首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
C.I. Mathison 《Lithos》1975,8(2):93-111
16 chemical analyses and 71 microprobe analyses of magnetites and ilmenitesin the Somerset Dam layered basic intrusion demonstrate that the chemistry of these oxides is a sensitive indicator of crystallisation and subsolidus conditions. Microprobe analyses prove the existence of two chemically distinct types of ilmenite — secondary ilmenite formed by subsolidus oxidation of magnetite-ulvöspinelss, and primary ilmenite, which has been only partially affected by the subsolidus oxidation.Application of experimental TfOaX relations shows that the inferred crystallisation conditions approximately the NNO buffer. Subsolidus cooling appears to have occurred approximately parallel to the NNO buffer, and was probably buffered partly an H2O-rich fluid, and partly by the Fe-Ti oxides. The proportions of H2O and of sulphur compounds appear to have determined the temperatures at which subsolidus oxidation of magnetite ceased.  相似文献   

3.
晚石炭世末期-三叠纪东澳大利亚的鲍恩-冈尼达-悉尼(Bowen- Gunnedah-Sydney)盆地系是位于拉克伦(Lachlan)褶皱带和新英格兰(New England)褶皱带之间的一个长条形的构造盆地。从北部的冈尼达(Gunnedah)到南部的巴特曼斯(Batemans)湾,悉尼盆地是鲍恩-冈尼达-悉尼盆地系南端的一个次级盆地。悉尼盆地的二叠系包括河流、三角洲、滨浅海沉积岩和火山岩地层。南悉尼盆地的西南部二叠系不整合覆盖于变形变质的拉克伦(Lachlan)褶皱带之上。二叠系由下部的塔拉特郎(Tallaterang)群、中部的肖尔黑文群(Shoalhaven Group)和上部的伊勒瓦拉煤系(Illawarra Coal Measures)组成。从晚石炭世末到中三叠世悉尼盆地经历了弧后扩张到典型的前陆盆地的不同阶段:弧后扩张阶段、被动热沉降阶段和挤压挠曲负载阶段。  相似文献   

4.
The flow pattern within a slump in Permian marine rocks of the southern Sydney Basin, Australia, is recorded by folds and deformed fossils. Abundant brachiopod and bryzoan fossils in the slumped rocks are relatively undeformed, but fossil crinoid stems have been deformed by relative rotation of individual ossicles. Measurement of the strain indicates that the deformation of the crinoids is consistent with flexural flow folding within the slump. Previous models assume that curved slump fold axes remain parallel to the enveloping bedding surface of a slump sheet. Detailed measurements of the orientation of slump folds in this study found fold axes to be oblique to bedding, which is interpreted as a result of folds plunging downward towards the flanks of the slump or slump lobes. In the present model, fold axes are not generally parallel to the strike of the fold axial surface, and this can explain differences between the orientations of slump fold axes and axial surfaces when these are used as directional indicators of slump movement.  相似文献   

5.
Upper Carboniferous to Lower Permian sedimentary rocks extend along the periphery of the northern Sydney Basin, a sub‐basin of the Sydney‐Gunnedah‐Bowen Basin complex. The basin contains basal basalts and volcanic sediments deposited in a nascent rift zone. This rift zone was created through crustal thinning during trench rollback on the eastern edge of the New England Orogen. Thermal subsidence created accommodation for predominantly marine Dalwood Group sediments. Clastic sedimentation then occurred in the Maitland‐Cessnock‐Greta Coalfield and Cranky Corner Basin during the Early Permian. This occurred on a broad shelf undergoing renewed thermal subsidence on the margin of a rift flank of the Tamworth Belt of the southern New England Orogen. Braidplain fans prograded or aggraded in two depositional sequences. The first sequence commences near the top of the Farley Formation and includes part of the Greta Coal Measures, while the second sequence includes the majority of the Greta Coal Measures and basal Branxton Formation. Thin, areally restricted mires formed during interludes in a high sedimentation regime in the lowstand systems tracts. As base‐level rose, areally extensive mires developed on the transgressive surface of both sequences. A paludal to estuarine facies changed to a shallow‐marine facies as the braidplain was transgressed. The transgressive systems tracts continued to develop with rising relative sea‐level. Renewed uplift in the hinterland resulted in the erosion of part of the transgressive systems tract and all of the highstand systems tract of the lower sequence. In the upper sequence a reduction in relative sea‐level rise saw the development of a deltaic to nearshore shelf highstand systems tract. Extensional dynamics caused a fall in relative base‐level and the development of a sequence boundary in the Branxton Formation. Finally, renewed thermal subsidence created accommodation for the overlying, predominantly marine Maitland Group.  相似文献   

