fast Fourier Transformation (FFT) has become a routine mathematical tool for the refinement of the Earth's gravity field, such as the computation of precise gravimetric geoid and terrain corrections, particularly over a large area. This paper presents ideas and methodologies to evaluate the accuracy of geoid undulation computations using FFT. A global geopotential model is used as a ‘ground truth’ gravity field model to assess the geoid determination precision by using FFT technique. It is demonstrated that special considerations must be given for a high precision FFT gravimetric geoid determination. A maximum of a few decimetres error could be introduced by the FFT algorithm if the gravity anomalies are not long wavelength filtered and/or no zero padding is applied.  相似文献   

4.
An improved hybrid gravimetric geoid model for Egypt, EGY-HGM2016, has been recently computed implementing the least-squares collocation (LSC) method through the remove-compute-restore (RCR) procedure. The computation of EGY-HGM2016 involves different datasets in terms of gravity anomalies determined from the GOCE (gravity field and steady-state ocean circulation explorer)-based global geopotential model (SPW-R4) up to d/o 200 and EGM2008 from d/o 201 to 720 combined with terrestrial gravity datasets in terms of 2140 gravity field anomalies and about 121,480 marine surface gravity anomalies. In addition, orthometric heights from 17 GPS/levelling measurements have been considered during the modelling process to improve the determination of the hybrid gravimetric geoid over the Egyptian region. The EGY-HGM2016 model estimated over Egypt provides geoid heights that are ranging from 7.677 to 21.095 m with a standard deviation (st. dev.) of about 2.534 m in the northwest of the country excluding the involvement of the orthometric heights from GPS/levelling measurements. When the later dataset is considered during the implementation of LSC process, hybrid residual height anomalies ranging from ?1.5 to +0.9 m, with a mean of 0.22 m and a st. dev. of 0.17 m, are obtained. Comparison of the predicted hybrid gravimetric geoid with the corresponding ones obtained from EGM2008, GOCE-based SPW R4 model, and GPS/levelling reveals considerable improvements of our EGY-HGM2016 model over Egypt.  相似文献   

5.
Geoid signals give information about the underlying density structure and can be used to locate the source depth of the mass anomalies. Wavelet analysis allows a multiresolution analysis of the signal and permits one to zoom into a specific area bounded by a particular length scale. The ability of wavelets to resolve the geoid signal into individual wavelength components without losing the spatial information makes this method superior to the more common spherical harmonic method. The wavelet analysis allows one to zoom into a specific area and look at the regional geology. We have used a wavelet transform of the geoid to study the regional geology of Japan and the Philippine Plate, South America, Europe, North America, East Africa and the Middle East, India and the Himalayas, China and Southeast Asia, and Australia. By filtering the Earth’s geoid anomalies with 2-D Gaussian wavelets at various horizontal length scales, one can detect the subduction zones along South America, the Aleutians, and the western Pacific; the Himalayas; the Zagros Mountains; the Mid-Atlantic ridge; and the island chains of the mid-Pacific. We have processed geoid data with a horizontal resolution down to approximately 200 km. Using an adjustable wavelet, one can detect structures that can only be picked up visually with much higher resolution spherical harmonic gravity data. We have also looked at the wavelength at which the maximum signal occurs over a range of scales. This method, known as E-max and k-max, is especially effective for detecting plate tectonic boundaries and ancient suture zones along with areas of strong non-isostatic gravitational potential due to high differential stress. These areas are likely to be at high risk of earthquakes. These methods will be especially useful to future studies of the geoid potentials of other planets, such as Mars and Venus, since they will allow careful studies of the regional geology variations with geoid data of the resolution available from satellites.  相似文献   

