首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop and compare two hydraulically-based schemes of the xylem structure of an individual plant. The dynamics of water uptake are analyzed under random conditions through the modeling of rainfall as a stochastic process. The two hydraulic schemes differ in the modeling of the root ability to cooperate, i.e., the capacity of roots to increase the water uptake from the wetter soil layers when other parts of the soil are dry (compensation effect) and to transfer water from moister into drier soil layers (water redistribution effect). Both compensation and water redistribution are direct consequences of the hydraulic structure of the root system, which is modeled here considering two contrasting cases corresponding to non-interacting uptake paths from different soil layers, and converging uptake paths. Only the latter hydraulic architecture allows for compensation and water redistribution. Another important difference between the hydraulic schemes is the stomatal response to soil dryness. When the soil water is unevenly distributed in the soil layers, the differences in the hydraulic schemes emerge. In semi-arid climates, plants characterized by a cooperative root system are shown to be less prone to water stress. In contrast, plants with non-interacting roots result to be better fit to humid climates, where the probability of droughts is small.  相似文献   

2.
We investigated canopy transpiration and canopy conductance of peach trees under three irrigation patterns: fixed 1/2 partial root zone drip irrigation (FPRDI), alternate 1/2 partial root zone drip irrigation (APRDI) and full root zone drip irrigation (FDI). Canopy transpiration was measured using heat pulse sensors, and canopy conductance was calculated using the Jarvis model and the inversion of the Penman–Monteith equation. Results showed that the transpiration rate and canopy conductance in FPRDI and APRDI were smaller than those in FDI. More significantly, the total irrigation amount was greatly reduced, by 34·7% and 39·6%, respectively for APRDI and FPRDI in the PRDI (partial root zone drip irrigation) treatment period. The daily transpiration was linearly related to the reference evapotranspiration in the three treatments, but daily transpiration of FDI is more than that of APRDI and FPRDI under the same evaporation demand, suggesting a restriction of transpiration water loss in the APRDI and FPRDI trees. FDI needed a higher soil water content to carry the same amount of transpiration as the APRDI and FPRDI trees, suggesting the hydraulic conductance of roots of APRDI and FPRDI trees was enhanced, and the roots had a greater water uptake than in FDI when the average soil water content in the root zone was the same. By a comparison between the transpiration rates predicted by the Penman–Monteith equation and the measured canopy transpiration rates for 60 days during the experimental period, an excellent correlation along the 1:1 line was found for all the treatments (R2 > 0·80), proving the reliability of the methodology. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Hydraulic redistribution defined as the translocation of soil moisture by plant root systems in response to water potential gradients is a phenomenon widely documented in different climate, vegetation, and soil conditions. Past research has largely focused on hydraulic redistribution in deep tree roots with access to groundwater and/or winter rainfall, while the case of relatively shallow (i.e., ≈1–2 m deep) tree roots has remained poorly investigated. In fact, it is not clear how hydraulic redistribution in shallow root zones is affected by climate, vegetation, and soil properties. In this study, we developed a model to investigate the climate, vegetation, and soil controls on the net direction and magnitude of hydraulic redistribution in shallow tree root systems at the growing season to yearly timescale. We used the model to evaluate the effect of hydraulic redistribution on the water stress of trees and grasses. We found that hydraulic lift increases with decreasing rainfall frequency, depth of the rooting zone, root density in the deep soil and tree leaf area index; at the same time for a given rainfall frequency, hydraulic lift increases with increasing average rainstorm depth and soil hydraulic conductivity. We propose that water drainage into deeper soil layers can lead to the emergence of vertical water potential gradients sufficient to explain the occurrence of hydraulic lift in shallow tree roots without invoking the presence of a shallow water table or winter precipitation. We also found that hydraulic descent reduces the water stress of trees and hydraulic lift reduces the water stress of grass with important implications on tree–grass interactions.  相似文献   