6.
悉尼盆地位于澳大利亚东部,Lachlan褶皱带和New England褶皱带之间。悉尼盆地从晚石炭世末到中三叠世经历了弧后扩张到前陆盆地的不同阶段:弧后扩张阶段(石炭纪)、被动热沉降阶段(早、中二叠世Berry组)和挤压挠曲负载阶段(中二叠世Broughton组—三叠纪)。此时位于悉尼盆地东侧的New England褶皱带为岛弧背景。因此,二叠纪处于弧后盆地的南悉尼盆地受弧后扩张和东侧弧前海沟俯冲的影响地震活动强烈,发育一系列与地震有关的震积岩,形成多种类型的与地震活动有关的软沉积物变形构造。南悉尼盆地二叠系的软沉积物变形包括地裂缝、震褶层、液化脉、沙火山、负荷构造、火焰构造、枕状构造、球状构造、枕状层、滑塌构造、角砾岩化等。其中地裂缝、震褶层是地震颤动直接引起的断裂和褶皱;枕状层是地震颤动引起的砂层脱水、下沉形成的;液化脉、沙火山为液化的砂层穿入地震形成的裂隙形成的;负荷构造、火焰构造、枕状构造、球状构造是受地震颤动在砂、泥岩界面上由于砂层下沉、泥层上穿形成的;滑塌构造和角砾岩化是地震引起的重力滑塌或泥石流形成的。地裂缝、震褶层、液化脉、沙火山、负荷构造、火焰构造、枕状构造、球状构造、枕状层相当于原地震积岩,而滑塌构造和角砾岩化属于异地震积岩。  相似文献   

7.
在野外实地考察和综合研究的基础上,根据层序界面特征和凝缩层,思茅盆地二叠系可分为9个Ⅲ级层序,其中下二叠统3个,上二叠统6个。根据区域特点,认为二叠纪可分为2个Ⅱ级层序,在思茅盆地范围,乃至中国南方可以进行对比。  相似文献   

8.

Lithofacies in the mid‐Permian Nowra Sandstone indicate a middle/upper shoreface to foreshore environment of deposition under the influence of storm‐generated waves and north‐northeasterly directed longshore currents. Palaeogeographic reconstruction for the Nowra Sandstone portrays a sand‐dominated high energy shelf and offshore shoal forming a sequence thickening seaward away from the western shore of the Sydney Basin. The shoal‐crest at the outer edge of the shelf trends north‐northeast. It is characterized by fine‐ to medium‐grained sandstone with upper flow regime structures and a high proportion of conglomerate, whereas coarser sandstone with lower energy bedforms occurs along the seaward side of the shoal. In the deeper water to the east, the lower Nowra Sandstone becomes rapidly thinner as it passes seaward, via bioturbated storm redeposited sandstone beds, into the shelf deposits of the Wandrawandian Siltstone. This sequence accumulated during a regressive event and the base of the formation becomes progressively younger eastward. The sand may have been supplied by rivers along the western coast but the major source was south of the study area. The lower Nowra Sandstone is separated from the upper part of the formation by an extensive ravinement surface overlain by the Purnoo Conglomerate Member. In contrast to the lower unit, the upper Nowra Sandstone forms a westward thickening wedge that represents a backstepping nearshore sand facies that accumulated during a transgression. The upper Nowra Sandstone passes vertically and laterally eastward into the Berry Siltstone. Thus both boundaries of the Nowra Sandstone are diachronous, first younging eastward and then westward as a response to a regressive‐transgressive episode.  相似文献   

9.
The Greta Coal Measures are the lower of two main coal‐bearing intervals in the Permian northern Sydney Basin. High quality outcrop and continuous core data are available from the Muswellbrook Anticline area in the Hunter Valley, enabling a sequence‐stratigraphic interpretation of the Greta Coal Measures to be presented for the first time. Age and core relationships indicate an unconformity at the base and the top of the Greta Coal Measures. A correlation between dated tuffs in the upper Greta Coal Measures in the Muswellbrook area and the Maitland Group in the Cessnock area establishes a clear diachronous upper boundary for the Greta Coal Measures resulting from a northwest‐ward marine transgression. The Greta Coal Measures are interpreted to occupy a single sequence in which the lower fluvial and lacustrine Skeletar Formation makes up a transgressive systems tract, the Ayrdale Sandstone Member is an estuarine unit around the maximum flooding surface, and the upper fluvial to deltaic Rowan Formation occupies a highstand systems tract. The overlying Jasdec Park Sandstone Member of the Maitland Group infills incised valleys above a sequence boundary and then occurs as a transgressive shoreline system before passing into the glacial marine Branxton Formation. The Greta Coal Measures represent high accommodation where subsidence and sediment supply were approximately balanced over more than 100 m of accumulation, and the development of 14 recognisable coal seams occurred in a single sequence.  相似文献   