6.
Tornographic images of the Mediterranean upper mantle P-wave velocity structure have been used to analyse the gravity potential in the vicinity of the Hellenic subduction zone. The velocity anomalies are assumed to be proportional to density variations according to Birch's law. The effect of the topography on the geoid in the region is also calculated. The results indicate that the upper mantle geoid signal probably has significant amplitudes of several metres, but it correlates poorly with the observed geoid. The geoid calculated from topography correlates well, but has an amplitude that is too large in comparison with the observed geoid. The results show that an improved understanding of the Hellenic subduction zone geoid requires refinement of the Moho topography, so that the effect of this topography can be separated from the upper mantle signature.  相似文献   

7.
Traditional methods of imaging the Earth's subsurface using seismic waves require an identifiable, impulsive source of seismic energy, for example an earthquake or explosive source. Naturally occurring, ambient seismic waves form an ever-present source of energy that is conventionally regarded as unusable since it is not impulsive. As such it is generally removed from seismic data and subsequent analysis. A new method known as seismic interferometry can be used to extract useful information about the Earth's subsurface from the ambient noise wavefield. Consequently, seismic interferometry is an important new tool for exploring areas which are otherwise seismically quiescent, such as the British Isles in which there are relatively few strong earthquakes. One of the possible applications of seismic interferometry is ambient noise tomography (ANT). ANT is a way of using interferometry to image subsurface seismic velocity variations using seismic (surface) waves extracted from the background ambient vibrations of the Earth. To date, ANT has been used successfully to image the Earth's crust and upper-mantle on regional and continental scales in many locations and has the power to resolve major geological features such as sedimentary basins and igneous and metamorphic cores. Here we provide a review of seismic interferometry and ANT, and show that the seismic interferometry method works well within the British Isles. We illustrate the usefulness of the method in seismically quiescent areas by presenting the first surface wave group velocity maps of the Scottish Highlands using only ambient seismic noise. These maps show low velocity anomalies in sedimentary basins such as the Moray Firth, and high velocity anomalies in igneous and metamorphic centres such as the Lewisian complex. They also suggest that the Moho shallows from south to north across Scotland which agrees with previous geophysical studies in the region.  相似文献   

8.
Digital elevation models (DEMs) are widely relied upon as representations of the Earth's topographic morphology. The most widely used global DEMs available are ETOPO5, TerrainBase and JGP95E at a 5‐arc‐minute spatial resolution, and the GTOPO30 and GLOBE (version 1) global DEMs at a 30‐arc‐second spatial resolution. This paper presents the results of intercomparisons of these global DEMs over Australia, and with the GEODATA 9‐arc‐second DEM (version 1) of Australia. These DEMs were also compared to an independently produced, altimeter‐derived orthometric height database. This allows not only a totally independent assessment of the quality of these different DEMs over Australia, but also an insight into the ERS‐1 radar altimeter's ability to measure orthometric heights on land. The results of all these comparisons reveal large differences among the DEMs, with the greatest difference between JGP95E and ETOPO5 (mean 49 m, standard deviation ±274 m). The comparison with the altimeter‐derived database shows good agreement with the version 1 GEODATA DEM (mean 2 m, standard deviation ±27 m), thus demonstrating that the altimeter is a viable method for quality assessment of DEMs in lowland regions. A further conclusion is that the representation of the Australian land surface in both the JGP95E and TerrainBase global DEMs is more accurate than the higher resolution GLOBE (version 1) global DEM, even though JGP95E displays a disparity along the 140°E meridian because of the different data sources used in its construction.  相似文献   

9.
Details of the Earth's geoid and gravity fields are summarized and examined. A set of 9274 centerpoints of 5 ° cubes (referred to as bloblets) represents subducted slab locations. This set, developed from reconstructed plate history, was provided by the first author of Lithgow-Berttelloni et. al. [1998] and is the best available estimate of locations of subduction material in the Earth's mantle. Two global mass solutions offered here utilize 1) only those bloblets in the outer 800 km, and 2) only those bloblets in the outer 1400 km. Since each bloblet location represents the center of a 5-degree cube [a larger volume than appropriate for a fragment of subducted lithosphere] it was necessary in the 800 km depth limit model to reduce their density to 0.004 grams/cc, and by increasing bloblet density six times at 797.5 km depth to simulate the piling up of slab material beneath the 670 km boundary. The 1400 km depth limit model [commensurate with evidence of slab penetration into the lower mantle from seismic tomography] required estimating densities for the bloblets at nine different mantle depths. An additional four point-masses at 3000 km depth (to simulate CMB topography, unrelated to dynamic topography) completes the mass models. Both these models show reasonable agreement to patterns and magnitudes for degrees 2–10, 3–10, 4–10, 2–3, 3, and 2 geoid fields with both geometric and hydrostatic flattening. These models support an assessment that topography at the core mantle boundary (CMB) may be produced by processes within the core rather than from within the mantle. Possible causes for the CMB topography are discussed.  相似文献   

