首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Abstract

Re-evaluation of geochemical and geophysical datasets, and analysis of magmatic and detrital zircons from drill-core samples extracted from the Louth region of the southern Thomson Orogen (STO), augmented by limited field samples, has shown that two temporally and compositionally distinct igneous groups exist. The older Lower Devonian, calc-alkaline group corresponds to complexly folded, high-intensity curvilinear magnetic anomalies in the Louth region (Louth Volcanics) and are probable equivalents to Lower Devonian volcanics in the northern Lachlan Orogen. A younger Permo-Triassic alkaline assemblage forms part of an E–W corridor of diatremes that appears to relate to focussed lithospheric extension associated with the later stages of the Hunter–Bowen Orogeny in the New England Orogen. The alkaline group includes gabbros previously considered as Neoproterozoic, but all magmatic rocks, including alkaline basalts, contain an unusual number of xenocrystic zircons. The age spectra of the xenocrystic zircons mimic detrital zircons from Cobar Basin sedimentary rocks and/or underlying Ordovician turbidites, suggesting incorporation of upper crustal zircons into the alkaline basaltic magmas. A distinct difference of detrital zircon age spectra from central Thomson Orogen metasediments indicates the STO metasediments have greater affinities to the Lachlan Orogen, but both orogens probably began in the Early Ordovician during widespread backarc extension and deposition of turbidites in the Tasmanides. A surprising result is that Ordovician, Devonian and Permo-Triassic basaltic rocks from the STO and elsewhere in the Tasmanides, all yield the same Nd-model ages of ca 960–830 Ma, suggesting that Neoproterozoic subcontinental lithospheric mantle persisted throughout the evolution of the Tasmanide orogenic system.  相似文献   

2.
Field relations from a small area in the Maubisse region of Portuguese Timor fail to support the hypothesis of southward overthrusting of Permian rocks (Audley‐Charles, 1965) or the postulate that the Maubisse Formation represents a mid‐Tethys island group (Audley‐Charles et al., 1972).  相似文献   

3.
In the Eastern Lachlan Orogen, the mineralised Molong and Junee‐Narromine Volcanic Belts are two structural belts that once formed part of the Ordovician Macquarie Arc, but are now separated by younger Silurian‐Devonian strata as well as by Ordovician quartz‐rich turbidites. Interpretation of deep seismic reflection and refraction data across and along these belts provides answers to some of the key questions in understanding the evolution of the Eastern Lachlan Orogen—the relationship between coeval Ordovician volcanics and quartz‐rich turbidites, and the relationship between separate belts of Ordovician volcanics and the intervening strata. In particular, the data provide evidence for major thrust juxtaposition of the arc rocks and Ordovician quartz‐rich turbidites, with Wagga Belt rocks thrust eastward over the arc rocks of the Junee‐Narromine Volcanic Belt, and the Adaminaby Group thrust north over arc rocks in the southern part of the Molong Volcanic Belt. The seismic data also provide evidence for regional contraction, especially for crustal‐scale deformation in the western part of the Junee‐Narromine Volcanic Belt. The data further suggest that this belt and the Ordovician quartz‐rich turbidites to the east (Kirribilli Formation) were together thrust over ?Cambrian‐Ordovician rocks of the Jindalee Group and associated rocks along west‐dipping inferred faults that belong to a set that characterises the middle crust of the Eastern Lachlan Orogen. The Macquarie Arc was subsequently rifted apart in the Silurian‐Devonian, with Ordovician volcanics preserved under the younger troughs and shelves (e.g. Hill End Trough). The Molong Volcanic Belt, in particular, was reworked by major down‐to‐the‐east normal faults that were thrust‐reactivated with younger‐on‐older geometries in the late Early ‐ Middle Devonian and again in the Carboniferous.  相似文献   

