首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Snowmelt‐fed springs and small (0.5 km2) upland catchments in alpine areas of the western United States contribute significantly to the quantity and inorganic chemistry of water delivered to downstream basins but have not been studied extensively. Mineral weathering, transit time, and hydrologic mixing control the solute chemistry of waters that drain the upland zone of Niwot Ridge, Colorado Front Range, and adjacent areas in the granitic core of the Southern Rocky Mountains. Water in 37 springs sampled in this study flows in generally short steep paths (~0.3 km) through shallow regolith with mean transit times (MTT) of weeks to months, producing solutions dominated by Si, Ca2+, Na+, and HCO3?, locally SO42?. Rock type is a significant control on spring, surface, and shallow groundwater chemistry, and plagioclase (oligoclase) is the major source of dissolved Na+ and Si. Concentrations of Ca2+ exceed stoichiometric predictions of oligoclase weathering by ~3.5×; excess Ca2+ likely represents weathering of aeolian material, vein calcite, or trace minerals. Concentrations of base cations and Si increase slowly with estimated MTT of 0.2 years for Niwot Ridge spring waters, and several years for shallow groundwater sampled by wells. Chemical weathering of silicate minerals is slow with estimated rates of ~2.0 and 0.2 pmol·m?2·s?1 for oligoclase and microcline, respectively; the most mineralized spring waters are saturated only with respect to kaolinite and montmorillonite. More than 50% of the dissolved base cations + Si measured in Boulder Creek at Orodell (~25 km downstream) accumulate before water emerges from alpine springs on Niwot Ridge. Warming global temperatures are shifting more high‐elevation precipitation to rain, potentially changing run‐off patterns, transit time, and solute loads. Acquisition of solutes by alpine waters thus has implications far beyond small upland catchments.  相似文献   

2.
Recent work has suggested that weathering processes occurring in the subsurface produce the majority of silicate weathering products discharged to the world's oceans, thereby exerting a primary control on global temperature via the well‐known positive feedback between silicate weathering and CO2. In addition, chemical and physical weathering processes deep within the critical zone create aquifers and control groundwater chemistry, watershed geometry and regolith formation rates. Despite this, most weathering studies are restricted to the shallow critical zone (e.g. soils, outcrops). Here we investigate the chemical weathering, fracturing and geomorphology of the deep critical zone in the Bisley watershed in the Luquillo Critical Zone Observatory, Puerto Rico, from two boreholes drilled to 37.2 and 27.0 m depth, from which continuous core samples were taken. Corestones exposed aboveground were also sampled. Weathered rinds developed on exposed corestones and along fracture surfaces on subsurface rocks slough off of exposed corestones once rinds attain a thickness up to ~1 cm, preventing the corestones from rounding due to diffusion limitation. Such corestones at the land surface are assumed to be what remains after exhumation of similar, fractured bedrock pieces that were observed in the drilled cores between thick layers of regolith. Some of these subsurface corestones are massive and others are highly fractured, whereas aboveground corestones are generally massive with little to no apparent fracturing. Subsurface corestones are larger and less fractured in the borehole drilled on a road where it crosses a ridge compared with the borehole drilled where the road crosses the stream channel. Both borehole profiles indicate that the weathering zone extends to well below the stream channel in this upland catchment; hence weathering depth is not controlled by the stream level within the catchment and not all of the water in the watershed is discharged to the stream. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Cosmogenic nuclides in rock, soil, and sediment are routinely used to measure denudation rates of catchments and hillslopes. Although it has been shown that these measurements are prone to biases due to chemical erosion in regolith, most studies of cosmogenic nuclides have ignored this potential source of error. Here we quantify the extent to which overlooking effects of chemical erosion introduces bias in interpreting denudation rates from cosmogenic nuclides. We consider two end‐member effects: one due to weathering near the surface and the other due to weathering at depth. Near the surface, chemical erosion influences nuclide concentrations in host minerals by enriching (or depleting) them relative to other more (or less) soluble minerals. This increases (or decreases) their residence times relative to the regolith as a whole. At depth, where minerals are shielded from cosmic radiation, chemical erosion causes denudation without influencing cosmogenic nuclide buildup. If this effect is ignored, denudation rates inferred from cosmogenic nuclides will be too low. We derive a general expression, termed the ‘chemical erosion factor’, or CEF, which corrects for biases introduced by