首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined spatial and temporal variations in precipitation measured during summer season between 1976 and 2007 for 28 stations located in mountain areas across Japan using the amount of precipitation (Pr), the mean depth of precipitation events (η), and the inverse of the mean interval times (λ). We obtained positive correlations between the period mean Pr (Pr ) and the period mean η ( ) and between Pr and the period mean λ ( ) for the 28 stations. Pr was more strongly related to than to , indicating the spatial variations in Pr that are primarily related to the variations in . In addition, Pr was more strongly related to η than to λ for most stations on the basis of data for 1976–2007, indicating that the year‐to‐year variations in Pr are primarily related to η. We also examined temporal trends in Pr, η and λ for 1976–2007 and found no systematic trends for 23 of the 28 stations, suggesting long‐term trends that are not common in mountain areas of Japan. The relationships between Pr and and between Pr and η presented in this study enable us to generate a temporal precipitation distribution pattern based on only Pr and Pr data, respectively. Furthermore, probabilistic stochastic hydrological models require precipitation characteristics as input; thus, this study contributes to the determination of hydrological cycles and their possible future changes in Japanese mountain areas and therefore to water resource management. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Estimates of changes in design rainfall values for Canada   总被引:1,自引:0,他引:1  
Annual maximum rainfall data from 51 stations in Canada were analyzed for trends and changes by using the Mann–Kendall trend test and a bootstrap resampling approach, respectively. Rainfall data were analyzed for nine durations ranging from 5 min to 24 h. The data analyzed are typically used in the development of intensity‐duration‐frequency (IDF) curves, which are used for estimating design rainfall values that form an input for the design of critical water infrastructure. The results reveal more increasing than decreasing trends and changes in the data with more increasing changes and larger changes, noted for the longer rainfall durations. The results also indicate that a traditional trend test may not be sufficient when the interest is in identifying changes in design rainfall quantiles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Seasonal and annual trends of changes in rainfall, rainy days, heaviest rain and relative humidity have been studied over the last century for nine different river basins in northwest and central India. The majority of river basins have shown increasing trends both in annual rainfall and relative humidity. The magnitude of increased rainfall for considered river basins varied from 2–19% of mean per 100 years. The maximum increase in rainfall is observed in the Indus (lower) followed by the Tapi river basin. Seasonal analysis shows maximum increase in rainfall in the post‐monsoon season followed by the pre‐monsoon season. There were least variations in the monsoon rainfall during the last century and winter rainfall has shown a decreasing trend. Most of the river basins have experienced decreasing trends in annual rainy days with a maximum decrease in the Mahanadi basin. The heaviest rain of the year has increased from 9–27 mm per 100 years over different river basins with a maximum of 27 mm for the Brahamani and Subaranrekha river basins. A combination of increase in heaviest rainfall and reduction in the number of rainy days suggest the possibility of increasing severity of floods. Such information is useful in the planning, development and management of water resources in the study area. Further, the majority of river basins have also experienced an increasing trend in relative humidity both on seasonal and annual scales. An increase in annual mean relative humidity for six river basins has been found in the range of 1–18% of mean per 100 years, while a decrease for three river basins from ? 1 to ? 13% of mean per 100 years was observed, providing a net increase in the study area by 2·4% of mean per 100 years. It is understood that an increase in areal extent of vegetation cover as well as rainfall over the last century has increased the moisture in the atmosphere through enhanced evapotranspiration, which in turn has increased the relative humidity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
A one‐dimensional hydrodynamic lake model (DYRESM‐WQ‐I) is employed to simulate ice cover and water temperatures over the period 1911–2014. The effects of climate changes (air temperature and wind speed) on ice cover (ice‐on, ice‐off, ice cover duration, and maximum ice thickness) are modeled and compared for the three different morphometry lakes: Fish Lake, Lake Wingra, and Lake Mendota, located in Madison, Wisconsin, USA. It is found that the ice cover period has decreased due to later ice‐on dates and earlier ice‐off dates, and the annual maximum ice cover thickness has decreased for the three lakes during the last century. Based upon simulated perturbations of daily mean air temperatures across the range of ?10°C to +10°C of historical values, Fish Lake has the most occurrences of no ice cover and Lake Wingra still remains ice covered under extreme conditions (+10°C). Overall, shallower lakes with larger surface areas appear more resilient to ice cover changes caused by climate changes.  相似文献   

