首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gosses Bluff, west of Alice Springs, Northern Territory, comprises a roughly circular rim of steeply dipping sandstone, locally overturned with downward facing folds, surrounding a topographically lower core of steeply dipping faulted sandstone, shale, and limestone. Abundant shattercones occur both in outcrop and to depths of 1,000 m. The structure lies on an’ anticlinal trend‐Structural, gravity, seismic and drill hole data indicate that the structure continues to some depth. Shattercones also occur outside the rim of Gosses Bluff. At a nearby prominence, Mt Pyroclast, they occur with peculiar breccias and devitrified glassy rocks, some of which may be of volcanic or impact fusion origin.

Gosses Bluff has previously been regarded as a diapir caused by salt intrusion. The evidence now available suggests that it is a crypto‐explosion structure, resulting either from deep‐seated explosive volcanic activity, or from meteorite impact, probably at some time during the Mesozoic Era.  相似文献   

2.
During the Cainozoic there was widespread volcanism, mainly basaltic, in eastern New South Wales. Numerous new K‐Ar ages, together with previously published results, provide information on the age of virtually all the main volcanic provinces, and indicate that the volcanism started about 70 m.y. ago in the Late Cretaceous, and was continuous from about 60 m.y. ago (Palaeocene) until about 10 m.y. ago (middle Miocene). There has been no volcanic activity since 10 m.y. ago.

The ages of uplift of the Eastern Highlands are estimated from the relationship of the dated basaltic flows to the topography. A major uplift is deduced some time between the mid‐Cretaceous and late Oligocene, followed by a quiescent period. A further uplift started some time after the middle Miocene, and it continues to the present day. The highland was uplifted differentially both along and transverse to the axis.  相似文献   

3.
4.
Lavas of the Biu and Jos Plateaus, Northern Cameroon Volcanic Line (CVL), contain abundant genetically related megacrysts of clinopyroxene, garnet and subordinately plagioclase, ilmenite and amphibole. P, T-estimates of crystallization for the primitive group of cpx and gnt megacrysts are 1.7–2.3 GPa and ~1,400 °C. Because crustal thickness in these areas is only ~30 km (~0.9 GPa), megacrysts must have formed within the lithospheric mantle. Primitive Biu and Jos lavas are isotopically heterogeneous in Sr-Nd isotope space (87Sr/86Sr=0.70285–0.70360 and Nd=7.5–4.6). Biu Plateau megacrysts overlap the range of Biu lavas in Sr-Nd isotope composition, indicating that crustal contamination of Biu lavas was minor. Jos Plateau lavas are isotopically more enriched than their associated megacrysts. Therefore an additional contamination of Jos lavas due to assimilation of continental crust (~5%) or enriched shallow lithospheric mantle is indicated. Lavas of Biu and Jos Plateau do not reflect simple fractionation or equilibrium crystallization products, but instead reflect mixing between primary melts and their fractionated derivatives.Editorial Responsibility: I. Carmichael  相似文献   

5.
Numerical celestial-mechanical models are used to compare (andg interpolate and forecast) near-diurnal tidal variations in the Earth’s axial rotation and oscillations in the global angular momentum of the atmosphere using the IERS data and NCEP/NCAR meteorological data. In order to improve the accuracy of interpolations and forecasts made for short and intraday time intervals, it is expedient to include the effect of small perturbations in short-term zonal tides, which influence fluctuations in Universal Time UT1 directly related to the Earth’s rotation. Due to the quasi-static formulation of the problem, it is assumed that the dynamics of the thin surface atmosphere are completely determined by the gradient of the tide-generating geopotential, which supports forced oscillations of the entire subsystem (i.e., of the mantle and atmospheric envelope). A comparison of the numerical simulations with the NCEP/NCAR data shows that the model is effective for applications in forecasting atmospheric tides.  相似文献   