both deep and near‐surface chemical erosion in regolith. The CEF differs from the ‘quartz enrichment factor’ of previous work in that it can also be applied to relatively soluble minerals, such as olivine. Using data from diverse climatic settings, we calculate CEFs ranging from 1.03 to 1.87 for cosmogenic nuclides in quartz. This implies that ignoring chemical erosion can lead to errors of close to 100% in intensely weathered regolith. CEF is strongly correlated with mean annual precipitation across our sites, reflecting climatic influence on chemical weathering. Our results indicate that quantifying CEFs is crucial in cosmogenic nuclide studies of landscapes where chemical erosion accounts for a significant fraction of the overall denudation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Jun Xiao  Fei Zhang  Zhangdong Jin 《水文研究》2016,30(25):4855-4869
Hydrochemistry methods were used to decipher the weathering and geochemical processes controlling solute acquisition of river waters in the dry season in the middle Loess Plateau (MLP), one of the most severely eroded areas and turbid riverine systems in the world. River waters were neutral to slightly alkaline with pH varying from 7.6 to 9.6. The total dissolved solids decreased from northwest to southeast with a mean value of 804 mg/l, much higher than the global average and other large rivers in China. Ternary diagram showed that river waters were dominated by Na+, HCO3?, and Cl? with the main water‐type of HCO3?–Cl?–Na+. Saturation index values, Mg2+, Ca2+, and HCO3? analyses indicated the preferential Ca2+ removal by calcite precipitation. Gibbs plots and stoichiometry plots indicated that the dissolved solutes were mainly derived from rock weathering with minor anthropogenic and atmospheric inputs. Samples in the northwestern basin are also influenced by evaporation. A forward model of mass budget calculation showed that, owing to high soluble characteristics, evaporite dissolution was a major feature of river waters and contributed 41% to the total dissolved cations on average, while carbonate and silicate weathering contributed 28%,and 25% on average, respectively. Besides evaporite dissolution, cation exchange is also responsible for the high concentrations of Na+ in river water. Spatial variations showed that evaporite dissolution and silicate weathering were higher in the northern basin, whereas carbonate weathering was higher in the southern basin. Different from most rivers in the world, the physical erosion rates (varying from 117.7 to 4116.6 t/km2y) are much higher than the chemical weathering rates (varying from 3.54 to 6.76 t/km2y) in the MLP because of the loose structure of loess and poor vegetation in the basin. In the future, studies on comparison of water geochemistry in different seasons and on influence of different types of land use and soil salinization on water geochemistry, denudation rates, and water quality should be strengthened in the MLP. These results shed some lights on processes responsible for modern loess weathering and also indicate the importance of time‐series sampling strategy for river water chemistry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A reaction set of possible mineral weathering reactions is proposed to explain observed cation and silica export for the Emerald Lake watershed, a small Sierra Nevada, California catchment. The reaction set was calculated through a stoichiometric mole‐balance method, using a multiyear record of stream flow and snowpack chemical analyses and site‐specific mineral compositions. Reaction‐set calculations were intended to explore how the processes controlling stream cation and silica export depend on differing bedrock mineralogy across the catchment as snowmelt and runoff patterns change over the year. Different regions within the watershed can be differentiated by lake inflow subdrainages, each exhibiting different stream‐flow chemistry and calculated weathering stoichiometry, indicating that different silica and cation generation processes are dominant in wet steep portions of the catchment. Short‐term differences in stream concentrations were assumed to reflect ion exchange equilibria and rapid biological processes, whereas long‐term persistent stream concentration differences in different areas of the catchment were assumed to reflect spatial variability in mineral weathering stoichiometry. Mineralogical analyses of rock samples from the watershed provided site‐specific chemical compositions of major mineral species for reaction calculations. Reaction sets were evaluated by linear regression of calculated versus observed differences between snowmelt and stream‐flow chemistry and by a combined measure. Initially, single weathering reactions were balanced and evaluated to determine the reactions that best explained observed stream chemical export. Next, reactions were combined, using mineral compositions from different rock types to estimate the dependence of ion fluxes on lithology. The seasonal variability of major solute calculated fluxes is low, approximately one order of magnitude, relative to the observed three orders of magnitude variability in basin discharge. Reaction sets using basin‐averaged lithology and Aplite lithologies gave superior explanations of stream chemical composition. