首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
With rapidly industrial and agricultural development,more and more fertilizers,chemicals and heavy ions will be discharged into lakes and rivers,which would cause lake eutrophication and quality deterioration in drinking water sources.Therefore,denitrification is essential for controlling the amounts of nitrogen,During the transformation process from nitrate to the end products-nitrogen and several intermediated[e.g.nitrite(NO2^-),nitrous oxide(N2O) and nitric oxide(NO)]may be accumulated,which have more toxic influences on the environment.in This study,the denitrification effect of Paracoccus Denitrificans was examined on the changes between oxic and anoxic conditions at varying pH.At pH=7.5,denitrification proceeded well after 3 switches from oxic to anoxic conditions and vice versa,Production of N2 was constant and the amounts of NO2-,N2O and NO were extremely low.How ever,at pH=6.8,denitrification activity was inhitied and there large amounts of the intermaediates.The denitrifying bacteria decreased violently in dry weight and were washed out.  相似文献   

2.
A comparative experiment was conducted in two cross sections with sandy and sandy loam sediment textures along an agricultural drainage stream in eastern China to address the effects of sediment texture on in-stream nitrogen uptake efficiency. Using dimerous chambers for in situ incubations, NO3-N and NH4-N uptake metrics (i.e., areal uptake rate and uptake velocity) and associated hydrochemical variables in the enclosed sediment–water column system were measured for 8 days and two nights across April–July in 2011 and March–June in 2012. For the investigated sites, in-stream uptake accounted for 2–45 and 9–36 % of the initial NH4-N and NO3-N within the enclosed water column, respectively. Although similar daytime, diel and day-to-day (daytime) variation patterns of NO3-N or NH4-N uptake metrics were observed for the two sites, the sandy loam sediments had average net NO3-N and NH4-N uptake efficiency ~50 % higher and ~40 % lower than for the sandy sediments, respectively. As NO3-N was the dominant nitrogen form in the studied water columns (typical of agricultural drainage rivers), the sandy loam sediment site had an average of about 47 % higher net uptake efficiency for dissolved inorganic nitrogen (i.e., NO3-N + NH4-N). This study demonstrates that sediment texture has a considerable effect on spatial variation of nitrogen uptake along the river system. Changing sediment texture due to anthropogenic modifications on catchment land use and stream channels has the potential to change stream nitrogen cycling as well as altering nitrogen inputs and forms to downstream aquatic ecosystems.  相似文献   

3.
Gafsa region is one of the most productive artesian basins in Southern Tunisia. It is located in the southwestern part of the country, and its groundwater resources are developed for water supply and irrigation. Proper understanding of the geochemical evolution of groundwater is important for sustainable development of water resources in this region. A hydrogeochemical survey was conducted on the Plio-Quaternary shallow and on the Complex Terminal aquifers system using major (Ca, Mg, Na, SO4, Cl, NO3 and HCO3) and minor (Sr) elements, in order to evaluate the groundwater chemistry patterns and the main mineralization processes occurring in this system. Hydrochemical and isotopic data were used in conjunction with hydrogeological characteristics to investigate the groundwater composition in these aquifers. It has been demonstrated that groundwaters acquire their mineralization principally by water–rock interaction, i.e. dissolution of evaporites (halite/gypsum, pyrite, etc.) and return flow of irrigation waters, and by anthropogenic activities due to the use of nitrogen (N) fertilizers–pesticides in agriculture. The isotopic study of “stable isotopes, radiocarbon and tritium” (Yermani 2002) shows that a paleoclimatic recharge is corroborated by the relatively low carbon-14 activities (5–25.3%) of the referred groundwater group samples, which were interpreted as recharge occurring during the late Pleistocene and the early Holocene periods. The water feedings of these aquifers are mainly provided by infiltration of precipitations, infiltration of irrigation water, lateral feeding from Cretaceous relieves from the South and the North and along recent and fossil drainage networks that constitute major freshwater sources in groundwater tables (Hamed et al., J Environ Protect 1:466–474, 2010a).  相似文献   

