首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double sandbar systems are common morphological features along sandy, wave‐dominated, micro‐ to meso‐tidal coastlines. In the companion paper, we demonstrated how various alongshore inner‐bar rip‐channel patterns can develop through morphological coupling to an alongshore‐variable outer bar. The simulated coupling patterns are, however, scarcely observed in the field. Instead, inner‐bar rip channels more often possess remarkably smaller and more variable alongshore length scales, suggesting that coupling mechanisms do not play a substantial role in the overall double‐sandbar dynamics. Here we use a numerical model to show that the relative importance of self‐organization and morphological coupling changes in favour of the latter with an increase in waterdepth variability along the outer‐bar crest. Furthermore, we find that the typical alongshore variability in inner‐bar rip‐channel scale is indicative of a mixture of self‐organization and morphological coupling rather than self‐organization alone. Morphological coupling may thus be more important to understanding and predicting the evolution of inner‐bar rip channels than previously envisaged. Copyright © 2010 John Wiley and Sons, Ltd.  相似文献   

2.
Crescentic sandbars and rip channels along wave‐dominated sandy beaches are relevant to understand localized beach and dune erosion during storms. In recent years, a paradigm shift from hydrodynamic template models to self‐organization mechanisms occurred to explain the formation of these rhythmic features. In double sandbar systems, both the inner‐ and outer‐bar rip channels and crescentic planshapes are now believed to be free instabilities of the nearshore system arising through self‐organization mechanisms alone. However, the occasional occurrence of one or two inner‐bar rip channels within one outer‐bar crescent suggests a forced, morphologically coupled origin. Here we use a nonlinear morphodynamic model to show that alongshore variability in outer‐bar depth, and the relative importance of wave breaking versus wave focussing by refraction across the outer bar, is crucial to the inner‐bar rip channel development. The coupling patterns simulated by our model are similar to those observed in the field. Morphological coupling requires a template in the morphology (outer‐bar geometry) which, through the positive feedback between flow, sediment transport and the evolving morphology (that is, self‐organization) enforces the development of coupling patterns. We therefore introduce a novel mechanism that blurs the distinction between self‐organization and template mechanisms. This mechanism may also be extended to explain the dynamics of other nearshore patterns, such as beach cusps. The impact of this novel mechanism on the alongshore variability of inner‐bar rip channels is investigated in the companion paper. Copyright © 2010 John Wiley and Sons, Ltd.  相似文献   

3.
A 9.3-year dataset of low-tide time-exposure images from Surfers Paradise, Northern Gold Coast, Australia was used to characterise the state dynamics of a double sandbar system. The morphology of the nearshore sandbars was described by means of the sequential bar state classification scheme of Wright and Short [1984. Morphodynamic variability of surf zones and beaches: a synthesis. Marine Geology 56, 93-118]. Besides the two end members (the dissipative (D) and the reflective (R) states) and the four intermediate states (longshore bar and trough (LBT), rhythmic bar and beach (RBB), transverse bar and rip (TBR) and low tide terrace (LTT)), we identified two additional intermediate bar states. The erosive transverse bar and rip (eTBR) state related to the dominant oblique angle of wave incidence at the study site and the rhythmic low tide terrace (rLTT) related to the multiple bar setting. Using the alongshore barline variability and alongshore trough continuity as morphological indicators enabled the objective classification of the inner and outer bar states from the images. The outer bar was mostly in the TBR state and generally advanced sequentially through the states LBT-RBB-TBR-eTBR-LBT, with occasional transitions to the D state. Wave events led to abrupt state transitions of the outer bar, but, in contrast to expectations, did not necessarily correspond to upstate transitions. Instead, upstate (downstate) transitions coincided with angles of wave incidence θ larger (smaller) than 30°. The upstate TBR-eTBR-LBT sequence during high-angle events highlights the role of alongshore currents in bar straightening. The outer bar was found to govern the state of the inner bar to a large extent. Two types of inner bar behaviour were distinguished, based on the outer bar state. For intermediate outer bar states, the alongshore variability of the dominant inner rLTT state (52% in time) mainly related to that of the outer bar, implying some sort of morphological coupling. For dissipative outer bar states, however, the more upstate inner bar frequently separated from the shoreline and persistently developed rip channels as TBR became the most frequent state (60% in time).  相似文献   