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Discrepancies between predicted and observed interstitial water profiles for sites 322 and 323, Leg 35, Bellingshausen Abyssal Plain, were used to identify sites of reaction for further mineralogical and chemical investigations. Two major reaction sites were identified at site 323:(1) In the silicification zone between 410 and 505 m depth, where dissolution of biogenic (opaline) silica, plagioclase and a few coccoliths and the formation of opal-CT, Mg-rich smectite and K-feldspar are responsible for the observed silica, Ca2+, Mg2+, and K+ interstitial water gradients. Dissolution of biogenic silica provided most of the silica for the porcelanites.(2) In the basalt, weathering of pyroxene and plagioclase and the formation of celadonite, smectite, calcite, and goethite are probably responsible for the observed Ca2+, Mg2+, and K+ interstitial water gradients below the silicification zone.The chemistry of authigenic smectites reflects the composition of their precursor(s).  相似文献   

7.
A key issue in the study of the carbon cycle is constraining the stocks and fluxes in and between C‐reservoirs. Among these, the role and importance of fossil organic carbon (FOC) release by weathering of outcropping sedimentary rocks on continental surfaces is still debated and remains poorly constrained. Our work focuses on FOC fluxes due to chemical and mechanical weathering of marls in two experimental watersheds with typical badlands geomorphology (Draix watersheds, Laval and Moulin, Alpes de Haute Provence, France). Organic matter from bedrock, soil litter and riverine particles are characterized by Rock‐Eval 6 pyrolysis. FOC fluxes due to mechanical weathering are then estimated by monitoring the annual particulate solid exports at the outlets of the watersheds (1985–2005 period). FOC fluxes from chemical weathering were calculated using Ca2+ concentrations in dissolved loads (year 2002) to assess the amount of FOC released by the dissolution of the carbonate matrix. Results show that FOC delivery is mainly driven by mechanical weathering, with a yield ranging from 30 to 59 t km‐2 yr‐1 in the Moulin (0.08 km2) and Laval (0.86 km2) catchments, respectively, (1985–2005 average). The release of FOC attributed to chemical weathering was 2.2 to 4.2 t km‐2 for the year 2002. These high FOC fluxes from badlands are similar to those observed in tectonically active mountain catchments. At a regional scale, badland outcropping within the Durance watershed does not exceed 0.25% in area of the Rhône catchment, but could annually deliver 12 000 t yr‐1 of FOC. This flux could correspond to 27% of the total particulate organic carbon (POC) load exported by the Rhône River to the Mediterranean Sea. At a global scale, our findings suggest that erosion of badlands may contribute significantly to the transfer of FOC from continental surfaces to depositional environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Alpine/subalpine basins may exhibit substantial variability in solute fluxes despite many apparent similarities in basin characteristics. An evaluation of controls on spatial patterns in solute fluxes may allow development of predictive tools for assessing basin sensitivity to outside perturbations such as climate change or deposition of atmospheric pollutants. Relationships between basin physical characteristics, determined from geographical information system (GIS) tools, and solute fluxes and mineral weathering rates were explored for nine alpine/subalpine basins in Rocky Mountain National Park, Colorado, using correlation analyses for 1993 and 1994 data. Stream‐water nitrate fluxes were correlated positively with basin characteristics associated with the talus environment; i.e., the fractional amounts of steep slopes (≥ 30°), unvegetated terrain and young debris (primarily Holocene till) in the basins, and were correlated negatively with fractional amounts of subalpine meadow terrain. Correlations with nitrate indicate the importance of the talus environment in promoting nitrate flux and the mitigating effect of areas with established vegetation, such as subalpine meadows. Total mineral weathering rates for the basins ranged from about 300 to 600 mol ha?1 year?1. Oligoclase weathering accounted for 30 to 73% of the total mineral weathering flux, and was positively correlated with the amount of old debris (primarily Pleistocene glacial till) in the basins. Although calcite is found in trace amounts in bedrock, calcite weathering accounted for up to 44% of the total mineral weathering flux. Calcite was strongly correlated with steep slope, unvegetated terrain, and young debris—probably because physical weathering in steep‐gradient areas exposes fresh mineral surfaces that contain calcite for chemical weathering. Oligoclase and calcite weathering are the dominant sources of alkalinity in the basins. However, atmospherically deposited acids consume much of the alkalinity generated by weathering of calcite and other minerals in the talus environment. Published in 2001 by John Wiley & Sons, Ltd.  相似文献   

9.
