首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wave-form modelling of body waves has been done to study the seismic source parameters of three earthquakes which occurred on October 21, 1964 (M b =5.9), September 26, 1966 (M b =5.8) and March 14, 1967 (M b =5.8). These events occurred in the Indochina border region where a low-angle thrust fault accommodates motion between the underthrusting Indian plate and overlying Himalaya. The focal depths of all these earthquakes are between 12–37 km. The total range in dip for the three events is 5°–20°. TheT axes are NE-SW directed whereas the strikes of the northward dipping nodal planes are generally parallel to the local structural trend. The total source durations have been found to vary between 5–6 seconds. The average values of seismic moment, fault radius and dislocation are 1.0–11.0×1025 dyne-cm, 7.7–8.4km and 9.4–47.4 cm, respectively whereas stress drop, apparent stress and strain energy are found to be 16–76 bars, 8.2–37.9 bars and 0.1–1.7×1021 ergs, respectively. These earthquakes possibly resulted due to the tension caused by the bending of the lithospheric plate into a region of former subduction which is now a zone of thrusting and crustal shortening.  相似文献   

2.
We study source properties of the main earthquakes of the 1997–98 Umbria-Marche (central Italy) sequence by analysis of regional-distanceand teleseismic long period and broadband seismograms recorded by MedNet and IRIS/GSN stations. We use a modified Harvardcentroid-moment tensor (CMT) algorithm to allow inversion of long period waveforms, primarily Rayleigh and Love waves, for small earthquakes (4.2 MW 5.5) at local to regional distances (<15°). For the seven largest earthquakes (MW>5.2) moment tensors derived from local and regional data agree well with those determined using teleseismic waveforms and standard methods of analysis. We also determine moment tensors for a foreshock and 12 other aftershocks, that were too small for global analysis. Focal depth and rupture propagation are analyzed for three largest shocks by inversion of teleseismic broadband body waves. The earthquakes are generally located at shallow depth (5 km or shallower) and are characterized by normal faulting mechanisms, with a NE-SW tension axis. The presumed principal fault plane dips at a shallow angle towards the SW. Only one of the events analyzed has an entirely different faulting geometry, indicating instead right-lateral strike-slip motion on a plane approximately E-W, or left-lateral faulting on a N-S plane. The other significant exception to the regular pattern of mechanisms is represented by the March 26, 1998, event, located at 51 km depth. Its connection with the shallow earthquake sequence is unclear and intriguing. The time evolution of the seismic sequence is unusual,with the mainshock accounting for only approximately 50% of the total moment release. The broadband teleseismic waveforms of the main, September 26, 09:40, earthquake are very complicated for the size of the event and suggest a complex rupture. In our favored source model, rupture initiated at 5 km depth, propagated updip and was followed, 3 seconds later, by a shallower subevent with a slightly rotated mechanism.  相似文献   

3.
To better understand the mechanics of subduction and the process of breaking a mature seismic gap, we study seismic activity along the western New Britain subduction segment (147°E–151°E, 4°S–8°S) through earthquakes withm b 5.0 in the outer-rise, the upper area of subducting slab and at intermediate depths to 250 km, from January 1964 to December 1990. The segment last broke fully in large earthquakes of December, 28, 1945 (M s =7.9) and May 6, 1947 (M s =7.7.), and its higher seismic potential has been recognized byMcCann et al., (1979). Recently the segment broke partially in two smaller events of February, 8, 1987 (M s =7.4) and October 16, 1987 (M s =7.4), leaving still unbroken areas.We observe from focal mechanisms that the outer-rise along the whole segment was under pronounced compression from the late 60's to at least October 1987 (with exception of the tensional earthquake of December 11, 1985), signifying the mature stage of the earthquake cycle. Simultaneously the slab at intermediate depths below 40 km was under tension before the earthquake of October 16, 1987. That event, with a smooth rupture lasting 32 sec, rupture velocity of 2.0 km/sec, extent of approximately 70 km and moment of 1.2×1027 dyne-cm, did not change significantly the compressive state of stress in the outer-rise of that segment. The earthquake did not fill the gap completely and this segment is still capable of rupturing either in an earthquake which would fill the gap between the 1987 and 1971 events, or in a larger magnitude event (M s =7.7–7.9), comparable to earthquakes observed in that segment in 1906, 1945 and 1947.  相似文献   