5.
6.
Abstract

The study of precipitation trends is critically important for a country like India whose food security and economy are dependent on the timely availability of water. In this work, monthly, seasonal and annual trends of rainfall have been studied using monthly data series of 135 years (1871–2005) for 30 sub-divisions (sub-regions) in India. Half of the sub-divisions showed an increasing trend in annual rainfall, but for only three (Haryana, Punjab and Coastal Karnataka), this trend was statistically significant. Similarly, only one sub-division (Chattisgarh) indicated a significant decreasing trend out of the 15 sub-divisions showing decreasing trend in annual rainfall. In India, the monsoon months of June to September account for more than 80% of the annual rainfall. During June and July, the number of sub-divisions showing increasing rainfall is almost equal to those showing decreasing rainfall. In August, the number of sub-divisions showing an increasing trend exceeds those showing a decreasing trend, whereas in September, the situation is the opposite. The majority of sub-divisions showed very little change in rainfall in non-monsoon months. The five main regions of India showed no significant trend in annual, seasonal and monthly rainfall in most of the months. For the whole of India, no significant trend was detected for annual, seasonal, or monthly rainfall. Annual and monsoon rainfall decreased, while pre-monsoon, post-monsoon and winter rainfall increased at the national scale. Rainfall in June, July and September decreased, whereas in August it increased, at the national scale.

Citation Kumar, V., Jain, S. K. & Singh, Y. (2010) Analysis of long-term rainfall trends in India. Hydrol. Sci. J. 55(4), 484–496.  相似文献   

7.
Abstract

There is increasing concern that flood risk will be exacerbated in Antalya, Turkey as a result of global-warming-induced, more frequent and intensive, heavy rainfalls. In this paper, first, trends in extreme rainfall indices in the Antalya region were analysed using daily rainfall data. All stations in the study area showed statistically significant increasing trends for at least one extreme rainfall index. Extreme rainfall datasets for current (1970–1989) and future periods (2080–2099) were then constructed for frequency analysis using the peaks-over-threshold method. Frequency analysis of extreme rainfall data was performed using generalized Pareto distribution for current and future periods in order to estimate rainfall intensities for various return periods. Rainfall intensities for the future period were found to increase by up to 23% more than the current period. This study contributed to better understanding of climate change effects on extreme rainfalls in Antalya, Turkey.  相似文献   

8.
Freshwater resources in the arid Arabian Peninsula, especially transboundary aquifers shared by Saudi Arabia, Jordan, and Iraq, are of critical environmental and geopolitical significance. Monthly Gravity Recovery and Climate Experiment (GRACE) satellite‐derived gravity field solutions acquired over the expansive Saq transboundary aquifer system were analysed and spatiotemporally correlated with relevant land surface model outputs, remote sensing observations, and field data to quantify temporal variations in regional water resources and to identify the controlling factors affecting these resources. Our results show substantial GRACE‐derived terrestrial water storage (TWS) and groundwater storage (GWS) depletion rates of ?9.05 ± 0.25 mm/year (?4.84 ± 0.13 km3/year) and ?6.52 ± 0.29 mm/year (?3.49 ± 0.15 km3/year), respectively. The rapid decline is attributed to both climatic and anthropogenic factors; observed TWS depletion is partially related to a decline in regional rainfall, while GWS depletions are highly correlated with increasing groundwater extraction for irrigation and observed water level declines in regional supply wells.  相似文献   

9.
Slopes in fjord environments of Iceland are prone to debris‐flow initiation, responding to a wide variety of meteorological triggering factors, such as rain on snow, rapid snowmelt, long‐lasting rainfall or intense rainfall. If all fjord regions have similar debris flows with regards to their magnitude, their meteorological control is diverse both in space and in time. Debris flows in Northwest Iceland are triggered mostly by rain‐on‐snow and long‐lasting rainfall, while snowmelt is more characteristic in North Iceland, and rainfall has a clear impact in East Iceland. Most debris‐flow events occur on a single slope, and only a few are recorded at the same time in different regions. Observations of the threshold values underline the diversity of debris‐flow initiation, occurring with huge amounts of sudden water supply as well as with very moderate ones. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