10.
《Tectonophysics》1987,134(4):263-272
The globe-encircling isotopic anomaly centred on latitude 30°S defined from the geochemistry of mid-ocean ridge and particularly intraplate basalts has been previously shown to be correlative with degree-2 features of the Earth's geoid. The same region appears to show a correlation with zones of low seismic velocities, perhaps indicative of heated rocks, which persist to at least the transition zone between the upper and lower mantle. That the basalts in this anomalous region are derived by diapiric uprise from a mantle reservoir of old deeply subducted materials is favourably demonstrated by olivine and clinopyroxene-controlled partial melting trends on geochemical discrimination diagrams.  相似文献   

11.
An abbreviated variant (condensed and updated by an American specialist) of a research monograph focuses on the gravity field, geoid height, seismicity, rheology, and Phanerozoic tectonic history of the Pacific Ocean and the surrounding Pacific Mobile Belt from a computational geodynamic perspective. The state of stress calculated for the Pacific Mobile Belt incidates that it is a geologically persistent tectonic boundary separating the Pacific hemisphere from the Indo-Afro-Atlantic hemisphere, which contains the bulk of the earth's continental crust. The gravity field of the Pacific Basin has a concentric structure and the region has a counter-clockwise sense of rotation relative to the Pacific Mobile Belt and surrounding hemisphere. The relative displacement is believed to have been approximately periodic through Phanerozoic time.  相似文献   

12.
A new gravimetric geoid is computed for South Spain and the Gibraltar Strait area. This geoid is located just in the junction between two tectonic plates (Euro-Asiatic and African plates) and in the junction of two gravimetric geoids: IGG2005 (the Iberian Gravimetric Geoid obtained in 2005) and MORGEO (the MORoccan GEOid). IGG2005 is the Iberian geoid and MORGEO is the Moroccan geoid, both geoids have been previously obtained. The new geoid is the gravimetric geoid solution that connects the two above-mentioned geoids, getting a more accurate and reliable picture of this area than the other previous geoids. The method used is the Stokes integral in convolution form, which shows to be an efficient method to reach the proposed objective. The terrain correction and the indirect effect have been taken into account. The new geoid is obtained as a regular grid (with a mesh size of 1.5′ × 1.5′) in the GRS80 reference system, covering the study area from 34° to 40° of latitude and from −8° to 0° of longitude. This gravimetric geoid and the previous geoids: IGG2005 and MORGEO; are compared to the geoid undulations derived at the validation points located on the study area (four GPS/levelling points measured on Morocco and five points of the European vertical reference network (EUVN) measured on Iberia). As it is expected, the new geoid is a more precise and reliable model, fitting the geoidal heights of these validation points with more accuracy than the other previous geoids. This new model will be useful for orthometric height determination by GPS in the mountains and remote areas, where levelling has many logistic problems. Also, it can be interesting for other geophysical purposes different to the height measurements, because it can provide a constraint for the density distribution, the thermal state of Lithosphere and the viscosity in the mantle. Such details can be inferred from a geoid model and the seismic velocity structure.  相似文献   