6.
Nine SHRIMP U/Pb ages on zircon and two Pb/Pb single zircon ages have been determined from Late Paleozoic volcanic rocks from Saxony and northern Bohemia. Samples came from the Teplice-Altenberg Volcanic Complex, the Meissen Volcanic Complex, the Chemnitz Basin, the Döhlen Basin, the Brandov-Olbernhau Basin, and the North Saxon Volcanic Complex. The Teplice-Altenberg Volcanic Complex is subdivided into an early Namurian phase (Mikulov Ignimbrite, 326.8 ± 4.3 Ma), thus older than assumed by previous studies, and a late caldera-forming phase (Teplice Ignimbrite, 308.8 ± 4.9 Ma). The age of the latter, however, is not well constrained due to a large population of inherited zircon and possible hydrothermal overprint. The Leutewitz Ignimbrite, product of an early explosive volcanic episode of the Meissen Volcanic Complex yielded an age of 302.9 ± 2.5 Ma (Stephanian A). Volcanic rocks intercalated in the Brandov-Olbernhau Basin (BOB, 302 ± 2.8 Ma), Chemnitz Basin (CB, 296.6 ± 3.0 Ma), Döhlen Basin (DB, 296 ± 3.0 Ma), and the North Saxon Volcanic Complex (NSVC, c. 300–290 Ma) yielded well-constrained Stephanian to Sakmarian ages. The largest Late Paleozoic ignimbrite-forming eruption in Central Europe, the Rochlitz Ignimbrite, has a well-defined middle Asselian age of 294.4 ± 1.8 Ma. Ages of palingenic zircon revealed that the Namurian-Westphalian magmatism assimilated larger amounts of crystalline basement that formed during previous Paleozoic geodynamic phases. The Precambrian inherited ages support the chronostratigraphic structure assumed for the Saxo-Thuringian Zone of the Variscan Orogen. The present results help to improve the chronostratigraphic allocation of the Late Paleozoic volcanic zones in Central Europe. At the same time, the radiometric ages have implications for the interbasinal correlation and for the geodynamic evolution of the Variscan Orogeny.  相似文献   

7.
Thirty K‐Ar dates on Cainozoic volcanic rocks lying at the north end of the Bowen Basin suggest that several episodes of volcanism took place at major structural weaknesses. The oldest volcanism (ca 54 m.y.) was located outside the basin structure. The main volcanism (Nebo and East Clermont Provinces) extended from early Oligocene (34–35 m.y.) to mid‐Cainozoic time (21–22 m.y.?). Isolated Pliocene activity is tentatively suggested by dates on Mt St Martin (ca 3 m.y.).

Dating of the Nebo central volcano (31–33 m.y.) supports the model of Wellman &; McDougall, with volcanic activity related to migration of Australia northwards over a mantle magma source. Consideration of the Nebo dates with those of other central volcanoes in north Queensland, suggests that central felsic activity was surrounded by broad zones of peripheral eruptives, petrologically zoned from outer undersaturated basalts to inner saturated basalts. These zones (super provinces) delineate the size and profile of underlying magma sources and appear to trend back in time and space to sea‐floor spreading episodes in the Coral Sea—southeastern Papua region (55 m.y.).

The basalt dates also assist in fixing periods of lateritization (mid‐Oligocene) and in determining approximate minimum erosion rates in the northern Bowen Basin since the Eocene (3–5m/m.y.).  相似文献   