It has been hypothesized that many soil profiles reach a steady‐state thickness. In this work, such profiles were simulated using a one‐dimensional model of reaction with advective and diffusive solute transport. A model ‘rock’ is considered, consisting of albite that weathers to kaolinite in the presence of chemically inert quartz. The model yields three different steady‐state regimes of weathering. At the lowest erosion rates, a local‐equilibrium regime is established where albite is completely depleted in the weathering zone. This regime is equivalent to the transport‐limited regime described in the literature. With an increase in erosion rate, transition and kinetic regimes are established. In the transition regime, both albite and kaolinite are present in the weathering zone, but albite does not persist to the soil–air interface. In the weathering‐limited regime, here called the kinetic regime, albite persists to the soil–air interface. The steady‐state thickness of regolith decreases with increasing erosion rate in the local equilibrium and transition regimes, but in the kinetic regime, this thickness is independent of erosion rate. Analytical expressions derived from the model are used to show that regolith production rates decrease exponentially with regolith thickness. The steady‐state regolith thickness increases with the Darcy velocity of the pore fluid, and in the local equilibrium regime may vary markedly with small variations in this velocity and erosion rate. In the weathering‐limited regime, the temperature dependences for chemical weathering rates are related to the activation energy for the rate constant for mineral reaction and to the ΔH of dissolution, while for local equilibrium regimes they are related to the ΔH only. The model illustrates how geochemical and geomorphological observations are related for a simple compositional system. The insights provided will be useful in interpreting natural regolith profiles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Xiaohu Wen  Meina Diao  De Wang  Meng Gao 《水文研究》2012,26(15):2322-2332
Groundwater salinization has become a crucial environmental problem worldwide and is considered the most widespread form of groundwater contamination in the coastal zone. In this study, a hydrochemical investigation was conducted in the eastern coastal shallow aquifer of Laizhou Bay to identify the hydrochemical characteristics and the salinity of groundwater using ionic ratios, deficit or excess of each ions, saturation indices and factor analysis. The results indicate that groundwater in the study area showed wide ranges and high standard deviations for most of hydrochemical parameters and can be classified into two hydrochemical facies, Ca2+‐Mg2+‐Cl facies and Na+‐Cl facies. The ionic ratio, deficit or excess of each ions and SI were applied to evaluate hydrochemical processes. The results obtained indicate that the salinization processes in the coastal zones were inverse cation exchange, dissolution of calcite and dolomite, and intensive agricultural practices. Factor analysis shows that three factors were determined (Factor 1: TDS, EC, Cl, Mg2+, Na+, K+, Ca2+ and SO42‐; Factor 2: HCO3 and pH; Factor 3: NO3 and pH), representing the signature of seawater intrusion in the coastal zone, weathering of water–soil/rock interaction, and nitrate contamination, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
粤东五华河流域的化学风化与CO2吸收   总被引:1,自引:1,他引:0  
基于对粤东五华河干流和支流水体的物理、化学组成测试数据,应用质量平衡法和相关分析法探讨湿热山地丘陵地区岩石化学风化过程对大气CO2的吸收.结果表明:五华河水体的总溶解性固体含量(77.11 mg/L)接近于世界河流的平均值(65 mg/L);离子组成以Ca2+、Na+和HCO3-为主,可溶性Si次之.五华河流域化学径流组成主要源自硅酸盐矿物化学风化过程的贡献,碳酸盐矿物的贡献较少;大气和土壤CO2是流域内岩石化学风化的主要侵蚀介质.与同一气候带其他河流相比较,五华河流域岩石化学风化过程对大气CO2的吸收通量(2.14×105mol/(km2·a))较低,这主要是由于流域内缺乏碳酸盐岩所导致.  相似文献   

12.