4.
A 2‐D crustal velocity model has been derived from a 1997 364 km north‐south wide‐angle seismic profile that passed from Ordovician volcanic and volcaniclastic rocks (Molong Volcanic Belt of the Macquarie Arc) in the north, across the Lachlan Transverse Zone into Ordovician turbidites and Early Devonian intrusive granitoids in the south. The Lachlan Transverse Zone is a proposed west‐northwest to east‐southeast structural feature in the Eastern Lachlan Orogen and is considered to be a possible early lithospheric feature controlling structural evolution in eastern Australia; its true nature, however, is still contentious. The velocity model highlights significant north to south lateral variations in subsurface crustal architecture in the upper and middle crust. In particular, a higher P‐wave velocity (6.24–6.32 km/s) layer identified as metamorphosed arc rocks (sensu lato) in the upper crust under the arc at 5–15 km depth is juxtaposed against Ordovician craton‐derived turbidites by an inferred south‐dipping fault that marks the southern boundary of the Lachlan Transverse Zone. Near‐surface P‐wave velocities in the Lachlan Transverse Zone are markedly less than those along other parts of the profile and some of these may be attributed to mid‐Miocene volcanic centres. In the middle and lower crust there are poorly defined velocity features that we infer to be related to the Lachlan Transverse Zone. The Moho depth increases from 37 km in the north to 47 km in the south, above an underlying upper mantle with a P‐wave velocity of 8.19 km/s. Comparison with velocity layers in the Proterozoic Broken Hill Block supports the inferred presence of Cambrian oceanic mafic volcanics (or an accreted mafic volcanic terrane) as substrate to this part of the Eastern Lachlan Orogen. Overall, the seismic data indicate significant differences in crustal architecture between the northern and southern parts of the profile. The crustal‐scale P‐wave velocity differences are attributed to the different early crustal evolution processes north and south of the Lachlan Transverse Zone.  相似文献   

5.
The western margin of the Lachlan Fold Belt contains early ductile and brittle structures that formed during northeast‐southwest and east‐west compression, followed by reactivation related to sinistral wrenching. At Stawell all of these structural features (and the associated gold lodes) are dismembered by a complex array of later northwest‐, north‐ and northeast‐dipping faults. Detailed underground structural analysis has identified northwest‐trending mid‐Devonian thrusts (Tabberabberan) that post‐date Early Devonian plutonism and have a top‐to‐the‐southwest transport. Deformation associated with the initial stages of dismemberment occurred along an earlier array of faults that trend southwest‐northeast (or east‐west) and dip to the northwest (or north). The initial transport of the units in the hangingwall of these fault structures was top‐to‐the‐southeast. ‘Missing’ gold lodes were discovered beneath the Magdala orebody by reconstructing a displacement history that involved a combination of transport vectors (top‐to‐the‐southeast and top‐to‐the‐southwest). Fold interference structures in the adjacent Silurian Grampians Group provide further evidence for at least two almost orthogonal shortening regimes, post the mid‐Silurian. Overprinting relationships, and correlation with synchronous sedimentation in the Melbourne Trough, indicates that the early fault structures are mid‐ to late‐Silurian in age (Ludlow: ca 420–414 Ma). These atypical southeast‐vergent structures have regional extent and separate significant northeast‐southwest shortening that occurred in the mid‐Devonian (‘Tabberabberan orogeny’) and Late Ordovician (‘Benambran orogeny’).  相似文献   

6.
Abstract

The diverse geological and geophysical data sets compiled, interrogated and interpreted for the largely undercover southern Thomson Orogen region reveal a Paleozoic terrane dominated by deformed metasedimentary rocks intruded by S- and I-type granites. An interpretive basement geology map and synthesis of geochronological constraints allow definition of several stratigraphic packages. The oldest and most widespread comprises upper Cambrian to Lower Ordovician metasedimentary rocks deposited during the vast extensional Larapinta Event with maximum depositional ages of ca 520 to ca 496 Ma. These units correlate with elements of the northern Thomson Orogen, Warburton Basin and Amadeus Basin. The degree of deformation and metamorphism of these rocks varies across the region. A second major package includes Lower to Middle Devonian volcanic and sedimentary units, some of which correlate with components of the Lachlan Orogen. The region also includes a Middle to Upper Ordovician package of metasedimentary rocks and a Devonian or younger package of intermediate volcaniclastic rocks of restricted extent. Intrusive units range from diatremes and relatively small layered mafic bodies to batholithic-scale suites of granite and granodiorite. S-type and I-type intrusions are both present, and ages range from Ordovician to Triassic, but late Silurian intrusions are the most abundant. Two broad belts of intrusions are recognised. In the east, the Scalby Belt comprises relatively young (Upper Devonian) intrusions, while in the west, the Ella Belt is dominated by intrusions of late Silurian age within a curvilinear, broadly east–west trend. The stratigraphic distributions, characteristics and constraints defined by this interpretive basement mapping provide a basic framework for ongoing research and mineral exploration.  相似文献   