4.
The 2018,Songyuan,Jilin M_S5. 7 earthquake occurred at the intersection of the FuyuZhaodong fault and the Second Songhua River fault. The moment magnitude of this earthquake is M_W5. 3,the centroid depth by the waveform fitting is 12 km,and it is a strike-slip type event. In this paper,with the seismic phase data provided by the China Earthquake Network, the double-difference location method is used to relocate the earthquake sequence,finally the relocation results of 60 earthquakes are obtained. The results show that the aftershock zone is about 4. 3km long and 3. 1km wide,which is distributed in the NE direction. The depth distribution of the seismic sequence is 9km-10 km. 1-2 days after the main shock,the aftershocks were scattered throughout the aftershock zone,and the largest aftershock occurred in the northeastern part of the aftershock zone. After 3-8 days,the aftershocks mainly occurred in the southwestern part of the aftershock zone. The profile distribution of the earthquake sequence shows that the fault plane dips to the southeast with the dip angle of about 75°. Combined with the regional tectonic setting,focal mechanism solution and intensity distribution,we conclude that the concealed fault of the Fuyu-Zhaodong fault is the seismogenic fault of the Songyuan M_S5. 7 earthquake. This paper also relocates the earthquake sequence of the previous magnitude 5. 0 earthquake in 2017. Combined with the results of the focal mechanism solution,we believe that the two earthquakes have the same seismogenic structure,and the earthquake sequence generally develops to the southwest. The historical seismic activity since 2009 shows that after the magnitude 5. 0 earthquake in 2017,the frequency and intensity of earthquakes in the earthquake zone are obviously enhanced,and attention should be paid to the development of seismic activity in the southwest direction of the earthquake zone.  相似文献   

5.
We describe a fully automated seismic event detection and location system, providing for real-time estimates of the epicentral parameters of both local and distant earthquakes. The system uses 12 telemetered short-period stations, with a regional aperture of 350 km, as well as two 3-component broad-band stations. Detection and location of teleseismic events is achieved independently and concurrently on the short-period and long-period channels. The long-period data is then used to obtain an estimate of the seismic momentM 0 of the earthquake through the mantle magnitudeM m, as introduced byOkal andTalandier (1989). In turn, this estimate ofM 0 is used to infer the expected tsunami amplitude at Papeete, within 15 minutes of the recording of Rayleigh waves. The performance of the method is discussed in terms of the accuracy of the epicentral parameters and seismic moment obtained in real time, as compared to the values later published by the reporting agencies. Our estimates are usually within 3 degrees of the reported epicenter, and the standard deviation on the seismic moment only 0.19 unit of magnitude for a population of 154 teleseismic events.  相似文献   

6.
In the Solomon Islands and New Britain subduction zones, the largest earthquakes commonly occur as pairs with small separation in time, space and magnitude. This doublet behavior has been attributed to a pattern of fault plane heterogeneity consisting of closely spaced asperities such that the failure of one asperity triggers slip in adjacent asperities. We analyzed body waves of the January 31, 1974,M w =7.3, February 1, 1974,M w =7.4, July 20, 1975 (1437)M w =7.6 and July 20, 1975 (1945),M w =7.3 doublet events using an iterative, multiple station inversion technique to determine the spatio-temporal distribution of seismic moment release associated with these events. Although the 1974 doublet has smaller body wave moments than the 1975 events, their source histories are more complicated, lasting over 40 seconds and consisting of several subevents located near the epicentral regions. The second 1975 event is well modeled by a simple point source initiating at a depth of 15 km and rupturing an approximate 20 km region about the epicenter. The source history of the first 1975 event reveals a westerly propagating rupture, extending about 50 km from its hypocenter at a depth of 25 km. The asperities of the 1975 events are of comparable size and do not overlap one another, consistent with the asperity triggering hypothesis. The relatively large source areas and small seismic moments of the 1974 doublet events indicate failure of weaker portions of the fault plane in their epicentral regions. Variations in the roughness of the bathymetry of the subducting plate, accompanying subduction of the Woodlark Rise, may be responsible for changes in the mechanical properties of the plate interface.To understand how variations in fault plane coupling and strength affect the interplate seismicity pattern, we relocated 85 underthrusting earthquakes in the northern Solomon Islands Are since 1964. Relatively few smaller magnitude underthrusting events overlap the Solomon Islands doublet asperity regions, where fault coupling and strength are inferred to be the greatest. However, these asperity regions have been the sites of several previous earthquakes withM s 7.0. The source regions of the 1974 doublet events, which we infer to be mechanically weak, contain many smaller magnitude events but have not generated any otherM s 7.0 earthquakes in the historic past. The central portion of the northern Solomon Islands Arc between the two largest doublet events in 1971 (studied in detail bySchwartz et al., 1989a) and 1975 contains the greatest number of smaller magnitude underthrusting earthquakes. The location of this small region sandwiched between two strongly coupled portions of the plate interface suggest that it may be the site of the next large northern Solomon Islands earthquake. However, this region has experienced no known earthquakes withM s 7.0 and may represent a relatively aseismic portion of the subduction zone.  相似文献   