A typical area, Gaomi City in China, was chosen to discuss the enrichment process of groundwater fluorine in sea water intrusion area. The groundwater had fluorine levels of 0.09–10.99 mg/L, with an average concentration of 1.38 mg/L. The high-fluorine groundwater was mainly distributed in the unconsolidated Quaternary sediments, where concentrations in 83.6% of the samples exceeded the national limit of 1.0 mg/L. The groundwater in the Quaternary sediments also had higher levels of Cl, TDS, Mg2+, and pH and lower levels of Ca2+, Co, Ni, and Cu than that in the bedrock. The groundwater fluorine levels in the Quaternary sediments are positively correlated with Cl, TDS, Mg2+, pH, and negatively correlated with Ca2+, γCa2+/γMg2+, Co, Ni, Cu. Geochemical indices of Cl and TDS indicate sea water intrusion in the Quaternary high-fluorine groundwater area (F > 1.0 mg/L), while they do not indicate any intrusion in the bedrock area. The chemical weathering of minerals was intensified with the intrusion of sea water. Cation exchange was confirmed to occur in the Quaternary sediments and was promoted by sea water intrusion. Cation exchange consumes part of groundwater Ca2+ and permits more F dissolving. Consequently, in the Quaternary sediments, the groundwater was supersaturated with CaF2 minerals and undersaturated with MgF2 minerals when F > 1.0 mg/L, while CaF2 and MgF2 minerals both are undersaturated when F < 1.0 mg/L. Thus, the chemical weathering of minerals and cation exchange caused by sea water intrusion are the crucial processes controlling the groundwater fluorine levels, which should be considered when the groundwater fluorine enrichment mechanism is discussed along coastal zones.  相似文献   

13.
The Agua Negra drainage system (30 12′S, 69 50′ W), in the Argentine Andes holds several ice‐ and rock‐glaciers, which are distributed from 4200 up to 6300 m a.s.l. The geochemical study of meltwaters reveals that ice‐glaciers deliver a HCO3?? Ca2+ solution and rock‐glaciers a SO42?? HCO3?? Ca2+ solution. The site is presumably strongly influenced by sublimation and dry deposition. The main processes supplying solutes to meltwater are sulphide oxidation (i.e. abundant hydrothermal manifestations), and hydrolysis and dissolution of carbonates and silicates. Marine aerosols are the main source of NaCl. The fine‐grained products of glacial comminution play a significant role in the control of dissolved minor and trace elements: transition metals (e.g. Mn, Zr, Cu, and Co) appear to be selectively removed from solution, whereas some LIL (large ion lithophile) elements, such as Sr, Cs, and major cations, are more concentrated in the lowermost reach. Daily concentration variation of dissolved rare earth elements (REE) tends to increase with discharge. Through PHREEQC inverse modelling, it is shown that gypsum dissolution (i.e. sulphide oxidation) is the most important geochemical mechanism delivering solutes to the Agua Negra drainage system, particularly in rock‐glaciers. At the lowermost reach, the chemical signature appears to change depending on the relative significance of different meltwater sources: silicate weathering seems to be more important when meltwater has a longer residence time, and calcite and gypsum dissolution is more conspicuous in recently melted waters. A comparison with a non‐glacierized semiarid drainage of comparable size shows that the glacierized basin has a higher specific denudation, but it is mostly accounted for by relatively soluble phases (i.e. gypsum and calcite). Meltwater chemistry in glacierized arid areas appears strongly influenced by sublimation/evaporation, in contrast with its humid counterparts. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
The transformation of snowmelt water chemical composition during melt, elution and runoff in an Arctic tundra basin is investigated. The chemistry of the water flowing along pathways from the surface of melting snow to the 95·5 ha basin outlet is related to relevant hydrological processes. In so doing, this paper offers physically based explanations for the transformation of major ion concentrations and loads of runoff water associated with snowmelt and rainfall along hydrological pathways to the stream outlet. Late‐lying snowdrifts were found to influence the ion chemistry in adjacent reaches of the stream channel greatly. As the initial pulse of ion‐rich melt water drained from the snowdrift and was conveyed through hillslope flowpaths, the concentrations of most ions increased, and the duration of the peak ionic pulse lengthened. Over the first 3 m of overland flow, the concentrations