7.
The basement rocks of the poorly understood Thomson Orogen are concealed by mid-Paleozoic to Upper Cretaceous intra-continental basins and direct information about the orogen is gleaned from sparse geological data. Constrained potential field forward modelling has been undertaken to highlight key features and resolve deeply sourced anomalies within the Thomson Orogen. The Thomson Orogen is characterised by long-wavelength and low-amplitude geophysical anomalies when compared with the northern and western Precambrian terranes of the Australian continent. Prominent NE- and NW-trending gravity anomalies reflect the fault architecture of the region. High-intensity Bouguer gravity anomalies correlate with shallow basement rocks. Bouguer gravity anomalies below –300 µm/s2 define the distribution of the Devonian Adavale Basin and associated troughs. The magnetic grid shows smooth textures, punctuated by short-wavelength, high-intensity anomalies that indicate magnetic contribution at different crustal levels. It is interpreted that meta-sedimentary basement rocks of the Thomson Orogen, intersected in several drill holes, are representative of a seismically non-reflective and non-magnetic upper basement. Short-wavelength, high-intensity magnetic source bodies and colocated negative Bouguer gravity responses are interpreted to represent shallow granitic intrusions. Long-wavelength magnetic anomalies are inferred to reflect the topography of a seismically reflective and magnetic lower basement. Potential field forward modelling indicates that the Thomson Orogen might be a single terrane. We interpret that the lower basement consists of attenuated Precambrian and mafic enriched continental crust, which differs from the oceanic crust of the Lachlan Orogen further south.  相似文献   

8.
A substantial database of 40Ar/39Ar ages, collected recently from micas in western and central Victoria, has been used in several recent papers as support for continuous, diachronous deformation across western and central Victoria lasting through much of the Early Palaeozoic. This paper reviews these ages, together with field evidence collected over the last ten years. It provides an alternative interpretation, that mica growth and overgrowth in western Victoria was not continuous but episodic, occurring at ca 455 Ma, 440 Ma and 425 Ma, with little or no mica growth recorded from between these times. These ages have been obtained from mica in regional cleavage, crenulation cleavage and in quartz veins, and from across the entire width of the Stawell and Bendigo structural zones of western Victoria. A sharp change in mica ages occurs at the Mt William Fault, east of which no mica growth older than about 380 Ma is recorded. Several ages used in support for diachronous deformation are not related to deformation: an 40Ar/39Ar age of 417 Ma from Chewton is from the aureole of a Devonian granite, and an age of 410 Ma from the Melbourne Zone is shown to contain a substantial amount of inherited mica. If it is accepted that mica growth can be used to date deformation, then the 40Ar/39Ar ages indicate episodic, not continuous, deformation in western Victoria (Stawell and Bendigo Zones). The sharp decrease in the deformation age in the Melbourne Zone, east of the Mt William Fault, agrees well with field evidence that shows continuous sedimentation in the Melbourne Zone in the period (Ordovician to mid‐Early Devonian) during which the Stawell and Bendigo zones were undergoing deformation. Some correlation also exists between the 40Ar/39Ar ages from western Victoria and well‐constrained deformational events in the eastern Lachlan Orogen. The pattern of deformation has important corollaries in any model that attempts to understand what drives the deformation. While plate convergence must be the ultimate driving force, the pattern is quite inconsistent with deformation of a crust that was being drawn progressively into subduction zones, as proposed in recently published models. Rather, the observed pattern suggests that deformation happened in several very brief events, probably on semi‐rigid plates.  相似文献   