4.
Understanding photosynthesis and plant water management as a coupled process remains an open scientific problem. Current eco-hydrologic models characteristically describe plant photosynthetic and hydraulic processes through ad hoc empirical parameterizations with no explicit accounting for the main pathways over which carbon and water uptake interact. Here, a soil–plant-atmosphere continuum model is proposed that mechanistically couples photosynthesis and transpiration rates, including the main leaf physiological controls exerted by stomata. The proposed approach links the soil-to-leaf hydraulic transport to stomatal regulation, and closes the coupled photosynthesis–transpiration problem by maximizing leaf carbon gain subject to a water loss constraint. The approach is evaluated against field data from a grass site and is shown to reproduce the main features of soil moisture dynamics and hydraulic redistribution. In particular, it is shown that the differential soil drying produced by diurnal root water uptake drives a significant upward redistribution of moisture both through a conventional Darcian flow and through the root system, consistent with observations. In a numerical soil drying experiment, it is demonstrated that more than 50% of diurnal transpiration is supplied by nocturnal upward water redistribution, and some 12% is provided directly through root hydraulic redistribution. For a prescribed leaf area density, the model is then used to diagnose how elevated atmospheric CO2 concentration and increased air temperature jointly impact soil moisture, transpiration, photosynthesis, and whole-plant water use efficiency, along with compensatory mechanisms such as hydraulic lift using several canonical forms of root-density distribution.  相似文献   

5.
A detailed model was formulated to describe the non-passive transport of water-soluble chemicals in the unsaturated zone and used to illustrate one-dimensional infiltration and redistribution of alcohol–water mixtures. The model includes the dependence of density, viscosity, surface tension, molecular diffusion coefficient in the liquid-phase, and gas–liquid partition coefficient on the aqueous mixture composition. It also takes into account the decrease in the gas–liquid partition coefficient at high capillary pressures, in accordance with Kelvin’s equation for multi-component mixtures. Simulation of butanol–water mixtures infiltration in sand was in agreement with the experimental data and simulations reported in the literature. Simulation of methanol infiltration and redistribution in two different soils showed that methanol concentration significantly affects volumetric liquid content and concentration profiles, as well as the normalized volatilization and evaporation fluxes. Dispersion in the liquid-phase was the predominant mechanism in the transport of methanol when dispersivity at saturation was set to 7.8 cm. Liquid flow was mainly due to capillary pressure gradients induced by changes in volumetric liquid content. However, for dispersivity at saturation set to 0.2 cm, changes in surface tension due to variation in composition induced important liquid flow and convection in the liquid-phase was the most active transport mechanism. When the Kelvin effect was ignored within the soil, the gas-phase diffusion was significantly lower, leading to lower evaporation flux of water and higher volumetric liquid contents near the soil surface.  相似文献   

6.
Estimates of soil hydraulic properties using pedotransfer functions (PTF) are useful in many studies such as hydrochemical modelling and soil mapping. The objective of this study was to calibrate and test parametric PTFs that predict soil water retention and unsaturated hydraulic conductivity parameters. The PTFs are based on neural networks and the Bootstrap method using different sets of predictors and predict the van Genuchten/Mualem parameters. A Danish soil data set (152 horizons) dominated by sandy and sandy loamy soils was used in the development of PTFs to predict the Mualem hydraulic conductivity parameters. A larger data set (1618 horizons) with a broader textural range was used in the development of PTFs to predict the van Genuchten parameters. The PTFs using either three or seven textural classes combined with soil organic mater and bulk density gave the most reliable predictions of the hydraulic properties of the studied soils. We found that introducing measured water content as a predictor generally gave lower errors for water retention predictions and higher errors for conductivity predictions. The best of the developed PTFs for predicting hydraulic conductivity was tested against PTFs from the literature using a subdata set of the data used in the calibration. The test showed that the developed PTFs gave better predictions (lower errors) than the PTFs from the literature. This is not surprising since the developed PTFs are based mainly on hydraulic conductivity data near saturation and sandier soils than the PTFs from the literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
A simple field‐based method for directly parameterizing root water uptake models is proposed. Stem psychrometers and sap flow meters are used to measure stem water potential and plant transpiration rate continuously and simultaneously. Predawn stem water potential is selected as a surrogate for root zone soil water potential to examine and parameterize the root water uptake–water stress response functions. The method is applied to two drooping sheoak (Allocasuarina verticillata) trees for a period of 80 days, covering both a dry season and a wet season. The results indicate that the S‐shape function is more appropriate than the Feddes piecewise linear function for drooping sheoak to represent the effect of soil moisture stress on its root water uptake performance. Besides, the water stress function is found to be not only a function of soil moisture but also dependent of the atmospheric demand. As a result, the water stress function is corrected for the effect of atmospheric conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The spatial and temporal variation of moisture distribution, overall water balance and quantity of infiltrated water in the vadose zone of the Sidi Bouzid Plain (Tunisia) during successive flooding events is quantified in this study. The variation in water content in response to environmental factors such as evaporation and water root uptake is also highlighted. One-dimensional flow simulations in the deep vadose zone were conducted at three spreading perimeters located near Wadi El Fekka. The hydraulic boundary conditions of a time-dependent water blade applied to the soil surface were determined from measured flood hydrographs. For the chosen wet year, the successive flooding events contributed to a significant artificial recharge of the natural groundwater. Although the soil hydraulic parameters did not vary strongly in space, flow simulations showed significant differences in the overall water balance of approximately 9–16% for the various spreading perimeters.  相似文献   