of all ions except for NO increased by one to two orders of magnitude, with the largest increase for K+, Ca2+ and Mg2+. This was roughly equivalent to the concentration increase that resulted from percolation of relatively dilute water through 0·25 m of unsaturated soil. The Na+ and Cl? were the dominant ions in snowmelt water, whereas Ca2+ and Mg2+ dominated the hillslope runoff. On slopes below a large melting snowdrift, ion concentrations of melt water flowing in the saturated layer of the soil were very similar to the relatively dilute concentrations found in surface runoff. However, once the snowdrift ablated, ion concentrations of subsurface flow increased above parent melt‐water concentrations. Three seasonally characteristic hydrochemical regimes were identified in a stream reach adjacent to late‐lying snowdrifts. In the first two stages, the water chemistry in the stream channel strongly resembled the hillslope drainage water. In the third stage, in‐stream geochemical processes, including the weathering/ion exchange of Ca2+ and Mg2+, were the main control of streamwater chemistry. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Permafrost and fire are important regulators of hydrochemistry and landscape structure in the discontinuous permafrost region of interior Alaska. We examined the influence of permafrost and a prescribed burn on concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and other solutes ( , Ca2+, K+, Mg2+, Na+) in streams of an experimentally burned watershed and two reference watersheds with varying extents of permafrost in the Caribou–Poker Creeks Research Watershed in interior Alaska. The low‐permafrost watershed has limited permafrost (3%), the high‐permafrost watershed has extensive permafrost (53%), and the burn watershed has intermediate permafrost coverage (18%). A three end‐member mixing model revealed fundamental hydrologic and chemical differences between watersheds due to the presence of permafrost. Stormflow in the low‐permafrost watershed was dominated by precipitation and overland flow, whereas the high‐permafrost watershed was dominated by flow through the active layer. In all watersheds, organic and groundwater flow paths controlled stream chemistry: DOC and DON increased with discharge (organic source) and base cations and (from weathering processes) decreased. Thawing of the active layer increased soil water storage in the high‐permafrost watershed from July to September, and attenuated the hydrologic response and solute flux to the stream. The FROSTFIRE prescribed burn, initiated on 8 July 1999, elevated nitrate concentrations for a short period after the first post‐fire storm on 25 July, but there was no increase after a second storm in September. During the July storm, nitrate export lagged behind the storm discharge peak, indicating a flushing of soluble nitrate that likely originated from burned soils. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
The River Buyukmelen is located in the province of Duzce in northwest Turkey and its water basin is approximately 470 km2. The Aksu, Kucukmelen and Ugursuyu streams flow into the River Buyukmelen. It flows into the Black Sea with an output of 44 m3 s−1. The geological succession in the basin comprises limestone and dolomitic limestone of the Yılanlı formation, sandstone, clayey limestone and marls of the Akveren formation, clastics and volcano‐clastics of the Caycuma formation, and cover units comprised of river alluvium, lacutrine sediments and beach sands. The River Buyukmelen is expected to be a water source that can supply the drinking water needs of Istanbul until 2040; therefore, it is imperative that its water quality be preserved. The samples of rock, soil, stream water, suspended, bed and stream sediments and beach sand were collected from the Buyukmelen river basin. They were examined using mineralogical and geochemical methods. The chemical constituents most commonly found in the stream waters are Na+, Mg2+, SO2−4, Cl and HCO3 in the Guz stream water, Ca2+ in the Abaza stream water, and K+ in the Kuplu stream water. The concentrations of Na+, K+, Ca2+, Mg2+, SO2−4, HCO3, Cl, As, Pb, Ni, Mn, Cr, Zn, Fe and U in the Kuplu and Guz stream waters were much higher than the world average values. The Dilaver, Gubi, Tepekoy, Maden, Celik and Abaza streams interact with sedimentary rocks, and the Kuplu and Guz streams interact with volcanic rocks. The amount of suspended sediment in the River Buyukmelen in December 2002 was 120 mg l−1. The suspended and bed sediments in the muddy stream waters are formed of quartz, calcite, plagioclase, clay (kaolinite, illite