Currently there is much discussion regarding the impact of climate change and the vagaries of the weather, in particular extreme weather events. The Himalayas form the main natural water resource of the major river systems of the Indian region. We present a brief review of the available information and data for extreme rainfall events that were experienced in different sectors of the Himalayas during the last 137 years (1871–2007). Across the entire Himalayas, from east to west, there are now 822 rainfall stations. There was an increase in the rainfall station network from 1947 onwards, especially in the Nepal and Bhutan Himalayas. Extreme one-day rainfall has been picked out for each station irrespective of the period for which data are available. The decadal distribution of these extreme one-day rainfalls shows that there is a considerable increase in the frequencies during the decades 1951–1960 to 1991–2000, whereas there is a sudden decrease in the frequencies in the present decade during 2001–2007, indicating the need to understand the response of the systems to global change and the associated physical and climatological changes. This is essential in terms of preserving this natural resource and to encourage environmental management and sustainable development of mountain regions.

Citation Nandargi, S. & Dhar, O. N. (2011) Extreme rainfall events over the Himalayas between 1871 and 2007. Hydrol. Sci. J. 56(6), 930–945.  相似文献   

11.
Most of the water from the Nile originates in Ethiopia but there is no agreement on how land degradation or climate change affects the future flow in downstream countries. The objective of this paper is to improve the understanding of future conditions by analysing historical trends. During the period 1964–2003, the average monthly basin‐wide precipitation and monthly discharge data were collected and analysed statistically for two stations in the upper 30% of the Blue Nile Basin and monthly and 10‐day discharge data of one station at the Sudan–Ethiopia border. A rainfall–runoff model examined the causes for observed trends. The results show that, while there was no significant trend in the seasonal and annual basin‐wide average rainfall, significant increases in discharge during the long rainy season (June to September) were observed at all three stations. In the upper Blue Nile, the short rainy season flow (March to May) increased, while the dry season flow (October to February) stayed the same. At the Sudan border, the dry season flow decreased significantly with no change in the short rainy season flow. The difference in response was likely due to the construction of weir in the 1990s at the Lake Tana outlet that affected the upper Blue Nile discharge significantly but affected less than 10% of the discharge at the Sudan border. The rainfall–runoff model reproduced the observed trends, assuming that an additional 10% of the hillsides were eroded in the 40‐year time span and generated overland flow instead of interflow and base flow. Models concerning future trends in the Nile cannot assume that the landscape runoff processes will remain static. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Rainfall is the key climate variable that governs the spatial and temporal availability of water. In this study we identified monthly rainfall trends and their relation to the southern oscillation index (SOI) at ten rainfall stations across Australia covering all state capital cities. The nonparametric Mann–Kendall (MK) test was used for identifying significant trends. The trend free pre‐whitening approach (TFPW) was used to remove the effects of serial correlation in the dataset. The trend beginning year was approximated using the cumulative summation (CUSUM) technique and the influence of the SOI was identified using graphical representations of the wavelet power spectrum (WPS). Decreasing trends of rainfall depth were observed at two stations, namely Perth airport for June and July rainfall starting in the 1970s and Sydney Observatory Hill for July rainfall starting in the 1930s. No significant trends were found in the Melbourne, Alice Springs and Townsville rainfall data. The remaining five stations showed increasing trends of monthly rainfall depth. The SOI was found to explain the increasing trends for the Adelaide (June) and Cairns (April) rainfall data and the decreasing trends for Sydney (July) rainfall. Other possible climatic factors affecting Australian rainfall are also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
ABSTRACT

The aim of the present paper was to improve understanding of the rainfall dynamics in Bas-Congo and Kinshasa provinces, in Democratic Republic of Congo (DRC). The first objective of the study was achieved by analysing the spatial correlations of monthly, seasonal, annual and individual monthly rainfall amounts of Kinshasa and Bas-Congo. The second objective was achieved through investigating and quantifying the temporal trends and their spatial variations. The results demonstrated notably high average inter-station correlation of +0.63 for dry season series, followed by monthly rainfall series with an average inter-station correlation of +0.58. However, there was no station with a stable monthly rainfall regime, i.e. with mean precipitation concentration index lower than 10% (it varies between 14.2 and 21.9%). Moreover, Kinshasa experienced an increase of rainfall with an average annual rate of change of +4.59 mm/year for the period 1961–2006. The results will be helpful for efficient water resources management and for mitigating the adverse impacts of future extreme drought or flood occurrences.
Editor M.C. Acreman Associate editor N. Verhoest  相似文献   