10.
The recent review of the Lopingian (upper Permian) stratigraphic framework of the Galilee Basin, prompted a reconsideration of the paleo-environments of deposition. This study interpreted the distribution of sedimentary facies from geophysical logs across the basin complemented by detailed logging from four key wells (GSQ Tambo 1-1A, OEC Glue Pot Creek 1, CRD Montani 1 and GSQ Muttaburra 1). Seven facies associations were identified: terrestrial fluvial, floodplain, lacustrine and mire; and paralic to marine estuarine shoreline, delta and restricted marine. Coal measures (mire facies) are best developed in the northeastern margin of the basin, whereas the southern Springsure Shelf was dominated by marine conditions throughout the Lopingian, only developing terrestrial facies towards the very uppermost Lopingian. The ‘Colinlea Sandstone equivalent’ was deposited in a fluvial system, with tidal influence exhibited in the southern part of the basin, which decreases further north as lacustrine environments become common. The regional transgression represented by the Black Alley Shale can be mapped into the central part of the basin, but based on new exploration data its northern extent is more limited than previously thought. The ‘Burngrove Formation equivalent’ and Bandanna Formation represent a southerly prograding fluvial-deltaic system during the regional regression in the upper part of the Lopingian.  相似文献   

11.
New mapping at Anglesea coal mine, and coal resource and deep groundwater drilling have provided new perspectives on the economically important Eastern View Group coal bearing sedimentary succession in the onshore Torquay Basin. In the Anglesea Syncline, the upper 35 m thick brown coal seam of the Eastern View Group is overlain by a low angle unconformity. Units overlying the coal seams include high energy, cross cutting sand channels of the Boonah Formation and lower energy channel and interchannel systems of the overlying Salt Creek and Anglesea Formations. The mine section can be correlated from borehole data with the Eastern View Group and Demons Bluff Group exposed in coastal cliff sections along the adjacent Anglesea to Torquay coast. Recently drilled coal and groundwater exploration bores provide new data on the extent of the coal measures in the Anglesea area, and details of the underlying Tertiary succession that include typical Otway Basin units such as the Pember Mudstone and Pebble Point Formations. The stratigraphy below the coal measures suggests that the Otway Ranges were not present during Palaeogene times. The rank of the brown coals on and around the Otway Ranges is higher than any other Tertiary coals in onshore Victoria, and they preserve similar patterns of rank distribution to the high rank black coals in the underlying Lower Cretaceous Otway Group. Evidence for large overburden thicknesses is lacking, and the high ranks may have been augmented by higher than normal geothermal gradients in the Early Tertiary. Comparisons between the observed depositional cycles, sequence stratigraphic cycles, and worldwide coastal onlap curves suggest that the observed disconformity boundaries are sequence boundaries that provide a chronostratigraphic framework. Sequences present may include TB4.1–4.5 in the overburden units, and TB 2.4–3.6 in the coal bearing interval.  相似文献   

12.
The Middle Jurassic Walloon Subgroup is a prolific coal seam gas (CSG) resource in the Surat Basin, Queensland. Sedimentary framework models constrain stochastic reservoir models of the geological heterogeneity, but there is limited basin analysis information in the public domain. Here we present a regionally consistent stratigraphic framework model for the Walloon CSG play in the eastern Surat Basin. Lithostratigraphic correlation of open-file industry and government wireline logs supports the interpretation of six subunits in the eastern Surat Basin (oldest–youngest: Durabilla Formation; Taroom Coal Measures; Tangalooma Sandstone; and Juandah Coal Measures, informally divided into three members named the lower Juandah Coal Measures, Juandah sandstone and upper Juandah Coal Measures). Important findings are that subunits within the Walloon Subgroup do not correlate along the entire CSG play area; in many places, the overlying Springbok Sandstone (Upper Jurassic) has incised to the lower Juandah Coal Measures level, removing the upper coal seam groups. The Walloon Subgroup thins to the south through a combination of depositional thinning and truncation. Lithofacies analysis and isopach maps support deposition in a southerly prograding fluvial system or clastic wedge. This stratigraphic and depositional interpretation informs models for hydrogeological studies of the Walloon Subgroup and underpins a regional assessment of controls on microbial methane distribution.  相似文献   