4.
Subtidal nearshore sandbars may exhibit cyclic net offshore migration during their multi‐annual lifetime along many sandy coasts. Although this type of behavior can extend continuously for several kilometers, alongshore variations in cross‐shore bar position and bar amplitude are commonly observed. Alongshore variability is greatest when bars display km‐scale disruptions, indicative of a distinct alongshore phase shift in the bar cycle. An outer bar is then attached to an inner bar, forming a phenomenon known as a bar switch. Here, we investigate such large‐scale alongshore variability using a process‐based numerical profile model and observations at 24 transects along a 6 km section of the barred beach at Noordwijk, The Netherlands. When alongshore variability is limited, the model predicts that the bars migrate offshore at approximately the same rate (i.e. the bars remain in phase). Only under specific bar configurations with high wave‐energy levels is an increase in the alongshore variability predicted. This suggests that cross‐shore processes may trigger a switch in the case of specific antecedent morphological configurations combined with storm conditions. It is expected that three‐dimensional (3D) flow patterns augment the alongshore variability in such instances. In contrast to the observed bar behaviour, predicted bar morphologies on either side of a switch remain in different phases, even though the bars are occasionally located at a similar cross‐shore position. In short, the 1D model is not able to remove a bar switch. This data‐model mismatch suggests that 3D flow patterns are key to the dissipation of bar switches. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Sandbars, submerged ridges of sand parallel to the shoreline, affect surfzone circulation, beach topography and beach width. Under time‐varying wave forcing, sandbars may migrate onshore and offshore, referred to as two‐dimensional (2D) behaviour, and vary in planshape from alongshore uniform ridges to alongshore non‐uniform ridges through the growth and decay of three‐dimensional (3D) patterns, referred to as 3D behaviour. Although 2D and 3D sandbar behaviour is reasonably well understood along straight coasts, this is not the case for curved coasts, where the curvature can invoke spatial variability in wave forcing. Here, we analyse sandbar behaviour along the ~3000 m man‐made curved coastline of the Sand Engine, Netherlands, and determine the wave conditions governing this behaviour. 2D and 3D behaviour was quantified within a box north and west of the Sand Engine's tip, respectively, using a 2.4‐year dataset of daily low‐tide video images and a sparser bathymetric dataset. The northern and western sides behaved similarly in terms of 2D behaviour, with seasonal onshore and offshore migration, resulting in a stable position on inter‐annual timescales. However, both sandbar geometry and 3D behaviour differed substantially between both sides. The geometric differences (bar shape, bar crest depth and wavelength of 3D patterns) are consistent with computed alongshore differences in breaker height due to refraction. The differences in the timing in growth, decay and morphological coupling of 3D patterns in the sandbar and shoreline are likely related to differences in the local wave angle, imposed by the curved coast. Similar dependency of bar behaviour on local wave height and angle may be expected elsewhere along curved coasts, e.g. shoreline sandwaves, cuspate forelands or embayed beaches. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Five weeks of hourly, 10-min time-exposure video images were used to analyze the meso–macro-tidal double-barred Truc Vert Beach, SW France, under intense wave forcing. The four storms experienced, one of which with an offshore significant wave height over 8 m, induced dramatic changes in the double sandbar system. The subtidal outer bar migrated offshore rapidly (up to 30–50 m/day) and its pre-existing crescentic pattern was wiped out. The seaward-protruding parts of the outer bar barely migrated offshore during the most intense storm, whereas a landward-protruding part was shed off. Over the entire study period, the outer-bar dynamics was dominated by alongshore-averaged changes rather than alongshore non-uniform changes, while the opposite was observed for the inner bar. In addition, the outer-bar dynamics was predominantly controlled by the time-varying offshore wave conditions, whereas the inner-bar dynamics was influenced largely by the tide-range variations. Our observations put forward the key role of morphological settings (the presence of a subtidal bar and its shape) and tidal range in governing inner-bar behaviour within a double sandbar dynamics, and provide strong support for previous suggestions that sandbars cannot be studied in isolation.  相似文献   