13.
地球公转轨道偏心率变化的构造运动响应   总被引:5,自引:0,他引:5  
最近3Ma发生的主要构造运动和气候变化事件,在准0.4Ma周期上与地球轨道偏心率变化存在一致性。据黄土高原地层记录划分的构造气候旋回界限,日历年龄分别为0.07、0.46、0.83、1.32、1.70、2.08、2.74MaBP,对应于偏心率曲线波动幅度由大变小时段的特定转折位置。文中分析了地球公转运动变速的基本数据及其对地球自转运动和圈层相互作用的可能影响,探讨了轨道偏心率变化对构造运动的驱动机制,并指出了构造气候旋回研究可为地质力学理论发展展示良好的前景。   相似文献   

14.
青藏高原及邻区大地水准面异常场源结构   总被引:1,自引:0,他引:1  
方剑 《地学前缘》2001,8(4):449-452
以青藏高原及邻区地形、地震层析成像、沉积层底面、Moho面及岩石层底面资料为基础 ,讨论了由地形起伏、地球内部各界面以及物质密度不均匀引起的大地水准面异常的计算方法 ,正演计算出青藏高原及邻区岩石圈内部物质不均匀产生的大地水准面异常 ,并把从全阶大地水准面异常中扣除正演模拟得到的岩石圈大地水准面异常与不同阶次波段的大地水准面进行比较 ,以寻求表示青藏高原及邻区地幔物质不均匀的大地水准面异常球谐函数的最佳阶次。结合地震层析成像资料分析结果得出 ,表示青藏高原及邻区下地幔、上地幔及岩石圈物质不均匀的大地水准面异常球谐函数的阶次范围分别为 2 6阶 ,7 60阶和 61 3 60阶。  相似文献   

15.
This paper looks at the relation between the time-averaged level of the sea surface and a gravimertic geoid, as determined in coastal areas. Measurements in local regions can now be accurate enough to demonstrate that the geoid and mean sea level are not even parallel to each other, let alone identical. The accuracy and pattern structure of surface gravity data in some shelf seas is comparable with those on land, so that a marine geoid can be derived from surface data without using satellite altimetry. The geodetic objective is then to combine the two to determine sea surface topography. In principle, gravimetric studies provide the absolute datum so that local oceanographic models on the shelf can be combined with sea surface topography models related to the global ocean circulation. In contrast, sea surface topography information near deep ocean coasts must come from external sources and satellite altimetry used to give the gravity data needed to offset the less good coverage by ship-borne gravimetry.Marine Bouguer anomalies enable two specific problems of gravity anomaly patterns near the continent ocean transition to be overcome. The necessary extension of Stokes' condensation reduction is developed and illustrated along a north-south profile from the Mediterranean across the Cote d'Azur. The effect on gravity of deep ocean water introduces a geoid correction in the form of a dipolar ridge whose amplitude at the shore is about 11 cm. In addition to geostrophic currents, a semi-quantitative model for the thermohaline effects on sea surface topography is discussed in relation to sea level differences between the Atlantic and Mediterranean.In considering appropriate algorithms for local geoid computation, Kirby's Iterative Fourier Combination routine for combining altimetry and surface gravity is extended to account for global sea surface topography. The impact of very fast spherical harmonic analysis algorithms is discussed and a simple physical model is given which explains the short coherence lengths found for the global gravity field. This necessary assumption for any local geoid computation was hitherto purely empirical.Finally, the use of land data such as tide gauges, ellipsoidal heights from GPS, and orthometric heights from first order levelling are reviewed as ways of corroborating geodetic estimates of sea surface topography and its relation to levelling datums. Successful examples are given from southern England.  相似文献   