and smectite), muscovite and amphibole minerals. As, Co, Cd, Cr, Pb, Ni, Zn and U have all accumulated in the Buyukmelen river‐bed sediments. The muddy feature of the waters is related to the petrographic features of the rocks in the basin and their mineralogical compositions, as most of the sandstones and volcanic rocks (basalt, tuffite and agglomerate) are decomposed to a clay‐rich composition at the surface. Thus, the suspended sediment in stream waters increases by physical weathering of the rocks and water–rock interaction. Owing to the growing population and industrialization, water demand is increasing. The plan is to bring water from the River Buyukmelen to Istanbul's drinking‐water reservoirs. According to the Water Pollution Regulations, the River Buyukmelen belongs to quality class 1 based on Hg, Cd, Pb, As, Cu, Cr, Zn, Mn, Se, Ba, Na+, Cl, and SO2−4; and to quality class 3 based on Fe concentration. The concentration of Fe in the River Buyukmelen exceeds the limit values permitted by the World Health Organization and the Turkish Standard. Because water from the River Buyukmelen will be used as drinking water, it will have an adverse effect on water quality and humans if not treated in advance. In addition, the inclusion of Mn and Zn in the Elmali drinking‐water reservoir of Istanbul and Fe in the River Buyukmelen water indicates natural inorganic contamination. Mn, Zn and Fe contents in the waters are related to geological origin. Moreover, the River Buyukmelen flow is very muddy in the rainy seasons and it is inevitable that this will pose problems during the purification process. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Major‐ion compositions of groundwater are employed in this study of the water–rock interactions and hydrogeochemical evolution within a carbonate aquifer system. The groundwater samples were collected from boreholes or underground tunnels in the Ordovician limestone of Yanzhou Coalfield where catastrophic groundwater inflows can be hazardous to mining and impact use of the groundwater as a water supply. The concentration of total dissolved solid (TDS) ranged from 961 to 3555 mg/l and indicates moderately to highly mineralized water. The main water‐type of the middle Ordovician limestone groundwater is Ca‐Mg‐SO4, with SO42‐ ranging from 537 to 2297 mg/l, and average values of Ca2+ and Mg2+ of 455.7 and 116.6 mg/l, respectively. The water samples were supersaturated with respect to calcite and dolomite and undersaturated or saturated with respect to gypsum. Along the general flow direction, deduced from increases of TDS and Cl, the main water–rock interactions that caused hydrogeochemical evolution of the groundwater within the aquifer were the dissolution of gypsum, the precipitation of calcite, the dissolution or precipitation of dolomite, and ion exchange. Ion exchange is the major cause for the lower mole concentration of Ca2+ than that of SO42‐. The groundwater level of Ordovician aquifer is much higher than that of C‐P coal‐bearing aquifers, so the potential flow direction is upward, and the pyrite in coal is not a possible source of sulfate; additional data on the stable sulfur and oxygen isotopic composition of the sulfate may be helpful to identify its origin. Although ion exchange probably accounts for the higher mole concentration of Na+ than that of Cl, the dissolution of aluminosilicate cannot be ruled out. The data evaluation methods and results of this study could be useful in other areas to understand flow paths in aquifers and to provide information needed to identify the origin of groundwater. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The conversion of bedrock to regolith marks the inception of critical zone processes, but the factors that regulate it remain poorly understood. Although the thickness and degree of weathering of regolith are widely thought to be important regulators of the development of regolith and its water‐storage potential, the functional relationships between regolith properties and the processes that generate it remain poorly documented. This is due in part to the fact that regolith is difficult to characterize by direct observations over the broad scales needed for process‐based understanding of the critical zone. Here we use seismic refraction and resistivity imaging techniques to estimate variations in regolith thickness and porosity across a forested slope and swampy meadow in the Southern Sierra Critical Zone Observatory (SSCZO). Inferred seismic velocities and electrical resistivities image a weathering zone ranging in thickness from 10 to 35 m (average = 23 