首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
Surface water storage—including wetlands and other small waterbodies—has largely been disregarded in traditional hydrological models. In this paper, the grid resampling method is adopted to study the influence of the digital elevation model (DEM) grid resolution on depression storage (DS) considering different rainfall return periods. It is observed that the DEM grid size highly affects DS, and the higher the grid resolution is, the larger the DS value. However, when the grid resolution reaches a certain value, the maximum DS value decreases. This suggests that a critical grid resolution value exists at which the water storage capacity of depressions is maximized, namely, 20 m in this work (except for the overall area simulation under infiltration). This phenomenon is further verified in two test cases with and without the infiltration process, that is, calculations of the local area and without infiltration area, respectively. This research may facilitate the accurate computation of the DS process, which is greatly affected by the grid resolution, thereby improving the reliability of hydrological models.  相似文献   

2.
3.
Extensive nitrogen loads at the soil surface exceed plant uptake and soil biochemical capacity, and therefore lead to nitrogen accumulation in the deep vadose zone. Studies have shown that stored nitrogen in the vadose zone can eventually reach the water table and affect the quality of groundwater resources. Recently, global scale models have been implemented to quantify nitrate storage and nitrate travel time in the vadose zone. These global models are simplistic and relatively easy to implement and therefore facilitate analysis of the considered transport processes at a regional scale with no further requirements. However, the suitability of applying these models at a regional scale has not been tested. Here, we evaluate, for the first time, the performance and utility of global scale models at the regional scale. Applied to the Loess Plateau of China, we compare estimates of groundwater recharge and nitrate storage derived from global scale models with results from a regional scale approach utilizing the Richards and advection-dispersion equations. The estimated nitrate storage was compared to nitrate observations collected in the deep vadose zone (>50 m) at five sites across the Loess Plateau. Although both models predict similar spatial patterns of nitrate storage, the recharge fluxes were three times smaller and the nitrate storage was two times higher compared with the regional model. The results suggest that global scale models are a potentially useful screening tool, but require refinement for local scale applications.  相似文献   

4.
Hydrologic model development and calibration have continued in most cases to focus only on accurately reproducing streamflows. However, complex models, for example, the so‐called physically based models, possess large degrees of freedom that, if not constrained properly, may lead to poor model performance when used for prediction. We argue that constraining a model to represent streamflow, which is an integrated resultant of many factors across the watershed, is necessary but by no means sufficient to develop a high‐fidelity model. To address this problem, we develop a framework to utilize the Gravity Recovery and Climate Experiment's (GRACE) total water storage anomaly data as a supplement to streamflows for model calibration, in a multiobjective setting. The VARS method (Variogram Analysis of Response Surfaces) for global sensitivity analysis is used to understand the model behaviour with respect to streamflow and GRACE data, and the BORG multiobjective optimization method is applied for model calibration. Two subbasins of the Saskatchewan River Basin in Western Canada are used as a case study. Results show that the developed framework is superior to the conventional approach of calibration only to streamflows, even when multiple streamflow‐based error functions are simultaneously minimized. It is shown that a range of (possibly false) system trajectories in state variable space can lead to similar (acceptable) model responses. This observation has significant implications for land‐surface and hydrologic model development and, if not addressed properly, may undermine the credibility of the model in prediction. The framework effectively constrains the model behaviour (by constraining posterior parameter space) and results in more credible representation of hydrology across the watershed.  相似文献   