7.
Nearshore sandbars are characteristic features of sandy surf zones and have been observed with a variety of geometries in cross-shore (e.g. location) and longshore direction (e.g. planform). Although the behaviour of sandbars has been studied extensively on spatial scales up to kilometres and timescales up to years, it remains challenging to observe and explain their behaviour on larger spatial and temporal scales, especially in locations where coastline curvature can be prominent. In this paper, we study a data set with 38 years of coastal profiles, collected with alongshore intervals of 50 m, along the 34 km-long curved sandy shoreline of Sylt island, Germany. Sylt's shoreline has an orientation difference of ~20° between the northern and southern half of the island. We found that the decadal coastal profiles on the southern half show features of a low-tide terrace and a sandbar located further from the shoreline (~441 m). On the nothern half, the sandbar was located closer to the shoreline (~267 m) and was less pronounced, while the profiles show transverse bar and rip features. The alongshore planform also differed systematically and significantly along the two island sides. The sandbar on the southern island half, with alongshore periodicity on a larger length scale (~2240 m), was coupled out-of-phase to the shoreline, while no phase coupling was observed for the sandbar with periodicity on a shorter length scale (~670 m) on the northern half. We related the observed geometric differences of the sandbars to the difference in the local wave climate along Sylt, imposed by the shoreline shape. Our observations imply that small alongshore variations in wave climate, due to the increasing shoreline curvature on larger spatial scales, can lead to significant alongshore differences in the decadal evolution of coastal profiles, sandbars and shorelines. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

8.
The Aquitanian Coast (France) is a high-energy meso-macrotidal environment exhibiting a highly variable double sandbar system. The inner and the outer bar generally exhibit a bar and rip morphology and persistent crescentic patterns, respectively. In June 2007, an intense five-day field experiment was carried out at Biscarrosse Beach. A large array of sensors was deployed on a well-developed southward-oriented bar and rip morphology. Daily topographic surveys were carried out together with video imaging to investigate beach morphodynamic evolution. During the experiment, offshore significant wave height ranged from 0.5 to 3 m, with a persistent shore-normal angle. This paper identifies two types of behavior of an observed rip current: (1) for low-energy waves, the rip current is active only between low and mid tide with maximum mean rip current velocity reaching 0.8 m/s for an offshore significant wave height (Hs) lower than 1 m; (2) for high-energy waves (Hs≈ 2.5–3 m), the rip current was active over the whole tide cycle with the presence of persistent intense offshore-directed flows between mid and high tide. For both low and high-energy waves, very low-frequency pulsations (15–30 min) of the mean currents are observed on both feeder and rip channels.A persistent slow shoreward migration of the sandbar was observed during the experiment while no significant alongshore migration of the system was measured. Onshore migration during the high-energy waves can be explained by different sediment transport processes such as flow velocity skewness, wave asymmetry or bed ventilation. High-frequency local measurements of the bed evolution show the presence of significant (in the order of 10 cm) fluctuations (in the order of 1 h). These fluctuations, observed for both low- and high-energy waves, are thought to be ripples and megaripples, respectively and may play an important but still poorly understood role in the larger scale morphodynamics. The present dataset improves the knowledge of rip dynamics as well as the morphological response of strongly alongshore non-uniform meso-macrotidal beaches.  相似文献   