9.
Partial rootzone drying (PRD) means that part of the root system is watered as in full irrigation while the rest is exposed to soil drying. This practice is predicted to influence field hydrological circle. We studied the effect of this practice on soil water distribution, root and trunk sap flow, water consumption of pear trees, and capillary contribution from ground water table and water balance for three months in an irrigated orchard with a shallow ground water table. The irrigation treatments included: (a) conventional flooded irrigation (CFI), (b) fixed partial rootzone drying (FPRD), and (c) alternate partial rootzone drying (APRD). Root and trunk sap flows were monitored using a heat-pulse sap flow meter. The results showed that there were significant differences of soil water content in both sides of rootzone under partial drying. The capillary contribution from ground water table was significantly increased in APRD and FPRD when compared with CFI. More significantly, the total irrigation amount was greatly reduced, by 43.64 and 45.84%, respectively, for APRD and FPRD. The two PRD treatments used more soil-stored water while CFI had more drainage. The root sap flow on the wet side was substantially enhanced as a result of PRD, and was greater than that from same side in CFI. The trunk sap flow in FPRD and APRD was smaller than that in CFI. On average, both APRD and FPRD reduced plant daily water consumption by about 9.96 and 17.97%, respectively, when compared to CFI during the PRD period. Daily root water flow was a significant function of the reference evapotranspiration. The daily trunk water flow was also related to the reference evapotranspiration but the CFI carried more water than APRD and FPRD under the same evaporation demand, suggesting a restriction of transpirational water loss in the PRD trees. CFI needed a higher soil water content to carry the same amount of trunk flow than the PRD trees, suggesting the hydraulic conductance of roots in PRD trees enhanced, and the roots had a greater water uptake capacity than in CFI when the average soil water content in the rootzone was the same.  相似文献   

10.
采用平均土骨架应力代替Bishop的非饱和土的有效应力,基于分析体积变形连续性条件建立了简化的一维非饱和土固结方程,分析计算了非饱和土在固结过程中孔隙压力、平均土骨架应力、饱和度的变化情况。同时建立了耦合水力特性的非饱和土本构模型和屈服方程。算例计算结果表明本文提出的非饱和土简化固结理论和耦合水力特性的非饱和土应力应变本构模型的有效性。  相似文献   

11.
Water infiltration rate and hydraulic conductivity in vegetated soil are two vital hydrological parameters for agriculturists to determine availability of soil moisture for assessing crop growths and yields, and also for engineers to carry out stability calculations of vegetated slopes. However, any effects of roots on these two parameters are not well‐understood. This study aims to quantify the effects of a grass species, Cynodon dactylon, and a tree species, Schefflera heptaphylla, on infiltration rate and hydraulic conductivity in relation to their root characteristics and suction responses. The two selected species are commonly used for ecological restoration and rehabilitation in many parts of the world and South China, respectively. A series of in‐situ double‐ring infiltration tests was conducted during a wet summer, while the responses of soil suction were monitored by tensiometers. When compared to bare soil, the vegetated soil has lower infiltration rate and hydraulic conductivity. This results in at least 50% higher suction retained in the vegetated soil. It is revealed that the effects of root‐water uptake by the selected species on suction were insignificant because of the small evapotranspiration (<0.2 mm) when the tests were conducted under the wet climate. There appears to have no significant difference (less than 10%) of infiltration rates, hydraulic conductivity and suction retained between the grass‐covered and the tree‐covered soil. However, the grass and tree species having deeper root depth and greater Root Area Index (RAI) retained higher suction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

A tension-saturated water slug descends through a homogenous soil after a rainfall (irrigation) event and shrinks due to transpiration by a distributed root-sink and evaporation. The upper (drainage) and lower (imbibition) sharp fronts of the slug separate it from the superjacent and subjacent vadose zones, where water is immobile. In the slug, the hydraulic conductivity is constant according to the Green-Ampt model. The capillary pressures as well as effective porosities on the fronts are given (generally, different) constants that can be viewed as a kind of hysteresis. A volumetric sink models mild (no desaturation of the slug) soil water withdrawal by the plant roots. The sink intensity varies with the depth from the soil surface and with time. Mathematically, the hydraulic head is immediately expressed by double integration of a governing 1-D flow equation. The pressure and kinematic conditions on the fronts result in a Cauchy problem for a system of two ODEs, which is solved by computer algebra routines.