4.
Agricultural activities act as dominant polluter of groundwater due to increased fertilizers and pesticides usage. Bist-Doab region, Punjab, India, is one such region facing deterioration of groundwater quality due to usage of fertilizers. This study aims in delineating and evaluating the groundwater quality in the region. Water samples are collected from canals, reservoir, and shallow and deep groundwater. Water types in canal and reservoir in Kandi region are Mg2+HCO3 ? and Mg2+Ca2+Na+HCO3 ?, respectively. While water types of shallow and deep groundwaters are found to be of two types: Na+Mg2+Ca2+HCO3 ? and Ca2+Mg2+Na+HCO3 ?. Presence of Mg2+ in groundwater at locations adjoining canals indicates recharge due to canal. The major ion (Na+, Mg2+, Ca2+, HCO3 ?) chemistry of the region is due to weathering of rocks that are rich in sodic minerals and kankar. Deep groundwater quality in the region meets BIS and WHO standards for drinking purpose, unlike shallow groundwater which is of poor quality at many locations. Both shallow and deep groundwater with high sodium concentration (>1.5 meq/l) affect cropping yield and permeability of soil matrix. High concentration of SO4 2? and NO3 2? (>1 meq/l) in shallow groundwater at few locations indicates influence of anthropogenic (fertilizer) activity. Factor analysis indicates that the major cations, bicarbonate and chloride are derived from weathering/dissolution of source rocks. Higher concentration of nitrate and presence of sulphate in shallow groundwater at few locations is due to usage of fertilizers and pesticides.  相似文献   

5.
The δ15N-value has often tentatively been used for the assignment of nitrate to its origin. However, the very complex correlations between the different nitrogen pools, mostly accompanied by isotope discriminations, oppose a very limited application of this method. On the other hand, the oxygen isotope abundance should be more indicative, because industrially produced NO3 must nearly exclusively contain oxygen from O2 (δ18O = +23.5%.), while NO3 originating from a nitrification process must have water (δ18O ≅ -10%.) as the main oxygen source.For the proof of this reflection a method for the precise oxygen isotope analysis of NO3 was developed. Its application to the δ-value determination of commercial fertilizers and NO3 formed by nitrification absolutely confirmed the above predictions. Similarly, the isotope abundance of NO3-samples from ground and drinking water of known origin corresponded to the expected values. On the basis of these results and taking into account the known isotope abundance shifts due to isotope effects of nitrification and denitrification, a diagram between δ15N- and δ18O-values for NO3 was developed, which permitted the assignment of NO3 in unknown water samples to its probable source and origin.  相似文献   

6.
Groundwater is a critical resource in Khanyounis city as it is the main source of water. The aquifer has deteriorated to a high degree, during the last two to three decades, in quality and quantity. More than 90% of the population get their drinking water from brackish water desalination plants. Fifteen domestic wells were sampled in 2002 to probe the hydrogeochemical components that influence the water quality. Na, K, Ca, Mg, Cl, SO4, NO3, and HCO3 were analyzed. The data were statistically treated and plotted on the Piper diagram. A hydrogeochemical numerical model for carbonate minerals was constructed using the PHREEQ package. The results show that the groundwater is polluted with Cl, from seawater, and NO3, sourced from fertilizers and sewage. The regression analysis shows that there are three groups of elements that are significantly and positively correlated. Na–Cl signature and plot show that seawater intrusion is advancing into the aquifer. The main hydrochemical facies of the aquifer (Na+K–Cl+SO4), represents 60% of the total wells. Whereas 32.3% of the wells are located in the no pair up and no pair down fields on the Piper diagram. Calcite, dolomite, and aragonite solubility were assessed in terms of the saturation index where they show positive values indicating supersaturation. The hydrogeochemical behavior is rather complicated and is affected by anthropogenic and natural parameters.  相似文献   