5.
Abstract

In physically-based land surface models, the parameters can all be prescribed a priori but calibration can be used to enhance the realism of the simulations in well instrumented domains. In such a case, the transferability of calibrated parameters under non-stationary conditions needs to be addressed, especially in the context of climate change. To this end, we used the Catchment Land Surface Model (CLSM) in the Upper Durance watershed located in the French Alps, which experienced a significant increase in temperature over the last century. The CLSM is forced by a 50-year meteorological dataset of good quality. Four parameters of the CLSM (one related to snow processes and three to soil properties) are calibrated against discharge observations with a multi-objective algorithm. First, the robustness of the CLSM parameterizations is tested by the Differential Split Sample Test (DSST). The simulations show good performances over a wide range of retrospective climatic conditions, except when the parameters are calibrated over a period with a large contribution of snowmelt to annual mean discharge. Then, the use of a climate change scenario reveals that the parameterizations of soil moisture processes in the CLSM are responsible for an increasing dispersion among simulations when facing dry and warm conditions. However, the differences between the simulated changes of river discharge remain very small. This work shows that calibration conveys some uncertainties, but they are moderate in the studied case, and pertain to the most conceptual parameterizations of this physically-based model.  相似文献   

6.
The canopy storage capacity of a dry sclerophyll eucalypt forest was determined. This required destructive sampling of three major species of trees and development of a water soakage method for the measurement of water holding capacity of all above ground components. The influence of antecedent weather conditions on canopy storage capacity was assessed. It was shown that the interactive effects of leaf area and water holding capacity of all tree components were such that the estimated canopy storage capacity (0-39 mm) was likely to change little except under extreme conditions of drought and rainfall. The effect of species composition on forest canopy storage capacity is also presented. The wetting processes are described and compared with those discussed in other studies. They are shown to be relevant to the estimation of canopy storage capacity in almost any forest.  相似文献   

7.
SIBERIA is a physically based model for the geomorphic evolution of landforms. It is essential that the SIBERIA model be tested or validated against controlled landform development. Previous studies have demonstrated that SIBERIA is able to simulate declining equilibrium landforms and in this paper we examine SIBERIA's ability to simulate landforms as they evolve to their declining equilibrium form. These landscapes are termed transient landforms. Landscapes generated by SIBERIA were compared to those produced by a physical model (experimental model landforms) at stages of evolution. Comparison of the experimental landscapes with the simulated landscapes using total mass, hypsometric curve, width function, cumulative area distribution and area–slope demonstrate that SIBERIA can simulate the experimental model landscape during development (i.e. transient landscapes). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
ABSTRACT

Surface runoff generation capacity can be modified by land-use and climate changes. Annual runoff volumes have been evaluated in a small watershed of tropical forest (Brazil), using the Soil and Water Assessment Tool (SWAT) model. Firstly, the accuracy of SWAT in runoff predictions has been assessed by default input parameters and improved by automatic calibration, using 20-year observations. Then, the hydrological response under land uses (cropland, pasture and deforested soil) alternative to tropical forest and climate change scenarios has been simulated. SWAT application has showed that, if forest was replaced by crops or pasture, the watershed’s hydrological response would not significantly be affected. Conversely, a complete deforestation would slightly increase its runoff generation capacity. Under forecasted climate scenarios, the runoff generation capacity of the watershed will tend to decrease and will not be noticeably different among the representative concentration pathways. Pasture and bare soil will give the lowest and highest runoff coefficients, respectively.  相似文献   