9.
Abstract

Zircon U–Pb ages, εHf(t), and δ18O isotopic data together with geochemistry and limited Sm–Nd results from magmatic rocks sampled in deep-basement drill cores from undercover parts of the Thomson Orogen provide strong temporal links with outcropping regions of the orogen and important clues to its evolution and relationship with the Lachlan Orogen. SHRIMP U–Pb zircon ages show that magmatism of Early Ordovician age is widespread across the central, undercover regions of the Thomson Orogen and occurred in a narrow time-window between 480 and 470?Ma. These rocks have evolved εHf(t)zrn (?12.18 to ?6.26) and εNd (?11.3 to ?7.1), and supracrustal δ18Ozrn (7.01–8.50‰), which is in stark contrast to Early Ordovician magmatic rocks in the Lachlan Orogen that are isotopically juvenile. Two samples have late Silurian ages (425–420?Ma), and four have Devonian ages (408–382?Ma). The late Silurian rocks have evolved εHf(t)zrn (?6.42 to ?4.62) and supracrustal δ18Ozrn (9.26–10.29‰) values, while the younger Devonian rocks show a shift toward more juvenile εHf(t)zrn, a trend that is also seen in rocks of this age in the Lachlan Orogen. Interestingly, two early Late Devonian samples have juvenile εHf(t)zrn (0.01–1.92) but supracrustal δ18Ozrn (7.45–8.77‰) indicating rapid recycling of juvenile material. Two distinct Hf–O isotopic mixing trends are observed for magmatic rocks of the Thomson Orogen. One trend appears to have incorporated a more evolved supracrustal component and is defined by samples from the northern two-thirds of the Thomson Orogen, while the other trend is generally less evolved and from samples in the southern third of the Thomson Orogen and matches the isotopic character of rocks from the Lachlan Orogen. The spatial association of the Early Ordovician magmatism with the more evolved metasedimentary signature suggests that at least the northern part of the Thomson Orogen is underlain by older pre-Delamerian metasedimentary rocks.  相似文献   

10.

Devonian and Carboniferous (Yarrol terrane) rocks, Early Permian strata, and Permian‐(?)Triassic plutons outcrop in the Stanage Bay region of the northern New England Fold Belt. The Early‐(?)Middle Devonian Mt Holly Formation consists mainly of coarse volcaniclastic rocks of intermediate‐silicic provenance, and mafic, intermediate and silicic volcanics. Limestone is abundant in the Duke Island, along with a significant component of quartz sandstone on Hunter Island. Most Carboniferous rocks can be placed in two units, the late Tournaisian‐Namurian Campwyn Volcanics, composed of coarse volcaniclastic sedimentary rocks, silicic ash flow tuff and widespread oolitic limestone, and the conformably overlying Neerkol Formation dominated by volcaniclastic sandstone and siltstone with uncommon pebble conglomerate and scattered silicic ash fall tuff. Strata of uncertain stratigraphic affinity are mapped as ‘undifferentiated Carboniferous’. The Early Permian Youlambie Conglomerate unconformably overlies Carboniferous rocks. It consists of mudstone, sandstone and conglomerate, the last containing clasts of Carboniferous sedimentary rocks, diverse volcanics and rare granitic rocks. Intrusive bodies include the altered and variably strained Tynemouth Diorite of possible Devonian age, and a quartz monzonite mass of likely Late Permian or Triassic age.

The rocks of the Yarrol terrane accumulated in shallow (Mt Holly, Campwyn) and deeper (Neerkol) marine conditions proximal to an active magmatic arc which was probably of continental margin type. The Youlambie Conglomerate was deposited unconformably above the Yarrol terrane in a rift basin. Late Permian regional deformation, which involved east‐west horizontal shortening achieved by folding, cleavage formation and east‐over‐west thrusting, increases in intensity towards the east.  相似文献   

11.
Abstract

Magmatic-textured zircon from medium- to high-K calc-alkaline Warraweena Volcanics (WV) in two drill holes have yielded concordant U–Pb dates of 417?±?3.5 and 414?±?4.0?Ma and are interpreted as maximum emplacement ages. The Warraweena volcanics were previously considered to be either Neoproterozoic or Macquarie arc equivalents. Whole-rock εNdt values of these volcanics are +4.5 and +4.8. Along strike of the drill holes, Devonian zircon U–Pb ages (411?±?5.5?Ma) were obtained from coherent S-type rhyolite flows that have highly negative εNdt values (–7.9 and –7.8). These are a component of the Oxley volcanics. The ages of the Warraweena and Oxley volcanics are identical within uncertainty.

The Oxley volcanics (OV) are interbedded with predominantly fine- to medium-grained metasedimentary and so imply a Lower Devonian deposition age for these host rocks. Based on their geophysical characteristics, the metasediments are widely distributed. These metasedimentary rocks yield a wide range of maximum depositional ages, from Early Devonian to earliest Ordovician–latest Cambrian, similar to the Cobar Basin. The absence of complex fabric development typical of Ordovician supracrustal rocks in the region, and conformity with the OV where observable suggest the widespread sedimentation was synchronous with rift-related volcanism in the Early Devonian.