7.
The distribution of the focal mechanisms of the shallow and intermediate depth (h>40 km) earthquakes of the Aegean and the surrounding area is discussed. The data consist of all events of the period 1963–1986 for the shallow, and 1961–1985 for the intermediate depth earthquakes, withM s 5.5. For this purpose, all published fault plane solutions for each event have been collected, reproduced, carefully checked and if possible improved accordingly. The distribution of the focal mechanisms of the earthquakes in the Aegean declares the existence of thrust faulting following the coastline of southern Yugoslavia, Albania and western Greece extending up to the island of Cephalonia. This zone of compression is due to the collision between two continental lithospheres (Apulian-Eurasian). The subduction of the African lithosphere under the Aegean results in the occurrence of thrust faulting along the convex side of the Hellenic arc. These two zones of compression are connected via strike-slip faulting observed at the area of Cephalonia island. TheP axis along the convex side of the arc keeps approximately the same strike throughout the arc (210° NNE-SSW) and plunges with a mean angle of 24° to southwest. The broad mainland of Greece as well as western Turkey are dominated by normal faulting with theT axis striking almost NS (with a trend of 174° for Greece and 180° for western Turkey). The intermediate depth seismicity is distributed into two segments of the Benioff zone. In the shallower part of the Benioff zone, which is found directly beneath the inner slope of the sedimentary arc of the Hellenic arc, earthquakes with depths in the range 40–100 km are distributed. The dip angle of the Benioff zone in this area is found equal to 23°. This part of the Benioff zone is coupled with the seismic zone of shallow earthquakes along the arc and it is here that the greatest earthquakes have been observed (M s 8.0). The deeper part (inner) of the Benioff zone, where the earthquakes with depths in the range 100–180 km are distributed, dips with a mean angle of 38° below the volcanic arc of southern Aegean.  相似文献   

8.
The rates and configuration of seismic deformation in the North Aegean trough-North Anatolian fault are determined from the moment tensor mechanisms of the earthquakes that occurred within this region. The analysis is based onKostrov's (1974) formulation. The fault plane solutions of the earthquakes of the period 1913–1983 withM s 6.0 are used. The focal mechanism of some of the past events (before 1960) is assumed, based on the present knowledge of the seismotectonics as well as on the macroseismic records of the area studied. The analysis showed that the deformation of the northern Aegean is dominated by EW contraction (at a rate of about 15 mm/yr) which is relieved by NS extension (at a rate of about 9 mm/yr). It was also shown that the northern part of North Anatolia (north of 39.7°N parallel) undergoes contraction in the EW direction (at a rate of about 9 mm/yr) and NS extension as the dominant mode of deformation (at a rate of about 5 mm/yr). It may be stated therefore, that the pattern of deformation of the northern Aegean and the northern part of North Anatolian fault is controlled by the NS extension the Aegean is undergoing as a whole, and the dextral strike-slip motion of the North Anatolian fault. The southern part of North Anatolia is undergoing crustal thinning at a rate of 2.3 mm/yr, NS extension (at a rate of 5 mm/yr) as well as EW extension (at a rate of 4 mm/yr), which are consistent with the occurrence of major normal faulting and justify the separation of North Anatolia into two separate subareas.  相似文献   