13.
四川盆地东北部中二叠统层序地层特征   总被引:1,自引:2,他引:1       下载免费PDF全文
本文以野外露头观察及录井、测井、地震、古生物等资料为基础,通过岩石地层、测井地层及生物地层等的综合分析,在四川盆地东北部中二叠统地层中识别出4种类型的层序界面:隆升侵蚀不整合面、暴露层序不整合面、海侵上超不整合面及岩性岩相转换面。划分了3个三级层序:SQ1对应梁山组和栖霞组,时限约7Ma;SQ2对应茅口组一段,时限约3Ma;SQ3对应茅口组二段-三段,时限约5Ma。三级层序的平均时限约5Ma。同时,分析了层序对储层的控制作用,其主要体现在两个方面:层序控制了沉积相,影响了储层原生孔隙的发育;碳酸盐岩的发育受三级层序海平面升降控制,优质储层明显受控于海退半旋回。  相似文献   

14.
四川盆地东北地区上二叠统层序地层特征研究   总被引:5,自引:0,他引:5  
运用层序地层学的原理,在野外剖面沉积相、岩性、岩相和可容空间变化分析的基础上,对川东北地区宣汉县渡口镇羊鼓洞上二叠统剖面的层序地层进行研究,识别出3种类型6个层序界面,将上二叠统划分为1个Ⅱ层序和5个Ⅲ级层序,其中吴家坪组划分为3个Ⅲ级层序、长兴组划分为2个Ⅲ级层序。并在层序划分的基础上建立了川东北地区上二叠统的层序地层格架。将可容空间变化曲线与露头层序地层划分之间进行对比发现,二者之间存在着良好的对应关系。这不仅验证了层序划分的正确性,而且说明了Fischer图解旋回分析技术的实用性和客观性。  相似文献   

15.
Upper Permian to Lower Triassic coastal plain successions of the Sydney Basin in eastern Australia have been investigated in outcrop and continuous drillcores. The purpose of the investigation is to provide an assessment of palaeoenvironmental change at high southern palaeolatitudes in a continental margin context for the late Permian (Lopingian), across the end‐Permian Extinction interval, and into the Early Triassic. These basins were affected by explosive volcanic eruptions during the late Permian and, to a much lesser extent, during the Early Triassic, allowing high‐resolution age determination on the numerous tuff horizons. Palaeobotanical and radiogenic isotope data indicate that the end‐Permian Extinction occurs at the top of the uppermost coal bed, and the Permo‐Triassic boundary either within an immediately overlying mudrock succession or within a succeeding channel sandstone body, depending on locality due to lateral variation. Late Permian depositional environments were initially (during the Wuchiapingian) shallow marine and deltaic, but coastal plain fluvial environments with extensive coal‐forming mires became progressively established during the early late Permian, reflected in numerous preserved coal seams. The fluvial style of coastal plain channel deposits varies geographically. However, apart from the loss of peat‐forming mires, no significant long‐term change in depositional style (grain size, sediment‐body architecture, or sediment dispersal direction) was noted across the end‐Permian Extinction (pinpointed by turnover of the palaeoflora). There is no evidence for immediate aridification across the boundary despite a loss of coal from these successions. Rather, the end‐Permian Extinction marks the base of a long‐term, progressive trend towards better‐drained alluvial conditions into the Early Triassic. Indeed, the floral turnover was immediately followed by a flooding event in basinal depocentres, following which fluvial systems similar to those active prior to the end‐Permian Extinction were re‐established. The age of the floral extinction is constrained to 252.54 ± 0.08 to 252.10 ± 0.06 Ma by a suite of new Chemical Abrasion Isotope Dilution Thermal Ionization Mass Spectrometry U‐Pb ages on zircon grains. Another new age indicates that the return to fluvial sedimentation similar to that before the end‐Permian Extinction occurred in the basal Triassic (prior to 251.51 ± 0.14 Ma). The character of the surface separating coal‐bearing pre‐end‐Permian Extinction from coal‐barren post‐end‐Permian Extinction strata varies across the basins. In basin‐central locations, the contact varies from disconformable, where a fluvial channel body has cut down to the level of the top coal, to conformable where the top coal is overlain by mudrocks and interbedded sandstone–siltstone facies. In basin‐marginal locations, however, the contact is a pronounced erosional disconformity with coarse‐grained alluvial facies overlying older Permian rocks. There is no evidence that the contact is everywhere a disconformity or unconformity.  相似文献   