Regionally, the WV is temporally, geochemically and isotopically (εNd values) similar to the calc-alkaline Louth Volcanics located over 100?km to the southwest of the WV. Louth Volcanics define a complexly folded belt in geophysical data. Other potentially correlative Early Devonian igneous rocks occur in the nearby Cobar Superbasin and elsewhere in the eastern Lachlan Orogen and are considered to represent the products of a post-orogenic, nascent continental back-arc rift system.  相似文献   

12.
The eastern Lachlan Orogen in southeastern Australia is noted for its major porphyry–epithermal–skarn copper–gold deposits of late Ordovician age. Whilst many small quartz vein-hosted or orogenic lode-type gold deposits are known in the region, the discovery of the Wyoming gold deposits has demonstrated the potential for significant lode-type mineralisation hosted within the same Ordovician volcanic stratigraphy. Outcrop in the Wyoming area is limited, with the Ordovician sequence largely obscured by clay-rich cover of probable Quaternary to Cretaceous age with depths up to 50 m. Regional aeromagnetic data define a north–south trending linear belt interpreted to represent the Ordovician andesitic volcanic rock sequence within probable Ordo-Silurian pelitic metasedimentary rocks. Drilling through the cover sequence in 2001 to follow up the trend of historically reported mineralisation discovered extensive alteration and gold mineralisation within an andesitic feldspar porphyry intrusion and adjacent volcaniclastic sandstones and siltstones. Subsequent detailed resource definition drilling has identified a substantial mineralised body associated with sericite–carbonate–albite–quartz–(±chlorite ± pyrite ± arsenopyrite) alteration. The Wyoming deposits appear to have formed as the result of a rheological contrast between the porphyry host and the surrounding volcaniclastic rocks, with the porphyry showing brittle fracture and the metasedimentary rocks ductile deformation. The mineralisation at Wyoming bears many petrological and structural similarities to orogenic lode-style gold deposits. Although the timing of alteration and mineralisation in the Wyoming deposits remain problematic, a relationship with possible early to middle Devonian deformation is considered likely.  相似文献   

13.
The Late Silurian to Middle Devonian Calliope Volcanic Assemblage in the Rockhampton region is deformed into a set of northwest‐trending gently plunging folds with steep axial plane cleavage. Folds become tighter and cleavage intensifies towards the bounding Yarrol Fault to the east. These folds and associated cleavage also deformed Carboniferous and Permian rocks, and the age of this deformation is Middle to Late Permian (Hunter‐Bowen Orogeny). In the Stanage Bay area, both the Calliope Volcanic Assemblage and younger strata generally have one cleavage, although here it strikes north to northeast. This cleavage is also considered to be of Hunter‐Bowen age. Metamorphic grade in the Calliope Volcanic Assemblage ranges from prehnite‐pumpellyite to greenschist facies, with higher grades in the more strongly cleaved rocks. In the Rockhampton region the Calliope Volcanic Assemblage is part of a west‐vergent fold and thrust belt, the Yarrol Fault representing a major thrust within this system.

A Late Devonian unconformity followed minor folding of the Calliope Volcanic Assemblage, but no cleavage was formed. The unconformity does not represent a collision between an exotic island arc and continental Australia as previously suggested.  相似文献   

14.
Abstract

Cambrian deformation associated with the Delamerian Orogeny is most evident in the Delamerian Orogen (southwestern Tasmanides) but has also been documented in the Thomson Orogen (northern Tasmanides). The tectonic evolution of the Thomson Orogen in the context of the Delamerian Orogeny is poorly understood. In particular, tectonostratigraphic relationships between the different parts of the Thomson Orogen (Anakie Inlier, Nebine Ridge, and southern Thomson Orogen) are still unclear. New detrital zircon data from the Nebine Ridge revealed an age spectrum that is consistent with published geochronological data from the Anakie Inlier. These results, in conjunction with petrographic observations and the interpretation of geophysical data, suggest that along the eastern part of the Thomson Orogen, the?~?NNE-trending Nebine Ridge represents the southward continuation of the?~?N–S-trending Anakie Inlier. New detrital zircon geochronological data are also presented for metasedimentary rocks from both sides of the Thomson–Lachlan boundary. The results constrain the maximum age of deposition (Ordovician–Devonian), and show that both sides of the Thomson–Lachlan boundary received detritus from a similar provenance. This might suggest that the Thomson–Lachlan boundary did not play a major role as a crustal-scale boundary prior to the Devonian. We speculate that transpressional deformation along this?~?E–W boundary, during the Early Devonian, was responsible for disrupting the original belt that connected the Delamerian Orogen (Koonenberry Belt) with the eastern Thomson Orogen (Nebine Ridge and Anakie Inlier).
  1. Highlights
  2. The Nebine Ridge is the southward continuation of the Anakie Inlier.