9.
Applying genetic algorithm to inversion of seismic moment tensor solution and using the data of P waveform from digital network and initial motion directions of P waves of Taiwan network stations, we studied the moment tensor solutions and focal parameters of the earthquake of M=7.3 on 16 September of 1994 in Taiwan Strait and other four quakes of M L≥5.8 in the near region (21°–26°N, 115°–120°E). Among the five earthquakes, the quake of M=7.3 on September 16, 1994 in Taiwan Strait is the strongest one in the southeastern coast area since Nan’ao earthquake of M=7.3 in 1918. The results show that moment tensor solution of M=7.3 earthquake is mainly double-couple component, and is normal fault whose fault plane is near NW. The strike of the fault plane resembles that of the distributive bands of earthquakes before the main event and fracture pattern shown by aftershocks. The tension stress axis of focal mechanism is about horizontal, near in NE strike, the compressive stress axis is approximately vertical, near in NWW strike. It seems that this quake is controlled by the force of Philippine plate’s pressing Eurasian plate in NW direction. But from the viewpoint of P axis of near vertical and T axis of near horizontal, it is a normal fault of strong tensibility. There are relatively big difference between focal mechanism solution of this quake and those of the four other strong quakes. The complexity of source mechanism solution of these quakes represents the complexity of the process of the strait earthquake sequences. Contribution No. 98A01001, Institute of Geophysics, State Seismological Bureau, China. The subject is supported and helped by Academician Yun-Tai CHEN, Profs. Qing-Yao HONG, Zhen-Xing YAO, Tian-Yu ZHENG, Yao-Lin SHI, Ji-An XU, Bo-Shou HUANG and colleague Mei-Jian AN, Xue-Reng DING, Rui-Feng LIU. De-Chong ZHANG and Ming Li provided the digital data warm-heartedly. Lin-Ying WANG offered us the catalogue of earthquakes in southeastern coastal area in China. Xi-Li WANG and Tong-Xia BAI provided us the issued annual reports data. The authors would like to express their gratitude to all of these people. This paper is sponsored by the National Natural Science Foundation of China and Scientific and Technological Commission of Shantou, Guangdong Province.  相似文献   

10.
A sequence of moderate shallow earthquakes (3.5M L5.3) was located within the Vercors massif (France) in the period 1961–1984. This subalpine massif has been a low seismic area for at least 5 centuries. During the period 1962–1963, 12 shallow earthquakes occurred in the neighborhood (10 km) of the Monteynard reservoir, 30 km south of the city of Grenoble. The latest fourM L4.0 earthquakes occurred in 1979–1984 either at larger distance (35 km) or greater depth (10 km) from the reservoir. Two triggering mechanisms are suggested for this sequence: (i) the direct effect of elastic loading through either increased shear stress or strength reducing by increased pore pressure at depth; (ii) the pore pressure diffusion induced by poroelastic stress change due to the reservoir filling.The weekly water levels, local balanced geological cross sections, and focal mechanisms argue for two types of mechanical connection between the earthquake sequence and the filling cycles of the Monteynard reservoir. The seismic sequence started with the 1962–1963 shallow earthquakes that occurred during the first filling of the reservoir and are typical of the direct effect of elastic loading. The 1979 deeper earthquake is located at a 10 km depth below the reservoir. This event occurred 16 years after the initial reservoir impoundment, but one month after the previous 1963 maximum water level was exceeded. Moreover the yearly reservoir level increased gradually in the period 1962–1979 and has decreased since 1980. Accordingly we suggest that the gradual diffusion of water from reservoir to hypocentral depths decreases the strength of the rock matrices through increased pore pressure. The transition between the two types of seismic response is supported by the analysis ofM L3.5 earthquakes which all occurred in the period 1964–1971, ranging between 10 and 30 km distance from the reservoir. The three other delayed earthquakes of the 1961–1984 seismic sequence (M L4 during the 1979–1984 period) are all located 35 km away from the reservoir. Based on the seismic activity, the estimates for the hydraulic diffusivities range between 0.2–10 m2/s, except for the first event that occurred 30 km north of the reservoir, the filling just started. The lack ofin situ measurements of crustal hydrological properties in the area, shared by most of the Reservoir-Induced-Seismicity cases, prevents us from obtaining absolute evidence for the triggering processes. These observations and conceptual models attest that previous recurrence times for moderate natural shocks (4.5M L5.5) estimated within this area using historical data, could be modified by 0.1–1 MPa stress changes. These small changes in deviatoric stress suggest that the upper crust is in this area nearly everywhere at a state of stress near failure. Although the paucity of both number and size of earthquakes in the French subalpine massif shows that aseismic displacements prevail, our study demonstrates that triggered earthquakes are important tools for assessing local seismic risk through mapping fault zones and identifying their possible seismic behavior.  相似文献   