9.
We report on a 6‐year nearshore bathymetric dataset from the Danube Delta (Romanian Black Sea coast) that comprises 16 km of erosive, stable and accumulative low‐lying micro‐tidal beaches northward of Sf. Gheorghe arm mouth. Two to three two‐dimensional longshore sandbars exhibit a net multi‐annual cyclic (2.8–5.5 years) offshore migration (20–50 m yr?1) in a similar way to other coasts worldwide. Bar morphology and behavior on the sediment‐rich accretionary (dissipative) sector differ substantially from that on the erosive (intermediate) sector. Shoreface slope is the most important factor controlling sandbar number and behavior. It determines different wave‐breaking patterns in the surf zone, translated into different offshore sediment transport and bar zone widths along the study site. Additionally, sediment availability, as a result of the distance from the arm mouth and of the long‐term evolution of the coast, controls the sandbar volume variability. These are all ultimately reflected in the variations of sandbar migration rates and cycle periods. A non‐dimensional morpho‐sedimentary parameter is finally presented, which expresses the bar system change potential as offshore sediment transport potential across the bar zone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
A 15‐month data set of daily time‐averaged video images (Argus) has been analyzed to describe the spatial and temporal variability of the rip channels on a multiple‐barred coast at Noordwijk aan Zee, The Netherlands. The landward boundary of the intertidal bars and a proxy of the subtidal bar crest, defined as the intertidal and subtidal bar lines respectively, were derived from the Argus images. Local seaward‐directed deviations of the bar lines represent the cross‐shore and alongshore locations of the rip channels. The average intertidal rip spacing ( ) was 243 m, but the rips were not spaced regularly (σλ/ = 0.47). Some intertidal rips were observed to fill up during falling tide, but the majority remained open. The filled intertidal rip channels had more landward positions and migrated more slowly (2.4 versus 4.6 m/day) in the alongshore direction than the open intertidal rip channels. The number and the alongshore migration rate of open intertidal rip channels increased with the preceding wave heights (r = 0.26, p < 0.01) and alongshore component of the offshore wave power (r = 0.25, p < 0.01), respectively. The shape of the intertidal bar lines was similar to the subtidal bar line shape, suggesting that the intertidal morphology is coupled to the subtidal alongshore variability. The phase of two bar lines could vary from in phase (0°) to out of phase (180°). The phase changes gradually, due to different alongshore migration rates of the intertidal and subtidal bar lines. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Sandy beaches typically have one or more shore-parallel bars with superimposed smaller-scale three-dimensional (3D) bars. Knowledge of their morphodynamic behaviour under more realistic wave conditions is limited. This study investigates the response of beaches with two shore-parallel bars to sinusoidally time-varying angles of incidence, using a non-linear morphodynamic model. Different periods and amplitudes of this sinusoidal variation are considered, as well as different time-mean wave angles. For time-invariant and normally incident waves, results show that alongshore rhythmic 3D bars form in the domains of inner and outer shore-parallel bars. The 3D bars in the inner domain are coupled at half the outer-bars wavelength. This phase coupling breaks up when the wave angle varies in time. Initially, regular 3D bars form in the inner domain (free behaviour), which become irregular when 3D bars develop in the outer domain (forced behaviour). The heights of the 3D bars oscillate with time, reaching maximum values when the forcing period is comparable to the system adjustment time scale (∼ 10–20 days). For a time-varying wave angle around an oblique mean, alongshore migrating 3D bars emerge in both inner and outer domains. In contrast, for an oblique (constant) wave angle, 3D bars only form in the inner domain and they hardly migrate alongshore. For any forcing period, the dominant response period of the oscillating bar heights is at half the forcing period when waves are (on average) normally incident, and it equals the forcing period when waves are on average obliquely incident. Compared with time-invariant angles, heights of inner and outer 3D bars are (on average) smaller and larger, respectively, when the angle varies with time, particularly for forcing periods in the order of the system adjustment time scale. Increasing the amplitude of the time-varying wave angle weakens bar growth. Explanations of these results are also provided.  相似文献   

12.
三峡工程运行后长江中下游河道洲滩普遍冲刷萎缩,航道条件极不稳定.为探究影响洲滩演变的主控因素,采用近期水文、泥沙和地形观测资料,以下荆江铁铺水道广兴洲边滩为例,分析了边界条件、水沙过程及整治工程等因素对洲滩调整特征的影响程度.结果表明:洲滩组成中的细沙(0.125 mm<d<0.25 mm)占比较大,抗冲性较弱,是滩体...  相似文献   

13.
Knowledge of the physical processes acting at inlet systems and their interaction with sediments and sediment bodies is important to the understanding of such environments. The objectives of this study are to identify and assess the relative importance of the controlling processes across the complex sandbar system at the Teign inlet (Teignmouth, UK) through the combined application of a numerical model, field data and Argus video images. This allows the determination of the regions dominated by wave processes or by tidal processes and definition of the variability of these regions under different wave, tide and river-discharge conditions. Modelling experiments carried out for one stage of the evolution of the system show that the interaction between tidal motion and waves generates complex circulation patterns that drive the local sediment transport and sandbar dynamics, producing a cyclic morphological behaviour of the sandbars that form the ebb-tidal delta. The relative importance of each physical process on the sediment transport and consequent morphodynamics varies across the region. The main inlet channel is dominated by tidal action that directs the sediment transport as a consequence of the varying tidal flow asymmetry, resulting in net offshore transport. Sediment transport over the shoals and secondary channels at both sides of the main channel is dominated by wave-related processes, displacing sediment in the onshore direction. The interaction between waves and tide-generated currents controls the transport over the submerged sandbar that defines the channels seaward extend. High river discharge events are also proven to be important in this region, as they can change sediment-transport patterns across the area.Responsible Editor: Iris Grabemann  相似文献   