9.
A process‐based, spatially distributed hydrological model was developed to quantitatively simulate the energy and mass transfer processes and their interactions within arctic regions (arctic hydrological and thermal model, ARHYTHM). The model first determines the flow direction in each element, the channel drainage network and the drainage area based upon the digital elevation data. Then it simulates various physical processes: including snow ablation, subsurface flow, overland flow and channel flow routing, soil thawing and evapotranspiration. The kinematic wave method is used for conducting overland flow and channel flow routing. The subsurface flow is simulated using the Darcian approach. The energy balance scheme was the primary approach used in energy‐related process simulations (snowmelt and evapotranspiration), although there are options to model snowmelt by the degree‐day method and evapotranspiration by the Priestley–Taylor equation. This hydrological model simulates the dynamic interactions of each of these processes and can predict spatially distributed snowmelt, soil moisture and evapotranspiration over a watershed at each time step as well as discharge in any specified channel(s). The model was applied to Imnavait watershed (about 2·2 km2) and the Upper Kuparuk River basin (about 146 km2) in northern Alaska. Simulated results of spatially distributed soil moisture content, discharge at gauging stations, snowpack ablations curves and other results yield reasonable agreement, both spatially and temporally, with available data sets such as SAR imagery‐generated soil moisture data and field measurements of snowpack ablation, and discharge data at selected points. The initial timing of simulated discharge does not compare well with the measured data during snowmelt periods mainly because the effect of snow damming on runoff was not considered in the model. Results from the application of this model demonstrate that spatially distributed models have the potential for improving our understanding of hydrology for certain settings. Finally, a critical component that led to the performance of this modelling is the coupling of the mass and energy processes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
This study focuses on the interaction between mid depth vortices and surface jets and fronts in a three-layer quasi-geostrophic model. Such vortices may be regarded as an idealisation of meddies, eddies of Mediterranean Water in the Northeastern Atlantic Ocean, interacting with the Azores j t and front. Successively, a single vortex, a vortex doublet and a vortex pair (in the middle layer) are studied. When a single vortex is considered, the jet has a critical effect of its motion, temporarily slowing down its zonal drift and accelerating it meridionally as the vortex crosses the front. On the contrary, if the vortex does not cross the front, it can drift fairly rapidly along it. The merger of a vortex doublet (two like-signed vortices) below a surface jet is possible whatever the relative position of this doublet with respect to the jet axis. Nevertheless, doublets initially located below the front, will undergo stronger shear and merger efficiency will be diminished. The merged vortex will be circled at the surface by a large meander of the jet. Finally, eastward jet-dipole interaction experiments are performed with various orientations of the vortex dipoles. Eastward propagating dipoles below the jet follow it without deformation. Southeastward drifting dipoles finally join the previous evolution. Southward and southwestward directed dipoles cross the surface jet southeastward. The presence of meanders initially on the jet does not prevent its crossing by a single vortex. Characteristics of the surface jet meanders are also described for a possible remote detection of this process.  相似文献   

11.
The need for accurate hydrologic analysis and rainfall–runoff modelling tools has been rapidly increasing because of the growing complexity of operational hydrologic and hydraulic problems associated with population growth, rapid urbanization and expansion of agricultural activities. Given the recent advances in remote sensing of physiographic features and the availability of near real‐time precipitation products, rainfall–runoff models are expected to predict runoff more accurately. In this study, we compare the performance and implementation requirements of two rainfall–runoff models for a semi‐urbanized watershed. One is a semi‐distributed conceptual model, the Hydrologic Engineering Center‐Hydrologic Modelling System (HEC‐HMS). The other is a physically based, distributed‐parameter hydrologic model, the Gridded Surface Subsurface Hydrologic Analysis (GSSHA). Four flood events that took place on the Leon Creek watershed, a sub‐watershed of the San Antonio River basin in Texas, were used in this study. The two models were driven by the Multisensor Precipitation Estimator radar products. One event (in 2007) was used for HEC‐HMS and GSSHA calibrations. Two events (in 2004 and 2007) were used for further calibration of HEC‐HMS. Three events (in 2002, 2004 and 2010) were used for model validation. In general, the physically based, distributed‐parameter model performed better than the conceptual model and required less calibration. The two models were prepared with the same minimum required input data, and the effort required to build the two models did not differ substantially. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Land surface process is of great importance in global climate change, moisture and heat exchange in the interface of the earth and atmosphere, human impacts on the environment and eco- system, etc. Soil freeze/thaw plays an important role in cold land surface processes. In this work the diurnal freeze/thaw effects on energy partition in the context of GAME/Tibet are studied. A sophisti- cated land surface model is developed, the particular aspect of which is its physical consideration of soil freeze/thaw and vapor flux. The simultaneous water and heat transfer soil sub-model not only reflects the water flow from unfrozen zone to frozen fringe in freezing/thawing soil, but also demon- strates the change of moisture and temperature field induced by vapor flux from high temperature zone to low temperature zone, which makes the model applicable for various circumstances. The modified Picard numerical method is employed to help with the water balance and convergence of the numerical scheme. Finally, the model is applied to analyze the diurnal energy and water cycle char- acteristics over the Tibetan Plateau using the Game/Tibet datasets observed in May and July of 1998. Heat and energy transfer simulation shows that: (i) There exists a negative feedback mechanism between soil freeze/thaw and soil temperature/ground heat flux; (ii) during freezing period all three heat fluxes do not vary apparently, in spite of the fact that the negative soil temperature is higher than that not considering soil freeze; (iii) during thawing period, ground heat flux increases, and sensible heat flux decreases, but latent heat flux does not change much; and (iv) during freezing period, soil temperature decreases, though ground heat flux increases.  相似文献   