8.
Volcanic‐hosted massive sulfide (VHMS) deposits of the eastern Lachlan Fold Belt of New South Wales represent a VHMS district of major importance. Despite the metallogenic importance of this terrane, few data have been published for sulfur isotope distribution in the deposits, with the exception of previously published studies on Captains Flat and Woodlawn (Captains Flat‐Goulburn Trough) and Sunny Corner (Hill End Trough). Here is presented 105 new sulfur isotope analyses and collation of a further 92 analyses from unpublished sources on an additional 12 of the VHMS systems in the Hill End Trough. Measured δ34S values range from ‐7.4% to 38.3%, mainly for massive and stockwork mineralisation. Sulfur isotope signatures for polymetallic sulfide mineralisation from the Lewis Ponds, Mt Bulga, Belara and Accost deposits (group 1) are all very similar and vary from ‐1.7% to 5.9%. Ore‐forming fluids for these deposits were likely to have been reducing, with sulfur derived largely from a magmatic source, either as a direct magmatic contribution accompanying felsic volcanism or indirectly through dissolution and recycling of rock sulfide in host volcanic sequences. Sulfur isotope signatures for sulfide mineralisation from the Calula, Commonwealth, Cordillera and Kempfield deposits, Peelwood mine and Sunny Corner (group 2) are similar and have average δ34S values ranging from 5.4% to 8.1%. These deposits appear to have formed from ore fluids that were more oxidising than group 1 deposits, representing a mixed contribution of sulfur derived from partial reduction of seawater sulfate, in addition to sulfur from other sources. The δ34S values for massive sulfides from the John Fardy deposit are the highest in the present study and have a range of 11.9–14.5%, suggesting a greater component of sulfur of seawater origin compared to other VHMS deposits in the Hill End Trough. For barite the sulfur isotope composition for samples from the Commonwealth, Stringers and Kempfield deposits ranges from 12.6% to 38.3%. More than 75% of barite samples have a sulfur isotope composition between 23.4 and 30.6%, close to the previously published estimates of the composition of seawater sulfate during Late Silurian to earliest Devonian times, providing supporting evidence that these deposits formed concurrently with the Late Silurian volcanic event. Sulfur isotope distribution appears to be independent of the host rock unit, although there appears to be a relation linking the sulfur isotope composition of different deposits to defined centres of felsic volcanism. The Mt Bulga, Lewis Ponds and Accost systems are close to coherent felsic volcanic rocks and/or intrusions and have sulfur isotope signatures with a stronger magmatic affinity than group 2 deposits. By contrast, group 2 deposits (including John Fardy) are characterised by 34S‐enrichment and a lesser magmatic signature, are generally confined to clastic units and reworked volcanogenic sediments with lesser coherent volcanics in the local stratigraphy, and are interpreted to have formed distal from the magmatic source. An exception is the Belara deposit, which is hosted by reworked felsic volcanic rocks and has a more pronounced magmatic sulfur isotope signature.  相似文献   

9.
The western Anatolian volcanic province formed during Eocene to Recent times is one of the major volcanic belts in the Aegean–western Anatolian region. We present new chemical (whole-rock major and trace elements, and Sr, Nd, Pb and O isotopes) and new Ar/Ar age data from the Miocene volcanic rocks in the NE–SW-trending Neogene basins that formed on the northern part of the Menderes Massif during its exhumation as a core complex. The early-middle Miocene volcanic rocks are classified as high-K calc-alkaline (HKVR), shoshonitic (SHVR) and ultrapotassic (UKVR), with the Late Miocene basalts being transitional between the early-middle Miocene volcanics and the Na-alkaline Quaternary Kula volcanics (QKV). The early-middle Miocene volcanic rocks are strongly enriched in large ion lithophile elements (LILE), have high 87Sr/86Sr(i) (0.70631–0.71001), low 143Nd/144Nd(i) (0.512145–0.512488) and high Pb isotope ratios (206Pb/204Pb = 18.838–19.148; 207Pb/204Pb = 15.672–15.725; 208Pb/204Pb = 38.904–39.172). The high field strength element (HFSE) ratios of the most primitive early-middle Miocene volcanic rocks indicate that they were derived from a mantle source with a primitive mantle (PM)-like composition. The HFSE ratios of the late Miocene basalts and QKV, on the other hand, indicate an OIB-like mantle origin—a hypothesis that is supported by their trace element patterns and isotopic compositions. The HFSE ratios of the early-middle Miocene volcanic rocks also indicate that their mantle source was distinct from those of the Eocene volcanic rocks located further north, and of the other volcanic provinces in the region. The mantle source of the SHVR and UKVR was influenced by (1) trace element and isotopic enrichment by subduction-related metasomatic events and (2) trace element enrichment by “multi-stage melting and melt percolation” processes in the lithospheric mantle. The contemporaneous SHVR and UKVR show little effect of upper crustal contamination. Trace element ratios of the HKVR indicate that they were derived mainly from lower continental crustal melts which then mixed with mantle-derived lavas (~20–40%). The HKVR then underwent differentiation from andesites to rhyolites via nearly pure fractional crystallization processes in the upper crust, such that have undergone a two-stage petrogenetic evolution.  相似文献   

10.
11.
The Cape Hoskins volcanoes form part of the Quaternary volcanic island arc that extends from Rabaul in the east to the Schouten Islands in the west, and they overlie the northerly dipping New Britain Benioff Zone. The products of the volcanoes range in composition from basalt to rhyolite, and are normative in quartz and hypersthene. They contain phenocrysts of plagioclase and subordinate augite, hypersthene, and in most samples iron‐titanium oxides; some samples also contain olivine or quartz or both, and some pumice contains hornblende and, rarely, biotite.