14.
In this study, an intertidal bar and trough system on the beach of Noordwijk, The Netherlands was monitored over a 15‐month period in order to examine the daily to seasonal sequential cross‐shore behaviour and to establish which conditions force or interrupt this cyclic bar behaviour. The beach morphology (bars and troughs) was classified from low‐tide Argus video images based on surface composition. From the classified images, time series of the landward boundary of the bar and of the trough were extracted. The time series of the alongshore‐averaged boundary positions described sawtooth motion with a period between 1 and 4 months, comprising gradual landward migration followed by abrupt seaward shifts. The abrupt seaward shift appeared to be a morphological reset induced by storm events, which lasted at least 30 h with a large average root‐mean‐square wave height (≥2 m) and offshore surge level (≥0·5 m), and a small trough (<20 m wide) in the pre‐storm beach morphology. The time series of the boundary positions exhibited very little longer (seasonal) scale variability, but somewhat larger smaller (daily) scale variability. The bar boundary was found to be more dynamic than the trough boundary. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Multiple intertidal bars are common features of wave‐dominated sandy beaches, yet their short‐term (<1 month) and small‐scale (<1 km) morphology and dynamics remain poorly understood. This study describes the morphodynamics of multiple intertidal bars in North Lincolnshire, England, during single and lunar tidal cycles under two contrasting conditions – first when significant wave height was <0·5 m and second when significant wave height frequently exceeded 1 m. The relative importance of swash, surf and shoaling processes in determining morphological change was examined using detailed field observations and a numerical model. The beach featured four intertidal bars and both cross‐shore and longshore bar morphology evolved during the field investigation, particularly under medium to high wave‐energy conditions. Numerical modelling suggests shoaling processes are most common on the seaward two bars under calm wave conditions (Hs < 0·5 m) and that surf zone processes become more common during neap tides and under more energetic (Hs < 0·5 m) conditions. Surf processes dominate the inner two bars, though swash influence increases in a landward direction. The numerical modelling results combined with low tide survey data and high‐resolution morphological measurements strongly suggest changes in the intertidal bar morphology are accomplished by surf zone processes rather than by shoaling wave or swash processes. This is because shoaling waves do not induce significant sediment transport to have any morphological effect, whereas swash action generally does not have enough scope to act as the swash zone is much narrower than the surf zone. It was found, however, that the absolute rate of morphological change under swash action and surfzone processes are of similar magnitudes and that swash action may induce a significant amount of local morphological change when the high tide mark is located on the upper bar, making this process important for bar morphodynamics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Nearshore sandbars are important features in the surf zone of many beaches because they strongly influence the mean circulation and evolving morphology. Due to variations in wave conditions, sandbars can experience cross-shore migration and vary in shape from alongshore uniform (shore-parallel) to alongshore rhythmic (crescentic). Sandbar dynamics have been studied extensively, but existing observational studies usually do not quantify the processes leading to crescentic bar formation and straightening. This study analyses the dynamics of crescentic bar events at the fetch-limited beach of Castelldefels (northwestern Mediterranean Sea, Spain) using 7.5 years of hourly time-exposure video images and detailed wave conditions. The results show that, despite the generally calm wave conditions, the sandbars were very dynamic in the cross-shore and longshore directions. They often migrated rapidly offshore during storms (up to 70 m in one day) and more slowly onshore during post-storm conditions. Crescentic bars were often present at the study site (48% of the time), but only when the sandbar was at least 10 m from the shoreline. They displayed a large variability in wavelengths (100–700 m), alongshore migration speeds (0–50 m/day) and cross-shore amplitudes (5–20 m). Wavelengths increased for larger bar–shoreline distances and the alongshore migration speeds were strongly correlated with the alongshore component of the radiation stresses. Crescentic patterns typically developed during low–medium energetic waves with limited obliquity ( θ20° at 10 m depth), while bar straightening occurred during medium–high energetic waves with strong oblique angles of incidence ( θ15°). Overall, this study provides further proof for the important role of wave direction in crescentic bar dynamics and highlights the strong dependence of crescentic bar development on the initial bathymetric configuration.  相似文献   