14.
Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution and errors. When using these rainfall datasets as input for hydrological models, their errors and uncertainties propagate through the hydrological system. The aim of this study is to investigate the effect of differences between rainfall measurement techniques on groundwater and discharge simulations in a lowland catchment, the 6.5‐km2 Hupsel Brook experimental catchment. We used five distinct rainfall data sources: two automatic raingauges (one in the catchment and another one 30 km away), operational (real‐time and unadjusted) and gauge‐adjusted ground‐based C‐band weather radar datasets and finally a novel source of rainfall information for hydrological purposes, namely, microwave link data from a cellular telecommunication network. We used these data as input for the, a recently developed rainfall‐runoff model for lowland catchments, and intercompared the five simulated discharges time series and groundwater time series for a heavy rainfall event and a full year. Three types of rainfall errors were found to play an important role in the hydrological simulations, namely: (1) Biases, found in the unadjusted radar dataset, are amplified when propagated through the hydrological system; (2) Timing errors, found in the nearest automatic raingauge outside the catchment, are attenuated when propagated through the hydrological system; (3) Seasonally varying errors, found in the microwave link data, affect the dynamics of the simulated catchment water balance. We conclude that the hydrological potential of novel rainfall observation techniques should be assessed over a long period, preferably a full year or longer, rather than on an event basis, as is often done. Copyright © 2016 The Authors. Hydrological Processes. Published by John Wiley & Sons Ltd.  相似文献   

15.
Heavy rainfall events during the fall season are causing extended damages in Mediterranean catchments. A peaks‐over‐threshold model is developed for the extreme daily areal rainfall occurrence and magnitude in fall over six catchments in Southern France. The main driver of the heavy rainfall events observed in this region is the humidity flux (FHUM) from the Mediterranean Sea. Reanalysis data are used to compute the daily FHUM during the period 1958–2008, to be included as a covariate in the model parameters. Results indicate that the introduction of FHUM as a covariate can improve the modelling of extreme areal precipitation. The seasonal average of FHUM can improve the modelling of the seasonal occurrences of heavy rainfall events, whereas daily FHUM values can improve the modelling of the events magnitudes. In addition, an ensemble of simulations produced by five different general circulation models are considered to compute FHUM in future climate with the emission scenario A1B and hence to evaluate the effect of climate change on the heavy rainfall distribution in the selected catchments. This ensemble of climate models allows the evaluation of the uncertainties in climate projections. By comparison to the reference period 1960–1990, all models project an amplification of the mean seasonal FHUM from the Mediterranean Sea for the projection period 2070–2099, on average by +22%. This increase in FHUM leads to an increase in the number of heavy rainfall events, from an average of 2.55 events during the fall season in present climate to 3.57 events projected for the period 2070–2099. However, the projected changes have limited effects on the magnitude of extreme events, with only a 5% increase in the median of the 100‐year quantiles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The intensity of rainfall events with potential to cause landslides has varying temporal characteristics. In this study, the time at which the 72-h accumulated rainfall reached its maximum was used to standardize the period of rainfall measurement. The proposed standardization of the rainfall period was used in conjunction with the return level of rainfall intensity, obtained from intensity–duration–frequency curves, to investigate rainfall intensity anomalies associated with 10 hazardous rainfall events that triggered numerous landslides at the regional scale in Japan. These landslides included shallow landslides in volcanic and non-volcanic areas, as well as deep-seated landslides. The rainfall events that triggered the shallow landslides were divided into two types: downpours that repeatedly reached close to the 100-year return level within approximately 3–4 h, and accumulated rainfall that reached close to 200–400 mm over longer time intervals but within 72 h. Lithological differences seemed unrelated to the differences between the two types of shallow-landslide-triggering rainfall; however, precipitation >1000 mm was necessary to trigger deep-seated landslides. Although the characteristics of the hyetographs differed markedly among the landslide-triggering rainfall events, all the landslides could have been triggered when the mean rainfall intensity reached the 100-year rainfall level during the standardized period. Thus, the landslide trigger can be evaluated indirectly based on the increase in the return level of the mean rainfall intensity, which could provide a means for estimating the time of landslide occurrence.  相似文献   