7.
Human activities contribute different pollutants to receiving waters, often with significant variations in time and space. Therefore, integrating multiple parameters of water quality and their spatiotemporal variations is necessary to identify the pollution characteristics. Based on the water quality monitoring data with 12 parameters for 2 years at 22 sampling sites in the Cao-E River system, eastern China, the projection pursuit method was used to project all parameters and their temporal variations into a one-dimensional vector through two projections. Accordingly, we could easily assess the comprehensive water quality in different sampling sites and then classify their water pollution features. Factor analysis was then used to identify the pollution characteristics and potential sources. Results showed that all sampling sites for the river system could be classified into four groups: headwater sites (HS), agricultural nonpoint sources pollution sites (ANPS), point sources pollution sites (PSPS), and mixed sources pollution sites. Water quality in HS was good, containing only a few nutrients from the woodland runoff and soil erosion. For ANPS, the main pollutants were dissolved phosphorus, total P, and nitrate nitrogen (NO3 ?-N), mainly from farming land. For PSPS, ammonium nitrogen (NH4 +-N) and organic pollutants originated from industrial and municipal sewage. In HS and ANPS, NO3 ?-N was the main form of nitrogen, and a high ratio of NO3 ?-N/NH4 +-N was a remarkable characteristic, whereas NH4 +-N was the main form of nitrogen in PSPS. Except in HS, water quality in the other groups could not meet the local water quality control standard. Finally, suggestions were proposed for water pollution control for the different groups.  相似文献   

8.
There are many reports of NO3 ? violating safety standards in the neighboring areas of concentrated animal feeding operations (CAFOs), which have become the bottleneck of the CAFOs development. The high concentration of ammonium nitrogen (NH4 +-N), which transforms into nitrate nitrogen (NO3 ?-N) through nitrification, and then leaches into the groundwater, is a potential threat to the environment. Adsorption and desorption characteristics of ammonium can reduce the amount of NH4 +-N in soils, which effectively prevents or slows down the nitrate leaching. Researches on the adsorption and desorption of ammonium mainly focus on the simple NH4 + solution. Researches on the adsorption and desorption from hogpen wastewater are few, which is a complex system coexisting with many ions. In this paper, ammonium was selected as the object of pollutant, a batch of equilibration experiments was conducted to evaluate the adsorption–desorption and its kinetics in eight loams, typically found in Northern China, irrigated with original wastewater (OW) and reclaimed wastewater (RW) from intensive hogpen and a simple one consisting of clean water (CW). This study showed that the Freundlich and Langmuir model described the ammonium adsorption properties very well in multi-ion coexistensive system of hogpen wastewater; the ammonium adsorbed amount in the corresponding matrices followed by OW < RW < CW tendency, although the adsorption model parameters had great diversity. The adsorbed amount increased as the adsorption time went on and then approached to a stable state. CW had the shortest reaction time to reach equilibrium, whereas OW had the longest. The normal adsorption kinetics equation could not depict the adsorption behavior of loams but characterized by the ExpAssoc equation well. The study could provide references for the wastewater treatment and recycling, and rural water pollution controlling.  相似文献   

9.
In most countries of the world, groundwater and surface water are at a serious risk of pollution due to chemicals used in agricultural activities. The present study examined whether such a risk exists in Eskipazar, Turkey and the surrounding area, which covers a surface area of 696 km2. Nitrate pollution (NO3) was observed in waters discharging from the Örencik Formation, consisting of loose conglomerate, sandstone, mudstone, siltstone, and claystone levels; from the Yörük member of the Örencik Formation consisting of limestone, from areas where the Örencik Formation and Yörük member are located together, and from alluvium. Agricultural is practiced in these areas, and the waters discharging from these formations are used as drinking water and for domestic purposes. In particular, periodically varying levels of pollutants, such as B, Pb, Hg, Se were detected in wells drilled in Örencik Formation featuring a high NO3 concentration. The concentrations of S, Cr, Mn, Fe, Cu, Zn, Ga, Br, Sr, Y, I, Ba, and U in these waters are also slightly higher than other cold waters in the study area. In addition to the NO3 pollution, high levels of Ca and SO4 pollution was observed at a well drilled in alluvium. In addition, some trace element concentrations identified in the wells drilled in the Örencik Formation were higher than the average values at geothermal and/or mineral springs in the study area. The study area has an adequate sewage system and has no sources of pollution, such as mineralization, industrial center, waste disposal area, etc. Therefore, it is believed that the main causes of NO3 and trace element pollution are fertilizers and pesticides used in agricultural activities. Water–rock interaction, usage period of fertilizers and pesticides, amount of precipitation, groundwater level, usage of elements by plants, mobility of elements, pH value of the environment, redox potential, adsorption/desorption, biochemical processes, etc. are thought to be the causes of the periodical variation of some trace element concentrations observed in these waters.  相似文献   