13.
Geomorphologists have to make choices and compromises, as acquisition techniques of geometrical information are numerous, depending on the specific complexity of the targeted three‐dimensional objects and the requirements of the end user. This article presents the methodology and the results over a well known and documented site. This ready‐to‐use, low‐altitude, aerial photo methodology reveals itself to be a satisfying compromise between cost, accuracy and difficulty of implementation. The selected equipment package is light enough to enable a quick reaction to unexpected events and the tools and methods are competitive with field acquisition techniques. An evaluation has demonstrated a sub‐metric accuracy for the final result. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

Different sets of parameters and conceptualizations of a basin can give equally good results in terms of predefined objective functions. Therefore, a need exists to tackle equifinality and quantify the uncertainty bands of a model. In this paper we use the concepts of equifinality, identifiability and uncertainty to propose a simple method aimed at constraining the equifinal parameters and reducing the uncertainty bands of model outputs, and obtaining physically possible and reasonable models. Additionally, the uncertainty of equifinal solutions is quantified to estimate the amount by which output uncertainty can be reduced by knowing how to discard most of the equifinal solutions of a model. As a study case, a conceptual model of the Chillán basin in Chile is carried out. From the study it is concluded that using identifiability analysis makes it possible to constrain equifinal solutions with reduced uncertainty and realistic models, resulting in a framework that can be recommended to practitioners, especially due to the simplicity of the method.  相似文献   

15.
High‐elevation mountain catchments are often subject to large climatic and topographic gradients. Therefore, high‐density hydrogeochemical observations are needed to understand water sources to streamflow and the temporal and spatial behaviour of flow paths. These sources and flow paths vary seasonally, which dictates short‐term storage and the flux of water in the critical zone (CZ) and affect long‐term CZ evolution. This study utilizes multiyear observations of chemical compositions and water residence times from the Santa Catalina Mountains Critical Zone Observatory, Tucson, Arizona to develop and evaluate competing conceptual models of seasonal streamflow generation. These models were tested using endmember mixing analysis, baseflow recession analysis, and tritium model “ages” of various catchment water sources. A conceptual model involving four endmembers (precipitation, soil water, shallow, and deep groundwater) provided the best match to observations. On average, precipitation contributes 39–69% (55 ± 16%), soil water contributes 25–56% (41 ± 16%), shallow groundwater contributes 1–5% (3 ± 2%), and deep groundwater contributes ~0–3% (1 ± 1%) towards annual streamflow. The mixing space comprised two principal planes formed by (a) precipitation‐soil water‐deep groundwater (dry and summer monsoon season samples) and (b) precipitation‐soil water‐shallow groundwater (winter season samples). Groundwater contribution was most important during the wet winter season. During periods of high dynamic groundwater storage and increased hydrologic connectivity (i.e., spring snowmelt), stream water was more geochemically heterogeneous, that is, geochemical heterogeneity of stream water is storage‐dependent. Endmember mixing analysis and 3H model age results indicate that only 1.4 ± 0.3% of the long‐term annual precipitation becomes deep CZ groundwater flux that influences long‐term deep CZ development through both intercatchment and intracatchment deep groundwater flows.  相似文献   