17.
Soil erosion by water is one of the main environmental concerns in the drought‐prone Eastern Africa region. Understanding factors such as rainfall and erosivity is therefore of utmost importance for soil erosion risk assessment and soil and water conservation planning. In this study, we evaluated the spatial distribution and temporal trends of rainfall and erosivity for the Eastern Africa region during the period 1981–2016. The precipitation concentration index, seasonality index, and modified Fournier index have been analysed using 5 × 5‐km resolution multisource rainfall product (Climate Hazards Group InfraRed Precipitation with Stations). The mean annual rainfall of the region was 810 mm ranging from less than 300 mm in the lowland areas to over 1,200 mm in the highlands being influenced by orography of the Eastern Africa region. The precipitation concentration index and seasonality index revealed a spatial pattern of rainfall seasonality dependent on latitude, with a more pronounced seasonality as we go far from the equator. The modified Fournier index showed high spatial variability with about 55% of the region subject to high to very high rainfall erosivity. The mean annual R‐factor in the study region was calculated at 3,246 ± 1,895 MJ mm ha?1 h?1 yr?1, implying a potentially high water erosion risk in the region. Moreover, both increasing and decreasing trends of annual rainfall and erosivity were observed but spatial variability of these trends was high. This study offers useful information for better soil erosion prediction as well as can support policy development to achieve sustainable regional environmental planning and management of soil and water resources.  相似文献   

18.
ABSTRACT

Rainfall events largely control hydrological processes occurring on and in the ground, but the performance of climate models in reproducing rainfall events has not been investigated enough to guide selection among the models when making hydrological projections. We proposed to compare the durations, intensities, and pause periods, as well as depths of rainfall events when assessing the accuracy of general circulation models (GCMs) in reproducing the hydrological characteristics of observed rainfall. We also compared the sizes of design storm events and the frequency and severity of drought to demonstrate the consequences of GCM selection. The results show that rainfall and extreme hydrological event projections could significantly vary depending on climate model selection and weather stations, suggesting the need for a careful and comprehensive evaluation of GCM in the hydrological analysis of climate change. The proposed methods are expected to help to improve the accuracy of future hydrological projections for water resources planning.  相似文献   

19.
Water quality and groundwater dynamics in wetlands are strongly influenced by the spatiotemporal distribution of contaminant application, and variations and changes in climate, vegetation, and anthropogenic interventions in its neighborhood. For groundwater-fed wetlands, this relevant neighborhood at least extends to the groundwater contributing area (GCA) boundary. In spite of its importance, understanding of the nature of GCA dynamics vis-à-vis meteorological variations remains largely understudied. This work attempts to map GCA of inland forested wetlands. Following that, two specific questions are answered: (a) Is GCA extent and its variation different than that of the topographic contributing area (TCA)? and (b) Is the temporal dynamics of GCA for different wetlands, all of which are experiencing very similar climatological forcing, similar? Our results show that GCAs for wetlands vary temporally, are much different in extent and shape than the TCA, and on an average are larger than the TCA. Although wetlands in the studied watershed experienced similar meteorological forcings, their covariation with forcings varied markedly. Majority of the wetlands registered an increase in GCA during dry period, but for a few the GCA decreased. This highlights the role of additional physical controls, other than meteorological forcings, on temporal dynamics of GCA. Notably, wetlands with larger TCA are found to generally have larger average GCA as well, thus indicating the dominant role of topography in determining the relative size of average GCA over the landscape. Our results provide a refined picture of the spatiotemporal patterns of GCA dynamics and the controls on it. The information will help improve the prediction of wet period dynamics, recharge, and contamination risk of groundwater-fed wetlands.  相似文献   

20.
《水文科学杂志》2013,58(2):276-291
Abstract

Climatic changes could alter the frequency and magnitude of rainfall events and the distribution of rainfall with altitude, with important consequences for management of aquatic ecosystems, water resources and flood risk. This study investigates changes in observed rainfall amounts across a range of altitudes in the Lake District region, northwest England, and spatial and temporal changes to the orographic “rainshadow” effect. Between the 1970s and 1990s there have been marked changes to the seasonality of precipitation, such that winters have become wetter, and increasingly dominated by heavy precipitation events. The intensity of these events has increased most markedly at higherelevation sites. Such changes could hinder recovery of sensitive upland sites from acidification and increase the risk of downstream flooding. An inter-decadal weakening of the region's rainshadow suggests a greater proportion of winter precipitation crosses the high-elevation Lake District dome. This is linked to changes in the frequency and character of wet weather patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号