10.
The conversion of undisturbed coastal regions to commercial and suburban developments may pose a threat to surface and groundwater quality by introducing nitrate-nitrogen (NO3 ?-N) from runoff of land-applied wastewater and fertilizers. Microbial denitrification is an important NO3 ?-N removal mechanism in coastal sediments. The objective of this study was to compare denitrification and nitrate conversion rates in coastal sediments from a golf course, suburban site, undeveloped marsh, and nonmarsh area near rapidly developing Hilton Head Island, South Carolina. Nitrous oxide was measured using gas chromatography and nitrate and ammonium concentrations were measured using a flow injection autoanalyzer in microcosms spiked, with 50 μg NO3 ?-N gdw?1. The two marsh sites had the greatest ammonium production, which was correlated with fine sediment particle size and higher background sediment nitrate and surface water sulfate concentrations. The golf course swale had greatest denitrification rates, which were correlated with higher total carbon and organic nitrogen in sediments. Nitrate was consumed in golf course sediments to a greater extent than in the undeveloped marsh and upland freshwater sites, suggesting that the undeveloped sites and receiving estuaries may be more susceptible to nitrate contamination than the golf course swale and marsh under nonstorm conditions. Construction of swales and vegetated buffers using sediments with high organic carbon content as best management practices may aid in removing nitrate and other contaminants from runoff prior to its transport to the receiving marsh and estuary.  相似文献   

11.
Water pollution is a widespread problem in different areas of the world. Some of these problems originated from point contamination sources and widespread contaminant outlet sources which are observed in every country. The major elements and chemical loads of surface water have been dominated by constituents derived directly or indirectly from human activities and/or industrial practices that have increased additives in the last several decades. The point sources of contamination may result from the direct wastewater discharges to the dam sites, which are considered to be the most commonly encountered water pollution problems. One of these problems is the eutrophication process which usually occurs in the static water mass of lakes and other surface water reservoirs. This process may be caused by the continuous increase of nitrogen and phosphorus contents and decrease of O2 level in water causing an anaerobic condition which may stimulate algae-growth flow in these water bodies, consequently reducing the quality of water. Of course, there are many research methods for determining the various kinds of water pollution. In this research, the hydrochemical parameters were evaluated to estimate the types of pollution sources, the level of pollution, and its environmental impacts on the Tahtal dam reservoir.  相似文献   

12.
In recent years, nitrate contamination of groundwater has become a growing concern for people in rural areas in North China Plain (NCP) where groundwater is used as drinking water. The objective of this study was to simulate agriculture derived groundwater nitrate pollution patterns with artificial neural network (ANN), which has been proved to be an effective tool for prediction in many branches of hydrology when data are not sufficient to understand the physical process of the systems but relative accurate predictions is needed. In our study, a back propagation neural network (BPNN) was developed to simulate spatial distribution of NO3-N concentrations in groundwater with land use information and site-specific hydrogeological properties in Huantai County, a typical agriculture dominated region of NCP. Geographic information system (GIS) tools were used in preparing and processing input–output vectors data for the BPNN. The circular buffer zones centered on the sampling wells were designated so as to consider the nitrate contamination of groundwater due to neighboring field. The result showed that the GIS-based BPNN simulated groundwater NO3-N concentration efficiently and captured the general trend of groundwater nitrate pollution patterns. The optimal result was obtained with a learning rate of 0.02, a 4-7-1 architecture and a buffer zone radius of 400 m. Nitrogen budget combined with GIS-based BPNN can serve as a cost-effective tool for prediction and management of groundwater nitrate pollution in an agriculture dominated regions in North China Plain.  相似文献   