Editor D. Koutsoyiannis

Citation Kacimov, A. and Obnosov, U., 2013. Pseudo-hysteretic double-front hiatus-stage soil water parcels supplying a plant–root continuum: the Green-Ampt-Youngs model revisited. Hydrological Sciences Journal, 58 (1), 1–12.  相似文献   

13.
The interaction effects of different applied ratios of a hydrophilic polymer (Superab A200) (0, 0.2, 0.6% w/w) under various soil salinity levels (initial salinity, 4 and 8 ms/cm) were evaluated on available water content (AWC), biomass, and water use efficiency for corn grown in loamy sand and sandy clay loam soils. The results showed that the highest AWC was measured at the lowest soil salinity. The application of 0.6% w/w of the polymer at the lowest salinity level increased the AWC by 2.2 and 1.2 times greater than those of control in the loamy sand and sandy clay loam soils, respectively. The analysis of variance of data showed that the effect of salinity was significant on biomass and water use efficiency of corn in the loamy sand and sandy clay loam soils. The highest amounts of these traits were measured in soils with the lowest salinity level. Application of polymer at the rate of 0.6% in the loamy sand soil and at the rate of 0.2% in the sandy clay loam soil resulted in the highest aerial and root biomass and water use efficiency for corn. At these polymer rates the amounts of water use efficiency for corn were 2.6 and 1.7 times greater than those of control in the loamy sand and sandy clay loam soils, respectively. Thus, the use of hydrophilic polymer in soils especially in the sandy soils increases soil water holding capacity, yield, and water use efficiency of plant. On the other hand, decreases the negative effect of soil salinity on plant and helps for irrigation projects to succeed in arid and semi‐arid areas.  相似文献   

14.
The variation in soil texture, surface moisture or vertical soil moisture gradient in larger scale atmospheric models may lead to significant variations in simulated surface fluxes of water and heat. The parameterization of soil moisture fluxes at spatial scales compatible with the grid size of distributed hydrological models and mesoscale atmospheric models ( 100 km2) faces principal problems which relate to the underlying microscopic or field scale heterogeneity in soil characteristics.

The most widely used parameterization in soil hydrology, the Darcy-Richards (DR) equation, is gaining increasing importance in mesoscale and climate modelling. This is mainly due to the need to introduce plant-interactive soil water depletion and stomatal conductance parameterizations and to improve the calculation of deep percolation and runoff. Covering a grid of several hundreds of square kilometres, the DR parameterization in soil-vegetation-atmosphere-transfer schemes (SVATs) is assumed to be scale-invariant. The parameters describing the non-linear, area-average soil hydraulic functions in this scale-invariant DR-equation should be treated as calibration-parameters, which do not necessarily have a physical meaning. The saturated hydraulic conductivity is one of the soil parameters to which the models show very high sensitivity. It is shown that saturated hydraulic conductivity can be scaled in both vertical and horizontal directions for large flow domains.

In this paper, a distinction is made between effective and aggregated soil parameters. Effective parameters are defined as area-average values or distributions over a domain with a single, distinct textural soil type. They can be obtained by scaling or inverse modelling. Aggregated soil parameters represent grid-domains with several textural soil types. In soil science dimensional methods have been developed to scale up soil hydraulic characteristics. With some specific assumptions, these techniques can be extrapolated from classical field-scale problems in soil heterogeneity to larger domains, compatible with the grid-size of large scale models. Particularly promising is the estimation of effective soil hydraulic parameters from area averaging measurements through inverse modelling of the unsaturated flow.