17.
《Continental Shelf Research》2005,25(9):1053-1069
Predictions of nearshore depth evolution using process-based numerical simulation models contain inherent uncertainties owing to model structural deficiencies, measurement errors, and parameter uncertainty. This paper quantifies the parameter-induced predictive uncertainty of the cross-shore depth evolution model Unibest-TC by applying the Bayesian Generalised Likelihood Uncertainty Estimation methodology to modelling depth evolution at Egmond aan Zee (Netherlands). This methodology works with multiple sets of parameter values sampled uniformly in feasible parameter space and assigns a likelihood value to each parameter set. Acceptable simulations (i.e., based on parameter sets with a nonzero likelihood) were found for a wide range of parameter values owing to parameter interdependence and insensitivity. The 95% uncertainty prediction interval of bed levels after the 33 days prediction period was largest (0.5–1 m) near the sandbar crests that characterize the Egmond depth profile, reducing to near-zero values in the sandbar troughs and the offshore area. The prediction interval built up during storms (when sediment transport rates are largest) and remained the same or even reduced slightly during less-energetic conditions. The prediction uncertainty ranges bracket the observations near the inner-bar crest, its seaward flank, and at the seaward flank of the outer bar, suggesting that elsewhere model structural errors (and, potentially, measurement errors) dominate over parameter errors. The interdependence and the non-Gaussian marginal posterior distribution functions of the free model parameters cast doubt on the ability of commonly applied multivariate normal distribution functions to estimate parameter uncertainty.  相似文献   

18.
Cross-shore migratory behavior of nearshore sandbars is commonly studied with nearshore bathymetric-evolution models that represent underlying processes of hydrodynamics and sediment transport. These models, however, struggle to reproduce natural cross-shore sandbar behavior on timescales of a few days to weeks and have uncertain skill on longer scales of months to years. One particular concern for the use of models on prediction timescales that far exceed the timescale of the modeled processes is the exponential accumulation of errors in the nonlinear model equations. The relation between cross-shore sandbar migration, sandbar location and wave height has previously been demonstrated to be weakly nonlinear on timescales of several days, but it is unknown how this nonlinearity affects the predictability of long-term (months to years) cross-shore sandbar behavior. Here we study the role of nonlinearity in the predictability of sandbar behavior on timescales of a few days to several months with data-driven neural network models. Our analyses are based on over 5600 daily-observed cross-shore sandbar locations and daily-averaged wave forcings from the Gold Coast, Australia, and Hasaki, Japan. We find that neural network models are able to hindcast many aspects of cross-shore sandbar behavior, such as rapid offshore migration during storms, slower onshore return during quiet periods, seasonal cycles and annual to interannual offshore-directed trends. Although the relation between sandbar migration, sandbar location and wave height is nonlinear, sandbar behavior can be hindcasted accurately over the entire lifespan of the sandbars at the Gold Coast. Contrastingly, it is difficult to hindcast the long-term offshore-directed trends in sandbar behavior at Hasaki because of exponential accumulation of errors over time. Our results further reveal that during periods with low-wave conditions it becomes increasingly difficult to predict sandbar locations, while during high waves predictions become increasingly accurate.  相似文献   

19.
20.
We investigate how waves are transformed across a shore platform as this is a central question in rock coast geomorphology. We present results from deployment of three pressure transducers over four days, across a sloping, wide (~200 m) cliff‐backed shore platform in a macrotidal setting, in South Wales, United Kingdom. Cross‐shore variations in wave heights were evident under the predominantly low to moderate (significant wave height < 1.4 m) energy conditions measured. At the outer transducer 50 m from the seaward edge of the platform (163 m from the cliff) high tide water depths were 8+ m meaning that waves crossed the shore platform without breaking. At the mid‐platform position water depth was 5 m. Water depth at the inner transducer (6 m from the cliff platform junction) at high tide was 1.4 m. This shallow water depth forced wave breaking, thereby limiting wave heights on the inner platform. Maximum wave height at the middle and inner transducers were 2.41 and 2.39 m, respectively, and significant wave height 1.35 m and 1.34 m, respectively. Inner platform high tide wave heights were generally larger where energy was up to 335% greater than near the seaward edge where waves were smaller. Infragravity energy was less than 13% of the total energy spectra with energy in the swell, wind and capillary frequencies accounting for 87% of the total energy. Wave transformation is thus spatially variable and is strongly modulated by platform elevation and the tidal range. While shore platforms in microtidal environments have been shown to be highly dissipative, in this macro‐tidal setting up to 90% of the offshore wave energy reached the landward cliff at high tide, so that the shore platform cliff is much more reflective. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号