13.
Biochar has been considered a safe soil additive to enhance soil fertility and agronomic traits of different crops. This study was conducted to explore the impacts of sugarcane waste straw biochar on soil characteristics and some agronomic traits of okra. The experiment was carried out with four treatments, i.e., control, sugarcane waste straw biochar (10 ton ha?1), farmyard manure (FYM, 10 ton ha?1), and chemical fertilizers (NPK; 120:100:80 kg ha?1) having three replications of each treatment. Soil samples were tested for texture, bulk density, particle density, pH, electrical conductivity (EC), organic matter content, nitrate nitrogen (NO3-N), and extractable-P. The sugarcane waste straw biochar was characterized for plant major nutrient elements. The impact of various treatments was observed on soils and agronomic traits of okra like plant height, fruit size, fruit length, and yield of okra. Results revealed that sugarcane waste straw biochar expressed higher EC value and noticeable amounts of nitrogen (N), phosphorus (P), potassium (K), sulfur (S), and magnesium (Mg). The sugarcane waste straw biochar, in comparison with FYM and NPK, significantly improved the NO3-N, extractable-P, OM and EC of the calcareous soil, and reduced the soil bulk density. Furthermore, plant growth and yield parameters were significantly improved under biochar application over the control, FYM and NPK. Overall, sugarcane waste straw biochar proved to be a good alternative to conventional organic and inorganic fertilizers under calcareous soil conditions.  相似文献   

14.
Groundwater quality in parts of Central Ganga Basin, India   总被引:1,自引:0,他引:1  
 This paper deals with the drinking water quality of the Ganga-Kali sub-basin which occupies 1300 km2 over parts of Aligarh and Etah districts. Water samples were collected from shallow and deep aquifers and were analyzed for major ions and trace elements. The analytical data were interpreted according to published guidelines. Chemical analysis shows that the groundwater in the basin is alkali bicarbonate type. Trace element studies of water from the shallow aquifer show that the concentration of toxic metals Fe, Mn, Cd, Pb, and Cr+6 are above permissible limits which may present a health hazard. The water from the deep aquifer is comparatively free from contamination. The aquifers are subject to contamination due to sewage effluents and excessive use of fertilizers and pesticides in agriculture. Received: 7 December 1998 · Accepted: 2 March 1999  相似文献   

15.
The study area is in the southeastern part of the city of Elaz between 38°17–38°43 latitudes and 38°36–39°07 longitudes. Formations of Paleozoic, Mesozoic and Cenozoic age comprise confined and unconfined aquifers. Unconfined aquifers are represented by Na-Cl and Na-HCO3 type waters while confined aquifers are characterized by Ca-HCO3, Mg-HCO3 and Na-HCO3 type waters. Due to sodium pollution, as a result of irrigation from waters of Hazar lake in the plain, as well as intense use of artificial fertilizer and improper storage of animal fertilizers, NH4-N, NO3-N and total PO4-P pollution are detected in waters of the unconfined aquifer. Organic material contents in waters of well nos. S27, S29 and S32 completed in the unconfined aquifer are above 3.5 mg/l of Turkish Standard Institute (TSE), (266) standard. In confined aquifers, total PO4-P pollution in four wells and NH4-N pollution in three wells were observed to be above the TSE (266) standard.  相似文献   

16.
This work evaluates the changes of nitrate-nitrogen (NO3-N), ammonium-nitrogen (NH4-N), total phosphorus (P) and chemical oxygen demand (COD) concentrations in stream waters as related to the land use/land cover (LULC) alterations within eight small (5–39 km2) tile-drained catchments in the southern part of The Czech Republic in the period 1993–2010, when massive grassing of arable land took place. The robust tools of seasonal Mann–Kendall trend test and LOcally WEighted Scatterplot Smoothing methods were employed to reveal trends of the monitored parameters with adjustment to hydrology. Using principal component analysis and multiple regressions, statistically significant factors with highest impacts on the assessed water quality parameters were identified. Besides indicators of LULC changes in the catchments and their various zones, information of built tile drainage systems were used along with factors reflecting point pollution sources such as the population number, sewerage type and proximity to a watercourse, effectiveness of wastewater treatment, and number of livestock units. The change in LULC was essential only for NO3-N concentrations, when grassing of arable land, presence of water ponds, areas of permanent cultures and also areas of drained land explained up to 90.6 % NO3-N variability and nitrate-nitrogen concentrations showed a significantly decreasing trend in all monitored catchments during the evaluated period. LULC changes within infiltration vulnerable zones were discovered as less important for the assessed water quality parameters compared to LULC changes in the whole catchment area. However, for NH4-N, P and COD, the results did not enable a definite quantification of the effects of LULC changes. The influence of non-point pollution sources on these parameters was revealed as uncertain and was heavily overshadowed by point sources, in particular by wastewater management, and livestock numbers, although the proportion of arable land in tile drainage subcatchments was discovered fundamental in case of the COD. The increasing numbers of livestock, population, and changes in sewage treatment led in some catchments to significant worsening of water quality. Achieved findings may be critical for supporting water quality policy and management decisions.  相似文献   