11.
Based on Generalized Seismic Ray Theory (Helmberger, 1968), a new quickly linear inversion method from the data of seismic waveform to seismic moment tensor and source mechanism for domestic earthquake is studied in this paper. Six moderately strong earthquakes which occurred in Chinese mainland in the past few years are studied. The seismic source parameters of these earthquakes, seismic moment tensors, scalar seismic moments, fault plane solutions and source time functionsetc, are obtained. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 261–268, 1993.  相似文献   

12.
Historically, large and potentially hazardous earthquakes have occurred within the interior of Alaska. However, most have not been adequately studied using modern methods of waveform modeling. The 22 July 1937, 16 October 1947, and 7 April 1958 earthquakes are three of the largest events known to have occurred within central Alaska (M s =7.3,M s =7.2 andM s =7.3, respectively). We analyzed teleseismic body waves to gain information about the focal parameters of these events. In order to deconvolve the source time functions from teleseismic records, we first attempted to improve upon the published focal mechanisms for each event. Synthetic seismograms were computed for different source parameters, using the reflectivity method. A search was completed which compared the hand-digitized data with a suite of synthetic traces covering the complete parameter space of strike, dip, and slip direction. In this way, the focal mechanism showing the maximum correlation between the observed and calculated traces was found. Source time functions, i.e., the moment release as a function of time, were then deconvolved from teleseismic records for the three historical earthquakes, using the focal mechanisms which best fit the data. From these deconvolutions, we also recovered the depth of the events and their seismic moments. The earthquakes were all found to have a shallow foci, with depths of less than 10 km.The 1937 earthquake occurred within a northeast-southwest band of seismicity termed the Salcha seismic zone (SSZ). We confirm the previously published focal mechanism, indicating strike-slip faulting, with one focal plane parallel to the SSZ which was interpreted as the fault plane. Assuming a unilateral fault model and a reasonable rupture velocity of between 2 and 3 km/s, the 21 second rupture duration for this event indicates that all of the 65 km long SSZ may have ruptured during this event. The 1947 event, located to the south of the northwest-southeast trending Fairbanks seismic zone, was found to have a duration of about 11 seconds, thus indicating a rupture length of up to 30 km. The rupture duration of the 1958 earthquake, which occurred near the town of Huslia, approximately 400 km ENE of Fairbanks, was found to be about 9 seconds. This gives a rupture length consistent with the observed damage, an area of 16 km by 64 km.  相似文献   

13.
Fault dimensions,displacements and growth   总被引:15,自引:0,他引:15  
Maximum total displacement (D) is plotted against fault or thrust width(W) for 65 faults, thrusts, and groups of faults from a variety of geological environments. Displacements range from 0.4 m to 40 km and widths from 150 m to 630 km, and there is a near linear relationship betweenD andW 2. The required compatibility strains (e s) in rocks adjacent to these faults increases linearly withW and with and ranges frome s=2×10–4 toe s=3×10–1. These are permanent ductile strains, which compare with values ofe s=2×10–5 for the elastic strains imposed during single slip earthquake events, which are characterised by a linear relationship between slip (u) andW.The data are consisten with a simple growth model for faults and thrusts, in which the slip in successive events increases by increments of constant size, and which predicts a relationship between displacement and width of the formD=cW 2. Incorporation of constant ductile strain rate into the model shows that the repreat time for slip events remains constant throughout the life of a fault, while the displacement rate increases with time. An internally consistent model withe s=2×10–5, giving repeat times of 160 years and instantaneous displacement rates of 0.02 cm/yr, 0.2 cm/yr, and 2.0 cm/yr when total displacement is 1 m, 100 m, and 10 km, and slip increasing by 0.5 mm with each event, gives a good approximation of the data. The model is also applicable to stable sliding, the slip rate varying with ductile strain rate and withW 2.  相似文献   