  3. The Anakie Inlier and Nebine Ridge represent a northern segment of the Cambrian Delamerian–Thomson Belt.

  4. ~E–W-trending crustal-scale structures at the southern Thomson Orogen were active during Devonian.

  相似文献   

15.
The Xing‐Meng Orogenic Belt is the eastern extension of the Central Asian Orogenic Belt that marks the boundary between the North China Block and the Siberian Block. Studies of zircon U Pb ages and Hf isotopic compositions show that four clastic sedimentary rock samples from different parts of the regional stratigraphic sequence were deposited at different ages, none earlier than Mid‐ or Early Silurian. Two sedimentary rocks were deposited during or after the Early Permian. Almost all zircons are of igneous origin. In Silurian and Devonian sediments, zircons show several modal age peaks, and in Permian sediments, zircons show a unimodal age peak. Based on the zircon age distribution of sedimentary rocks versus known ages from exposed rocks of the potential source regions, most of the zircons were derived from the Xing‐Meng Orogen itself. A few came from the South Mongolian microcontinent or the Siberia Block, but none came from the North China Block. The zircons of a biotite‐plagioclase paragneiss in Xilinhot have similar provenance to the sediments and were deposited during or after the Middle Devonian. Similarities between zircon age spectra and events in underlying rocks of sedimentary origin show that the sediments lie at their deposition site north of the Solonker suture zone because north‐dipping subduction and elevation blocked deposition of material from farther afield. Hf isotope compositions show the crustal accretion stages of the provenance areas during the Meso‐ to Neoarchaean, Palaeoproterozoic and Early and Late Palaeozoic. A two‐component mixing calculation based on Hf isotopes shows the large scale of the crustal accretion event of the region. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Carboniferous‐Permian volcanic complexes and isolated patches of Upper Jurassic — Lower Cretaceous sedimentary units provide a means to qualitatively assess the exhumation history of the Georgetown Inlier since ca 350 Ma. However, it is difficult to quantify its exhumation and tectonic history for earlier times. Thermochronological methods provide a means for assessing this problem. Biotite and alkali feldspar 40Ar/39Ar and apatite fission track data from the inlier record a protracted and non‐linear cooling history since ca 750 Ma. 40Ar/39Ar ages vary from 380 to 735 Ma, apatite fission track ages vary between 132 and 258 Ma and mean track lengths vary between 10.89 and 13.11 μm. These results record up to four periods of localised accelerated cooling within the temperature range of ~320–60°C and up to ~14 km of crustal exhumation in parts of the inlier since the Neoproterozoic, depending on how the geotherm varied with time. Accelerated cooling and exhumation rates (0.19–0.05 km/106 years) are observed to have occurred during the Devonian, late Carboniferous‐Permian and mid‐Cretaceous — Holocene periods. A more poorly defined Neoproterozoic cooling event was possibly a response to the separation of Laurentia and Gondwana. The inlier may also have been reactivated in response to Delamerian‐age orogenesis. The Late Palaeozoic events were associated with tectonic accretion of terranes east of the Proterozoic basement. Post mid‐Cretaceous exhumation may be a far‐field response to extensional tectonism at the southern and eastern margins of the Australian plate. The spatial variation in data from the present‐day erosion surface suggests small‐scale fault‐bounded blocks experienced variable cooling histories. This is attributed to vertical displacement of up to ~2 km on faults, including sections of the Delaney Fault, during Late Palaeozoic and mid‐Cretaceous times.  相似文献   

17.
Within the Variscan Orogen, Early Devonian and Late Devonian high‐P belts separated by mid‐Devonian ophiolites can be interpreted as having formed in a single subduction zone. Early Devonian convergence nucleated a Laurussia‐dipping subduction zone from an inherited lithospheric neck (peri‐Gondwanan Cambrian back‐arc). Slab‐retreat induced upper plate extension, mantle incursion and lower plate thermal softening, favouring slab‐detachment within the lower plate and diapiric exhumation of deep‐seated rocks through the overlying mantle up to relaminate the upper plate. Upper plate extension produced mid‐Devonian suprasubduction ocean floor spreading (Devonian ophiolites), while further convergence resulted in plate coupling and intraoceanic ophiolite imbrication. Accretion of the remaining Cambrian ocean heralded Late Devonian subduction of inner sections of Gondwana across the same subduction zone and the underthrusting of mainland Gondwana (culmination of NW Iberian allochthonous pile). Oblique convergence favoured lateral plate sliding, and explained the different lateral positions along Gondwana of terranes separated by Palaeozoic ophiolites.  相似文献   

18.