17.
One hundred forty-eight groundwater samples were collected from the lower part of Wadi Siham catchment area for hydrogeochemical investigations to understand the hydrogeochemical processes affecting groundwater chemistry and their relation with groundwater quality. Groundwater in the study area is abstracted from different aquifers. The study area is characterized by arid climate and extremely high relative humidity. The results indicate that groundwater in the study area is fresh to brackish in nature. The abundance of the major ions is as follows: Na+1?>?Ca+2?>?Mg+2?≥?K+1 and Cl?1?>?HCO 3 ?1 ?>?SO 4 ?2 ?>?NO 3 ?1 . Various graphical and ionic ration plots, statistical analyses, and saturation indices calculations have been carried out using chemical data to deduce a hydrochemical evaluation of the study area. The prevailing hydrogeochemical processes operating in the study area are dissolution, mixing, evaporation, ion exchange, and weathering of silicate minerals in the eastern part (recharge areas). The reverse ion exchange and seawater intrusion control the groundwater chemistry along the Red Sea coast areas and few parts of the study area. Deterioration in groundwater quality from anthropogenic activities has resulted from saltwater intrusion along the coastal areas due to groundwater overpumping and extensive use of fertilizers and infiltration of sewage water. Salinity and nitrate contamination are the two major problems in the area, which is alarming considering the use of this water for drinking.  相似文献   

18.
Groundwater is a finite resource that is threatened by pollution all over the world. Shimabara City, Nagasaki, Japan, uses groundwater for its main water supply. During recent years, the city has experienced severe nitrate pollution in its groundwater. For better understanding of origin and impact of the pollution, chemical effects and surface–groundwater interactions need to be examined. For this purpose, we developed a methodology that builds on joint geochemical analyses and advanced statistical treatment. Water samples were collected at 42 sampling points in Shimabara including a part of Unzen City. Spatial distribution of water chemistry constituents was assessed by describing Stiff and Piper diagrams using major ions concentrations. The nitrate (NO3?+?NO2–N) concentration in 45% of water samples exceeded permissible Japanese drinking level of 10 mg L??1. Most of the samples showed Ca–HCO3 or Ca–(NO3?+?SO4) water types. Some samples were classified into characteristic water types such as Na–Cl, (Na?+?K)–HCO3, (Na?+?K)–(SO4?+?NO3), and Ca–Cl. Thus, results indicated salt water intrusion from the sea and anthropogenic pollution. At the upstream of Nishi River, although water chemistry was characterized as Ca–HCO3, ion concentrations were higher than those of other rivers. This is probably an effect of disinfection in livestock farming using slaked lime. Positive correlation between NO3? and SO42?, Mg2+, Ca2+, Na+, K+, and Cl? (r?=?0.32–0.64) is evidence that nitrate pollution sources are chemical fertilizers and livestock waste. Principal component analysis showed that chemistry of water samples can be explained by three main components (PCs). PC1 depicts general ion concentration. PC2 and PC3 share influence from chemical fertilizer and livestock waste. Cluster analyses grouped water samples into four main clusters. One of these is the general river chemistry mainly affected by PC1. The others reflect anthropogenic activities and are identified by the combination of the three PCs.  相似文献   