Chemical analyses of 29 volcanic rocks are presented; 22 were also analysed for 17 minor elements — Rb, Ba, Sr, Pb, Zn, Cu, Zr, Y, Ni, Co, Sc, Cr, V, Ga, B, U, and Th.

Chemically the rocks have many of the characteristics of the ‘island arc tholeiitic series’, but do not show a pronounced relative enrichment in iron and appear to be relatively enriched in Sr. Compared with volcanic rocks from the northern part of the Willaumez Peninsula, they are lower in K (but not Na), Ti, Rb, Ba, Zr, Pb, Th, Ni, and probably also V, Cu, and Zn: these differences are attributed to the greater depth of the Benioff Zone beneath the Willaumez Peninsula. The more basic of the Cape Hoskins rocks are similar in most respects to lavas of comparable composition from Ulawun volcano to the east.  相似文献   

12.
Bindheimite has been identified in specimens from the Lvov Lease, N.W. Queensland. Chemical, microscopic and X‐ray data are given for the mineral which was found to possess a cubic lattice with a unit cell dimension of 10–427 A.  相似文献   

13.
An ‘autochthon’ model for the tectonic development of Timor is suggested, based on observations of Palaeozoic‐Mesozoic relationships from a broad area of central East Timor, including:
  1. (a) ‘allochthonous’ Permian rocks unconformable on metamorphic rocks

  2. (b) ‘allochthonous’ Permian units interbedded with ‘autochthonous’ Permian units, and

  3. (c) ‘autochthonous’ Triassic sediments stratigraphically overlying ‘allochthonous’ Permian rocks.

The model is supported by recent modifications in palaeogeographic interpretations for the Permian of north Australia (e.g. Powell, 1976; Thomas, 1976). Our observations support and extend the earlier suggestions of Grady (1975), and the resulting model is in contrast with some of the hypotheses of Audley‐Charles and his associates (as, most recently, Barber et al., 1977), Fitch & Hamilton (1974), Hamilton (1973, 1976), and Crostella (1976).

Our model involves no essentially allochthonous pre‐Cainozoic material in Timor. The Permian to Cretaceous units are envisaged as developing on the continental margin which was dominantly inactive, but affected to some extent by Late Jurassic rifting activity. Following the Pliocene collision with the Inner Banda Arc, uplift along the collision zone would have caused gravity gliding towards the south. Thus, surficial olistostrome deposits, originally from the island arc, could have eventually moved to the northern slopes of the Timor Trough, while at depth, reverse faulting could have developed as a result of gravity gliding.

We maintain that previous postulates of a pervasive, strongly imbricate structure for Timor, lack adequate substantiation in the literature. Furthermore, accounts of the tectonic development of Timor, involving large scale translation on low angle faults, are even less well substantiated.  相似文献   

14.
In southwest Victoria thin sequences of upper Cainozoic marine to non‐marine mainly calcareous sediments occur at Portland and in the Glenelg River valley near Dartmoor. At Portland the Whalers Bluff Formation is shown to lie wholly within foraminiferal zone N19 (early Pliocene) which has age limits of about 3.0 to 4.8 m.y. Basalts overlying this formation give consistent K‐Ar ages averaging 2.51 ± 0.04 m.y.

In the Glenelg River valley, subaerial basalts yielding K‐Ar ages of 2.24 to 2.46 m.y. are overlain by shallow neritic sands and littoral calcarenites which belong to the type Werrikooian of F. A. Singleton, here included in the Werrikoo Limestone. Some distance above the base of the Werrikoo Limestone, Globorotalia truncatulinoides appears, the incoming of which defines the base of planktonic foraminiferal zone N22. The base of zone N22 closely approximates the beginning of the Pleistocene defined as the base of the Calabrian stage in Italy, and has an age of about 1.7 m.y. Thus the Werrikoo Limestone was deposited during late N21 and N22 time, straddling the Pliocene‐Pleistocene boundary and providing a reference standard for southeastern Australia as a whole.