14.
Recent and historical seismicity as well as reliable fault plane solutions are used to study the active deformation caused by the occurrence of intermediate depth (60–170 km) earthquakes of the Vrancea region, Rumania. In this area, located in the southeastern part of the Carpathian arc, the westward subduction of the Carpathian trench has terminated, leaving continental lithosphere, at present, at the arc. The principalT axis of the intermediate depth events trends N159°E and has a plunge of 74°, which is the same as the dip of the subducted plate. TheP axis has a trend of 314° and a shallow plunge of 15°. The analysis of the moment tensor of six focal mechanisms showed that the dominant mode of deformation of the subducted lithosphere is a down-dip extension at a rate of about 2 cm/yr, based on seismicity data.  相似文献   

15.
Fault network of the Upper Silesian Coal Basin (USCB) is built of sets of strike-slip, oblique-slip and dip-slip faults. It is a typical product of force couple which acts evenly with the parallel of latitude, causing horizontal and anti-clockwise movement of rock-mass. Earlier research of focal mechanisms of mine tremors, using a standard fault plane solution, has shown that some events are related to tectonic directions in main structural units of the USCB. An attempt was undertaken to analyze the records of mine tremors from the period 1992–1994 in the selected coal fields. The digital records of about 200 mine tremors with energy larger than 1×104 J (M L >1.23) were analyzed with SMT software for seismic moment tensor inversion. The decomposition of seismic moment tensor of mine tremors was segmented into isotropic (I) part, compensated linear vector dipole (CLVD) part and double-couple (DC) part. The DC part is prevalent (up to 70%) in the majority of quakes from the central region of the USCB. A group of mine tremors with large I element (up to 50%) can also be observed. The spatial orientation of the fault and auxiliary planes were obtained from the computations for the seismic moment DC part. Study of the DC part of the seismic moment tensor made it possible for us to separate the group of events which might be acknowledged to have their origin in unstable energy release on surfaces of faults forming a regional structural pattern. The possible influence of the Cainozoic tectonic history of the USCB on the recent shape of stress field is discussed.  相似文献   

16.
TheM s =6.9 Gonghe, China, earthquake of April 26, 1990 is the largest earthquake to have been documented historically as well as recorded instrumentally in the northeastern Qinghai-Xizang (Tibetan) plateau. The source process of this earthquake and the tectonic stress field in the northeastern Qinghai-Xizang plateau are investigated using geodetic and seismic data. The leveling data are used to invert the focal mechanism, the shape of the slipped region and the slip distribution on the fault plane. It is obtained through inversion of the leveling data that this earthquake was caused by a mainly reverse dip-slipping buried fault with strike 102°, dip 46° to SSW, rake 86° and a seismic moment of 9,4×1018 Nm. The stress drop, strain and energy released for this earthquake are estimated to be 4.9 MPa, 7.4×10–5 and 7.0×1014 J, respectively. The slip distributes in a region slightly deep from NWW to SEE, with two nuclei, i.e., knots with highly concentrated slip, located in a shallower depth in the NWW and a deeper depth in the SEE, respectively.Broadband body waves data recorded by the China Digital Seismograph Network (CDSN) for the Gonghe earthquake are used to retrieve the source process of the earthquakes. It is found through moment-tensor inversion that theM s =6.9 main shock is a complex rupture process dominated by shear faulting with scalar seismic moment of the best double-couple of 9.4×1018 Nm, which is identical to the seismic moment determined from leveling data. The moment rate tensor functions reveal that this earthquake consists of three consecutive events. The first event, with a scalar seismic moment of 4.7×1018 Nm, occurred between 0–12 s, and has a focal mechanism similar to that inverted from leveling data. The second event, with a smaller seismic moment of 2.1×1018 Nm, occurred between 12–31 s, and has a variable focal mechanism. The third event, with a sealar seismic moment of 2.5×1018 Nm, occurred between 31–41 s, and has a focal mechanism similar to that inverted from leveling data. The strike of the 1990 Gonghe earthquake, and the significantly reverse dip-slip with minor left-lateral strike-slip motion suggest that the pressure axis of the tectonic stress field in the northeastern Qinghai-Xizang plateau is close to horizontal and oriented NNE to SSW, consistent with the relative collision motion between the Indian and Eurasian plates. The predominant thrust mechanism and the complexity in the tempo-spatial rupture process of the Gonghe earthquake, as revealed by the geodetic and seismic data, is generally consistent with the overall distribution of isoseismals, aftershock seismicity and the geometry of intersecting faults structure in the Gonghe basin of the northeastern Qinghai-Xizang plateau.Contribution No. 96 B0006 Institute of Geophysics, State Seismological Bureau, Beijing, China.  相似文献   