19.
Hydrogeochemistry of groundwater in upland sub-watersheds of Meenachil river, parts of Western Ghats, Kottayam, Kerala, India was used to assess the quality of groundwater for determining its suitability for drinking and agricultural purposes. The study area is dominated by rocks of Archaean age, and Charnonckite is dominated over other rocks. Rubber plantation dominated over other types of the vegetation in the area. Though the study area receives heavy rainfall, it frequently faces water scarcity as well as water quality problems. Hence, a Geographical Information System (GIS) based assessment of spatiotemporal behaviour of groundwater quality has been carried out in the region. Twenty-eight water samples were collected from different wells and analysed for major chemical constituents both in monsoon and post-monsoon seasons to determine the quality variation. Physical and chemical parameters of groundwater such as pH, dissolved oxygen (DO), total hardness (TH), chloride (Cl), nitrate (NO3) and phosphate (PO4) were determined. A surface map was prepared in the ArcGIS 8.3 (spatial analyst module) to assess the quality in terms of spatial variation, and it showed that the high and low regions of water quality varied spatially during the study period. The influence of lithology over the quality of groundwater is negligible in this region because majority of the area comes under single lithology, i.e. charnockite, and it was found that the extensive use of fertilizers and pesticides in the rubber, tea and other agricultural practices influenced the groundwater quality of the region. According to the overall assessment of the basin, all the parameters analysed are below the desirable limits of WHO and Indian standards for drinking water. Hence, considering the pH, the groundwater in the study area is not suitable for drinking but can be used for irrigation, industrial and domestic purposes. The spatial analysis of groundwater quality patterns of the study area shows seasonal fluctuations and these spatial patterns of physical and chemical constituents are useful in deciding water use strategies for various purposes.  相似文献   

20.
The Silurian bedrock aquifer constitutes a major aquifer system for groundwater supply across the Ontario province in Canada. The application of natural and industrial fertilizers near urban centers has led to groundwater NO3-N concentrations that sometimes have exceeded the drinking water limit, posing a threat to the usage of groundwater for the human consumption. Therefore, there is a growing interest and concern about how nitrate is being leached, transported and potentially attenuated in bedrock aquifers. This study assesses the local distribution of groundwater NO3 in the up-gradient area of two historically impacted municipal wells, called Carter Wells, in the City of Guelph, Canada, in order to evaluate the potential nitrate attenuation mechanisms, using both groundwater geochemical and isotopic analysis (3H, δ15N-NO3, δ18O-NO3, δ18O-SO4, δ34S-SO4) and a detailed vertical hydrogeological and geochemical bedrock characterization. The results indicate that probably the main source of nitrate to the Carter Wells is the up-gradient Arkell Research Station (ARS), an agricultural research facility where manure has been historically applied. The overburden and bedrock groundwater with high NO3 concentrations at the ARS exhibits a manure-related δ15N and δ18O signature, isotopically similar to the high nitrate in the down-gradient groundwater from domestic wells and from the Carter Wells. The nitrate spatial distribution appears to be influenced and controlled by the geology, in which more permeable rock is found in the Guelph Formation which in turn is related to most of the high NO3 groundwater. The presence of an underlying low permeability Eramosa Formation favors the development of oxygen-depleted conditions, a key factor for the occurrence of denitrification. Groundwater with low NO3-N concentrations associated with more oxygen-limited conditions and coincident with high SO42− concentrations are related to more enriched δ15N and δ18O values in NO3 and to more depleted δ34S and δ18O values in SO42−, suggesting that denitrification coupled with pyrite oxidation is taking place. The presence of macro crystalized and disseminated pyrite especially in the Eramosa Formation, can support the occurrence of this attenuation process. Moreover, based on tritium analysis, some denitrification can occur in shallow bedrock and within relatively short residence times, associated with less permeable conditions in depth which facilitates oxygen consumption through sulfide oxidation. The role of denitrification mediated by organic carbon cannot be discarded at the study site. This study suggests that the geological configuration and particularly the presence of low permeability Eramosa Formation can play an important role on nitrate natural attenuation, which may serve as a decision factor on defining the bedrock water supply system for both domestic and municipal purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号