It is shown that the Whalers Bluff Formation and the Werrikoo Limestone are separated in both space and time, contrary to the conclusions of earlier workers.  相似文献   

15.
The Tonian Period witnessed important environmental changes and critical evolutionary innovations. Published iron speciation data suggest a global redox transition of mid-depth seawaters from euxinic to ferruginous in early Tonian, but details of this transition remain unknown. This study explores Tonian stromatolitic carbonates as a possible archive of paleoenvironmental changes, through the investigation of dolomitic limestones and dolostones associated with stromatolites of the Weiji Formation in the Huaibei region of North China. Three types of dolomitization are recognized on the basis of petrographic and geochemical data. Type I and II dolomitization resulted in dolomitic limestones characterized by LREE depletions, MREE enrichments, positive yttrium anomalies, and a lack of europium anomalies, indicating early diagenetic dolomitization, possibly in the iron reduction zone and under the influence of bottom seawater. The lack of cerium anomalies in these carbonates suggests anoxia in shallow marine environments. The coexistence of ferroan/non-ferroan dolomite crystals and overgrowth bands is interpreted as possible evidence for rapid fluctuations between iron-rich and iron-depleted conditions in pore-waters or seawaters. In contrast, type III dolomitization resulted in pervasively dolomitized stromatolitic carbonates and likely represents late diagenetic processes. This study highlights the potential of early diagenetic dolomite as an archive for paleoenvironmental investigations.  相似文献   

16.
The data on the structure, geodynamics, and metallogeny of the Khakandzha ore district in northwestern Okhotsk region are analyzed and the two main factors responsible for the localization of ore deposits are defined. The magmatic factor controls the confinement of the ore district to the tectono-magmatic structure of the central type (source of ore matter), which determines the concentric zoning patterns in the distribution of ore mineralization. The tectonic factor determines the confinement of the ore districts, deposits, and ore occurrences of the region to the meridional left-lateral shear structure, which controls the magma and fluid distribution. Local extension (transtension) in this structure against the background of general lateral compression (transpression) provided tectonic environments most favorable for ore accumulation.  相似文献   

17.
18.

This paper presents the results of thermodynamic calculations on the solubility of gold and silver in low‐temperature, moderately saline, oxygen‐saturated fluids. Based on the solubilities of gold and silver it is argued that the quantity of gold transported by the fluids depends on the concentration of silver in the primary ores. In ores where the silver/gold ratio is high (1 to > 10), the fluids become saturated in silver and can not dissolve geologically significant concentrations of gold. In ores where the silver/gold ratio is low (< 1), the fluids remain undersaturated with respect to silver and are able to dissolve geologically realistic concentrations of gold and silver. The oxidized fluids start depositing gold and silver as they move downwards and are reduced by the Fe+2‐bearing minerals of the primary ores. The occurrence of gold in lateritic profiles can be explained by a prolonged process of interaction between the fluid and primary ores, during which gold and silver precipitate and redissolve selectively at the gradually advancing oxidation‐reduction interface.  相似文献   

19.
The Paleo-Pacific Ocean was originated from the Panthalassa, which was a vast global ocean surrounding the Pangea Supercontinent. With the breakup of the Pangea and the closure of the Paleo-Tethyan Ocean, the Paleo-Pacific, Atlantic, Arctic and Indian Oceanic plates were in turn formed. About 190 Ma, the Pacific Plate was initially generated at the junction of the oceanic rift among the Izanagi, Karallon and Pheonix plates. Although most geologists considered a coherent genetic relationship between Meso-Cenozoic tectonic evolution of NE Asian continental margin and subduction of the Pacific Plate, there still exist some key problems. The main issues include; ( I ) the formation, motion trait and evolution paths of the Pacific Plate, especially the Izanagi Plate which subducted beneath the NE Asian continental margin at least since early Jurassic; ( 2) the beginning time of the Pacific Plate subduction; (3) the identification of subduction-related magmatisni; and(4) physical conditions of subduction processes. Based on the recent research progress of the above issues, this paper synthesizes that the subduction of the Paleo-Pacific Plate( or Izanagi Plate) beneath the NE Asian continent started in the early Jurassic. The subduction zone was gradually migrated eastward and constituted anarchipelagic oceanic framework with the involvement of old microblocks or foreign massifs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号