16.
The Drummond Basin represents a major, backarc extensional system located at the inboard margin of the northern New England Orogen. Its synrift (cycle 1) infill is distinctively volcanic and volcani‐clastic in character and displays complex facies relationships and considerable variations in thickness controlled by the history and fabric of extensional faulting and the distribution of coeval volcanic centres. Subtle inheritance signatures in the age spectra obtained by SHRIMP (II) Pb‐U dating of zircons from volcanic units have impeded age assignment. New geochronologic data indicate that basinal subsidence was initiated in the north in latest Devonian (Famennian) time but was delayed until the Early Carboniferous (Tournaisian) in the south. Northern successions are dominated by volcaniclastic strata that accumulated distal to the loci of contemporary volcanism, whereas southern successions are dominated by silicic flows and ash‐flow tuffs and associated hypabyssal intrusive suites proximal to, or coincident with, volcanic loci. The Burdekin, Clarke River and Bundock Creek Basins located north of the Drummond Basin are broadly coeval features with comparable Infill. They likewise represent backarc basins developed inboard of the northern New England Orogen which trends offshore at latitude 20°S and appears to be represented in basement cores recovered from the Coral Sea. Calc‐alkaline magmatism of Late Devonian‐Early Carboniferous age extended at least 400 km inboard of the Gondwanan plate margin now represented in Queensland and related to an acute angle of subduction along the active margin at that time.  相似文献   

17.
18.
对滇西保山地块、泰国西部和南部及澳大利亚悉尼盆地的冈瓦纳相二叠纪地层进行了对比。前两者的二叠纪地层岩性和所含生物群面貌基本可以对比 ,皆反映出由冈瓦纳相向特提斯相的转变 ,后者是典型的冈瓦纳相 ,仅早二叠世地层的岩性和所含化石与前两者相似。  相似文献   

19.
This study highlights three‐dimensional variability of stratigraphic geometries in the ramp crest to basin of mixed carbonate–siliciclastic clinoforms in the Permian San Andres Formation. Standard field techniques and mapping using ground‐based lidar reveal a high degree of architectural complexity in channellized, scoured and mounded outer ramp stratigraphy. Development of these features was a function of location along the ramp profile and fluctuations in relative sea‐level. Deposition of coarse‐grained and fine‐grained turbidites in the distal outer ramp occurred through dilute and high‐density turbidity flows and was the result of highstand carbonate shedding within individual cycles. In this setting, high‐frequency cycles of relative sea‐level are interpreted on the basis of turbidite frequency, lateral extent and composition. Submarine siliciclastic sediment bypass during lowstand cycles resulted in variable degrees of siliciclastic preservation. Abundant siliciclastic material is preserved in the basin and distal outer ramp as point‐sourced lowstand wedges and line‐sourced early transgressive blankets. In mounded topography of the outer ramp, siliciclastic preservation is minimal to absent, and rare incised channels offer the best opportunity for recognition of a sequence boundary. Growth of mounded topography in the outer ramp began with scouring, followed by a combination of bioherm construction, fusulinid mound construction and isopachous draping. Intermound areas were then filled with sediment and continued mound growth was prevented by an accommodation limit. Mound growth was independent of high‐frequency cycles in relative sea‐level but was dependent on available accommodation dictated by low‐frequency cyclicity. Low‐angle ramp clinoforms with mounded topography in the outer ramp developed during the transgressive part of a composite sequence. Mound growth terminated as the ramp transformed into a shelf with oblique clinoform geometries during the highstand of the composite sequence. This example represents a ramp‐to‐shelf transition that is the result of forcing by relative sea‐level fluctuations rather than ecologic or tectonic controls.  相似文献   

20.
Coexisting primary minerals and hydrous alteration minerals in basalt lavas of the Upper Permian Broughton Formation of the Sydney Basin are indicative of the involvement of a hydrothermal fluid phase during low‐grade metamorphism. Variation and zonation of alteration phases in vesicles and vugs indicate that the alteration minerals developed in response to several episodes of precipitation, with early CO2‐rich fluids producing assemblages rich in calcite and chlorite‐smectite while later CO2‐poor fluids precipitated Ca‐zeolites, prehnite and pumpellyite. Vesicular parts of flows typically show much higher contents of alteration minerals than more massive parts of the same flow, but no systematic increase in either the style or intensity of alteration with increasing depth in the lava pile is evident. The presence of Ca‐zeolites, prehnite, pumpellyite and rare epidote suggests uppermost zeolite facies to lowermost prehnite‐pumpellyite facies metamorphism. Stability relationships of the metamorphic phases based on experimental and theoretical studies, used in conjunction with measured parameters for modern geothermal systems, indicate a peak metamorphic temperature of ~200–230°C while the extant stratigraphy indicates that the maximum depth of burial was ~ 1200 m. Alteration developed in response to circulation of hot, aqueous fluids generated by thermal convection cells associated with the Permian lavas and/or a large buried intrusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号