17.
A method for rapid retrieval of earthquake-source parameters from long-period surface waves is developed. With this method, the fault geometry and seismic moment can be determined immediately after the surface wave records have been retrieved. Hence, it may be utilized for warning of tsunamis in real time. The surface wave spectra are inverted to produce either a seismic moment tensor (linear) or a fault model (nonlinear). The method has been tested by using the IDA (International Deployment of Accelerographs) records. With these records the method works well for the events larger than Ms = 6, and is useful for investigating the nature of slow earthquakes.For events deeper than 30 km, all of the five moment tensor elements can be determined. For very shallow events (d ? 30 km) the inversion becomes ill-conditioned and two of the five source moment tensor elements become unresolvable. This difficulty is circumvented by a two-step inversion. In the first step, the unresolvable elements are constrained to be zero to yield a first approximation. In the second step, additional geological and geophysical data are incorporated to improve the first approximation. The effect of the source finiteness is also included.  相似文献   

18.
杨萍  张辉  冯建刚 《地震工程学报》2017,39(1):150-153,185
采用CAP(Cut and Paste)方法反演了2015年11月23日青海祁连MS5.2主震的震源机制解,其最佳双力偶解:节面Ⅰ走向109°、倾角58°、滑动角21°,节面Ⅱ走向8°、倾角72°、滑动角146°,矩震级MW5.16,矩心震源深度约为9 km。结合震区的活动构造,判定发震断层面为节面Ⅰ,推测托勒山北缘活动断裂中段为此次地震的发震断裂。  相似文献   

19.
In this paper we evaluate the present state of the seismic regime in Southern California using the concentration parameter of seismogenic faults (K sf ,Sobolev andZavyalov, 1981). The purpose of this work is to identify potential sites for large earthquakes during the next five or ten years. The data for this study derived from the California Institute of Technology's catalog of southern California earthquakes, and spanned the period between 1932 to June 1982. We examined events as small asM L 1.8 but used a magnitude cutoff atM L =3.3 for a detailed analysis. The size of the target earthquakes (M M ) was chosen as 5.3 and 5.8.The algorithm for calculatingK sf used here was improved over the algorithm described bySobolev andZavyalov (1981) in that it considered the seismic history of each elementary seismoactive volume. The dimensions of the elementary seismoactive volumes were 50 km×50 km and 20 km deep. We found that the mean value ofK sf within 6 months prior to the target events was 6.1±2.0 for target events withM L 5.3 and 5.41.8 for targets withM L 5.8. Seventy-three percent of the targets withM L 5.8 occurred in areas whereK sf was less than 6.1. The variance of the time between the appearance of areas with lowK sf values and the following main shocks was quite large (from a few months to ten years) so this parameter cannot be used here for accurate predictions of occurrence time.Regions where the value ofK sf was below 6.1 at the end of our data set (June, 1982) are proposed as the sites of target earthquakes during the next five to ten years. The most dangerous area is the area east of San Bernardino whereK sf values are presently between 2.9 and 3.7 and where there has been no earthquake withM L 5.3 since 1948.  相似文献   

20.
采用双差定位法对山东莱州地震序列重新定位,通过CAP方法反演M4.6地震震源机制,在此基础上初步探讨莱州地震序列发震构造。结果显示:精确定位震中位置主要位于柞村—仙夼断裂的NW方向,深度剖面显示从SE方向到NW方向断层深度呈由浅逐渐变深的趋势,这均与柞村—仙夼断裂位置、走向、倾向特征较为吻合;M4.6地震震源机制解的节面Ⅰ与柞村—仙夼断裂走向、倾角较为接近。综合精确定位震中位置、剖面深度分布特征、M4.6地震震源机制解及宏观调查烈度分布等结果与柞村-仙夼断裂产状之间的关系,初步推测柞村—仙夼断裂可能为莱州地震序列的发震断层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号