Four Middle Devonian (381 Ma) granodiorite samples have been recovered from two dredge sites approximately 65 km east of Green Cape, New South Wales. The granodiorite samples are similar in age and composition to members of the Moruya Suite and probably form an along‐strike extension of that suite. The location of granodiorite on the southeastern margin requires that a piece of continental lithosphere was located to the present east of the study area in the Devonian. This piece of lithosphere may now be located somewhere on the western Lord Howe Rise.

A sample of Early Cretaceous leuco‐quartz monzodiorite was also recovered from a dredge site approximately 45 km north‐northeast of Dalmeny, New South Wales. It represents a body that was intruded at essentially the same time as, and is inferred to be of similar origin to, the syenite rocks of the nearby Mt Dromedary and Montague Island complexes.  相似文献   

19.
The timing of Svalbard's assembly in relation to the mid‐Paleozoic Caledonian collision between Baltica and Laurentia remains contentious. The Svalbard archipelago consists of three basement provinces bounded by N–S‐trending strike–slip faults whose displacement histories are poorly understood. Here, we report microstructural and mineral chemistry data integrated with 40Ar/39Ar muscovite geochronology from the sinistral Vimsodden‐Kosibapasset Shear Zone (VKSZ, southwest Svalbard) and explore its relationship to adjacent structures and regional deformation within the circum‐Arctic. Our results indicate that strike–slip displacement along the VKSZ occurred in late Silurian–Early Devonian and was contemporaneous with the beginning of the main phase of continental collision in Greenland and Scandinavia and the onset of syn‐orogenic sedimentation in Silurian–Devonian fault‐controlled basins in northern Svalbard. These new‐age constraints highlight possible links between escape tectonics in the Caledonian orogen and mid‐Paleozoic terrane transfer across the northern margin of Laurentia.  相似文献   

20.
《International Geology Review》2012,54(15):1914-1939
ABSTRACT

Global-scale Palaeozoic plate tectonic reconstructions have suggested that Laurentia was obliquely approaching against the northwestern margin of Gondwana until the final agglutination of Pangea. In this contribution integrated petrographic analysis, heavy mineral analysis, and tourmaline geochemistry were done, and U–Pb detrital zircon geochronology was obtained, in late Palaeozoic sedimentary and meta-sedimentary units from the Floresta and Santander Massifs in the Eastern Colombian Andes in order to constrain their provenance and related it with the magmatic, sedimentary, and deformational record of the Gondwana–Laurentia convergence until the late Carboniferous to Permian formation of Pangea. Late Devonian to early Carboniferous sandstones from the Floresta Massif changed from sublithoarenites to lithoarenites, tracking the progressive uplift and unroofing of sedimentary and metamorphic rocks, with associated volcanic activity. The U–Pb detrital zircon geochronology from the sedimentary and metasedimentary of Floresta and Santander documents Mesoproterozoic and Palaeoproterozoic sources, and younger Ordovician to Silurian age populations, that can be related to the early to middle Palaeozoic plutonic rocks and the Amazon Craton. The limited Silurian to Early Devonian detrital ages that contrast with the more significant Middle to Late Devonian zircons that document the erosion of contemporaneous magmatic sources formed after a late Silurian to Early Devonian reduction on the magmatic activity along the proto-Andean margin. These rocks were apparently deformed and metamorphosed between the late Carboniferous and the early Permian. It is suggested that the filling and deformation record of these rocks documented the changes in plate convergence obliquity at the western margin of Gondwana associated with the migration of Laurentia until its final position in Pangea. Between the late Carboniferous and the early Permian, peri-Gondwanan continental terranes also collided with the continental margin. Over-imposed Mesozoic tectonics have contributed to the final redistribution of these terranes to their current position.

Abbreviations:LA: laser ablation inductively couple mass spectrometer; CL: cathodoluminiscence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号