16.
Flow diversion terraces (FDT) are commonly used beneficial management practice (BMP) for soil conservation on sloped terrain susceptible to water erosion. A simple GIS‐based soil erosion model was designed to assess the effectiveness of the FDT system under different climatic, topographic, and soil conditions at a sub‐basin level. The model was used to estimate the soil conservation support practice factor (P‐factor), which inherently considered two major outcomes with its implementation, namely (1) reduced slope length, and (2) sediment deposition in terraced channels. A benchmark site, the agriculture‐dominated watershed in northwestern New Brunswick (NB), was selected to test the performance of the model and estimated P‐factors. The estimated P‐factors ranged from 0·38–1·0 for soil conservation planning objectives and ranged from 0·001 to 0·45 in sediment yield calculations for water‐quality assessment. The model estimated that the average annual sediment yield was 773 kg ha?1 yr ?1 compared with a measured value of 641 kg ha?1 yr?1. The P‐factors estimated in this study were comparable with predicted values obtained with the revised universal soil loss equation (RUSLE2). The P‐factors from this study have the potential to be directly used as input in hydrological models, such as the soil and water assessment tool (SWAT), or in soil conservation planning where only conventional digital elevation models (DEMs) are available. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Morphological analysis of landforms has traditionally relied on the interpretation of imagery. Although imagery provides a natural view of an area of interest (AOI) images are largely hindered by the environmental conditions at the time of image acquisition, the quality of the image and, mainly, the lack of topographical information, which is an essential factor for a correct understanding of the AOI's geomorphology. More recently digital surface models (DSMs) have been incorporated into the analytical toolbox of geomorphologists. These are usually high‐resolution models derived from digital photogrammetric processes or LiDAR data. However, these are restricted to relatively small areas and are expensive or complex to acquire, which limits widespread implementation. In this paper, we present the multi‐scale relief model (MSRM), which is a new algorithm for the visual interpretation of landforms using DSMs. The significance of this new method lies in its capacity to extract landform morphology from both high‐ and low‐resolution DSMs independently of the shape or scale of the landform under study. This method thus provides important advantages compared to previous approaches as it: (1) allows the use of worldwide medium resolution models, such as SRTM, ASTER GDEM, ALOS, and TanDEM‐X; (2) offers an alternative to traditional photograph interpretation that does not rely on the quality of the imagery employed nor on the environmental conditions and time of its acquisition; and (3) can be easily implemented for large areas using traditional GIS/RS software. The algorithm is tested in the Sutlej‐Yamuna interfluve, which is a very large low‐relief alluvial plain in northwest India where 10 000 km of palaeoriver channels have been mapped using MSRM. The code, written in Google Earth Engine's implementation of JavaScript, is provided as Supporting Information for its use in any other AOI without particular technical knowledge or access to topographical data. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

18.
Abstract

Abstract A hydrological simulation model was developed for conjunctive representation of surface and groundwater processes. It comprises a conceptual soil moisture accounting module, based on an enhanced version of the Thornthwaite model for the soil moisture reservoir, a Darcian multi-cell groundwater flow module and a module for partitioning water abstractions among water resources. The resulting integrated scheme is highly flexible in the choice of time (i.e. monthly to daily) and space scales (catchment scale, aquifer scale). Model calibration involved successive phases of manual and automatic sessions. For the latter, an innovative optimization method called evolutionary annealing-simplex algorithm is devised. The objective function involves weighted goodness-of-fit criteria for multiple variables with different observation periods, as well as penalty terms for restricting unrealistic water storage trends and deviations from observed intermittency of spring flows. Checks of the unmeasured catchment responses through manually changing parameter bounds guided choosing final parameter sets. The model is applied to the particularly complex Boeoticos Kephisos basin, Greece, where it accurately reproduced the main basin response, i.e. the runoff at its outlet, and also other important components. Emphasis is put on the principle of parsimony which resulted in a computationally effective modelling. This is crucial since the model is to be integrated within a stochastic simulation framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号