16.
《Applied Geochemistry》2001,16(11-12):1309-1321
“IGCP” Projects 259 (International Geochemical Mapping) and 360 (Global Geochemical Baseline) under the aegis of UNESCO's International Geochemical Correlation Program made recommendations for standardizing geochemical mapping protocols and for conducting a wide-spaced sampling of the Earth's land surface based on a Global Reference Network of approximately 5000 160×160 km cells. A pilot study has been conducted throughout China during which these recommendations were implemented. During the pilot study, 500 floodplain samples representing drainage basins ranging in area from 1000 to 6000 km2 were collected throughout China and analyzed. The widely spaced sampling used for the pilot study was compared to the very dense sampling (× million samplings of sediment for all of China) used for China's Regional Geochemical National Reconnaissance Program. The geochemical maps generated from the wide-spaced sampling are strikingly similar to those generated from data based on the detailed sampling. Such low density floodplain sampling presents a relatively low-cost way to get a quick overview of the geochemistry of a large area of the Earth's surface. The implementation of this project in the Asia–Pacific region and the problems encountered are discussed in the present paper.  相似文献   

17.
A new, high precision, high accuracy and high resolution gravimetric geoid of Australia has been produced using most updated data, theory and methodology. This paper presents a concise report of the new Australian geoid determination. Some aspects of the new geoid computation, such as data validation, geoid determination strategies and computational procedures, are described. The relative precision of the new geoid is better than 5 cm for average baseline length of 4km~40km and 18 cm for average baseline length of 120km when compared with three local GPS/levelling networks.  相似文献   

18.
《International Geology Review》2012,54(12):1451-1456
Magnetic surveys of the zones show certain special types of anomalies explainable by structures both of the crust and of the upper mantle; the upper mantle is not magnetically homogeneous; the character of the Mohorovi?i? Discontinuity is not the same in continental and in oceanic areas. The lower margins of the magnetic excitation sources lie above the Discontinuity in continental areas as a rule, but on the whole sink below that boundary in oceanic areas. It is possible that the physical state of the substance under the Discontinuity, in continental areas, is such as to preclude its magnetization by the Earth's constant magnetic field. --IGR Staff.  相似文献   

19.
In this article, separation between the geoid and the quasigeoid was calculated using ground gravity data and the data extracted from two Global Geopotential Models (GGMs). The calculated results were compared together. To do so, the authors used the terrestrial gravity data in a vast region of Iran, comprising 8,245 stations which are kindly put in our disposal by the National Cartographic Center of Iran, as well as two GGMs, namely EGM96 and EGM2008 for comparison. The calculation of the separation for GGMs was performed by iteration method. The results showed that the geoid–quasigeoid separations obtained from the terrestrial data versus the orthometric heights are nonlinear in mountainous areas, whereas they are almost linear in flat regions due to decreasing the values of the topographic potential of the masses between the earth surface and the geoid. On the other hand, in case of GGMs, a positive correlation was observed between the separations and the orthometric heights in both mountainous and flat areas. As the difference between the separations extracted by two methods in mountainous areas—especially in the regions with ragged topography—differs strongly, it is recommended to use the dense gravity and height networks for accurate determination of the geoid–quasigeoid separation in these regions. Finally, we can conclude that the mean values of separation by two global geopotential models (EGM96 and EGM2008) are 21.87 and 21.23 cm, respectively, values which did not differ strongly, whereas this mean value obtained from ground gravity data is 16.10 cm, which differs from the GGMs’ results with approximately 5 cm.  相似文献   

20.
We present the results of tectonophysical reconstruction of natural stresses of the Earth's crust in the Altai–Sayan mountain region using cataclastic analysis of fault slips and seismic data on the focal mechanisms of earthquakes. This method allows one to obtain the parameters of the total stress tensor by invoking additional data: generalized experimental data on the brittle fracture of rocks, seismic data on the released stress of strong earthquakes, and data on the topography and density of rocks. Results of the tectonophysical reconstruction of stresses showed significant inhomogeneity of the stress state, which is manifested not only in the variation of the strike and dip of the principal axes of the stress tensor, determining changes in the geodynamic regime of the Earth's crust, but also in the close location of the regions of high and low isotropic tectonic pressure in relation to the lithostatic pressure. The variance of the ratio of tectonic pressure to lithostatic pressure is in the range of 0.59–1.31, with an average value for the region close to unity. This paper discusses internal or external mechanisms capable of generating the stress field obtained by the tectonophysical reconstruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号