m) along one intensively studied transect. The inferred weathering zone consists of roughly equal thicknesses of saprolite (P‐velocity < 2 km s?1) and moderately weathered bedrock (P‐velocity = 2–4 km s?1). A minimum‐porosity model assuming dry pore space shows porosities as high as 50% near the surface, decreasing to near zero at the base of weathered rock. Physical properties of saprolite samples from hand augering and push cores are consistent with our rock physics model when variations in pore saturation are taken into account. Our results indicate that saprolite is a crucial reservoir of water, potentially storing an average of 3 m3 m?2 of water along a forested slope in the headwaters of the SSCZO. When coupled with published erosion rates from cosmogenic nuclides, our geophysical estimates of weathering zone thickness imply regolith residence times on the order of 105 years. Thus, soils at the surface today may integrate weathering over glacial–interglacial fluctuations in climate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The majority of geomorphological papers about Dartmoor have been essentially speculative, particularly when discussing weathering processes and the evolution of the Dartmoor landscape. In contrast, this article presents a synthesis of several experimental investigations aimed at studying the chemical weathering of Dartmoor granite through the systematic analysis of soil and water samples. This involved the computation of a geochemical budget to determine the amount of erosion in the catchment, as well as more detailed mineralogical investigations within a soil profile. The annual output of solutes due to weathering was 116 kg ha?1 a?1 of which the majority was silica (93 kg ha?1 a?1). From an examination of the soil mineralogy, it was calculated that these solutes were derived from the dissolution of approximately 200 kg ha?1 a?1 plagioclase, 90 kg ha?1 a?1 biotite, and 40 kg ha?1 a?1 orthoclase. As well as the weathering of granite, there was also the production of kaolinite (150 kg ha?1 a?1) and gibbsite (0.02 kg ha?1 a?1). Analysis of the soil water chemistry confirmed that kaolinite was the stable mineral phase in the regolith, although in areas where interflow was the dominant mode of water movement, the solute composition was in equilibrium with both kaolinite and gibbsite. Examination of the clay mineralogy confirmed these results. The microtexture of quartz grains was examined by the scanning electron microscope as another means of investigating the hydrochemical environment in the soil. Silica was found precipitated on all the grains examined but the maximum amount occurred in the Bs horizon. This evidence showed that, firstly, the dissolution of aluminosilicate minerals is greater than that calculated by the chemical budget and, secondly, that models of granite weathering must take localized weathering in the soil profile into account. The final part of the paper highlights the limitations of calculating denudation rates for an entire catchment and stresses the need to consider weathering as a highly localized phenomenon, particularly where there are high volumes of interflow at hill crest sites. Observations on granite decomposition in the future should be quantitative in approach and be related to the local site conditions.  相似文献   

20.
Water sources and flow paths contributing to stream chemistry were evaluated in four Japanese forested watersheds with steep topography (slopes ≥30°). Stream chemistry during periods without rainfall and during events with less than 100 mm of precipitation was similar to seepage water chemistry, but markedly different from that of soil water which had higher concentrations of NO3 and Ca2+ and lower concentrations of Na+ and HCO3. Also, stream Cl concentrations in a Cl‐treated watershed did not increase either during events with less than 100 mm of total rainfall or at baseflow conditions, even three years after the Cl treatment. These results suggest that groundwater within bedrock fissures of Paleozoic strata had a long residence time and was a major contributor to steam water under baseflow conditions and even during small precipitation events (≤100 mm). In contrast, for large precipitation events (≥100 mm), stream chemistry became more similar to soil water chemistry, especially within the steepest watershed. Also, for large precipitation events, stream Cl concentrations in the Cl‐treated watershed increased markedly. These results suggest that soil water was a major contributor to stream waters only during these large events. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号