Techniques to scale and aggregate the soil characteristics presented in this paper qualify for direct or indirect use in large scale meteorological models. One of the interesting results is the effective behaviour of the reference curve, which can be obtained from similar media scaling. If the conclusions of this paper survive further studies, a relatively simple method will become available to parameterize soil variability at large scales. The inverse technique is found to provide effective soil parameters which perform well in predicting both the area-average evaporation and the area-average soil moisture fluxes, such as subsurface runoff. This is not the case for aggregated soil parameters. Obtained from regression relationships between soil textural composition and hydraulic characteristics, these aggregated parameters predict evaporation fluxes well, but fail to predict water balance terms such as percolation and runoff. This is a serious drawback which could eventually hamper the improvement of the representation of the hydrological cycle in mesoscale atmospheric models and in GCMs.  相似文献   


15.
The exchanges of water, energy and carbon between the land surface and the atmosphere are tightly coupled, so that errors in simulating evapotranspiration lead to errors in simulating both the water and carbon balances. Areas with seasonally frozen soils present a particular challenge due to the snowmelt-dominated hydrology and the impact of soil freezing on the soil hydraulic properties and plant root water uptake. Land surface schemes that have been applied in high latitudes often have reported problems with simulating the snowpack and runoff. Models applied at the Boreal Ecosystem Research and Monitoring Sites in central Saskatchewan have consistently over-predicted evapotranspiration as compared with flux tower estimates. We assessed the performance of two Canadian land surface schemes (CLASS and CLASS-CTEM) for simulating point-scale evapotranspiration at an instrumented jack pine sandy upland site in the southern edge of the boreal forest in Saskatchewan, Canada. Consistent with past reported results, these models over-predicted evapotranspiration, as compared with flux tower observations, but only in the spring period. Looking systematically at soil properties and vegetation characteristics, we found that the dominant control on evapotranspiration within these models was the canopy conductance. However, the problem of excessive spring ET could not be solved satisfactorily by changing the soil or vegetation parameters. The model overestimation of spring ET coincided with the overestimation of spring soil liquid water content. Improved algorithms for the infiltration of snowmelt into frozen soils and plant-water uptake during the snowmelt and soil thaw periods may be key to addressing the biases in spring ET.  相似文献   

16.
Competition for water among multiple tree rooting systems is investigated using a soil–plant model that accounts for soil moisture dynamics and root water uptake (RWU), whole plant transpiration, and leaf-level photosynthesis. The model is based on a numerical solution to the 3D Richards equation modified to account for a 3D RWU, trunk xylem, and stomatal conductances. The stomatal conductance is determined by combining a conventional biochemical demand formulation for photosynthesis with an optimization hypothesis that selects stomatal aperture so as to maximize carbon gain for a given water loss. Model results compare well with measurements of soil moisture throughout the rooting zone, of total sap flow in the trunk xylem, as well as of leaf water potential collected in a Loblolly pine forest. The model is then used to diagnose plant responses to water stress in the presence of competing rooting systems. Unsurprisingly, the overlap between rooting zones is shown to enhance soil drying. However, the 3D spatial model yielded transpiration-bulk root-zone soil moisture relations that do not deviate appreciably from their proto-typical form commonly assumed in lumped eco-hydrological models. The increased overlap among rooting systems primarily alters the timing at which the point of incipient soil moisture stress is reached by the entire soil–plant system.  相似文献   

17.
18.
Biochar has the potential to be a soil amendment in green roofs owing to its water retention, nutrient supply, and carbon sequestration application. The combined effects of biochar and vegetated soil on hydraulic performance (e.g., saturated hydraulic conductivity, retention and detention, and runoff delay) are the crucial factor for the application of the novel biochar in green roofs. Recent studies investigated soil water potential (i.e., suction) either on vegetated soil or on biochar-amended soil but rarely focused on their integrated application. With the purpose of investigating the hydraulic performance of green roofs in the application of biochar, the combined effect of biochar and vegetated soil on hydrological processes was explored. Artificial rainfall experiments were conducted on the four types of experimental soil columns, including natural soil, biochar-amended soil, vegetated natural soil, and vegetated biochar-amended soil. The surface ponding, bottom drainage and the volumetric water content were measured during the rainfall test. Simulation method by using HYDRUS-1D was adopted for estimating hydraulic parameters and developing modelling analysis. The results indicated that the saturated hydraulic conductivity of vegetated soil columns were higher than bare soil columns. The addition of biochar decreased the saturated hydraulic conductivity, and the magnitude of decrease was much significant in the case of vegetated soil. The influence of vegetation on permeability is more prominent than biochar. The vegetated biochar-amended soil has the highest retention and detention capacity, and shows a preferable runoff delay effect under heavy rain among the four soil columns. The results from the present study help to understand the hydrological processes in the green roof in the application of biochar, and imply that biochar can be an alternative soil amendment to improve the hydraulic performance.  相似文献   

19.
Understanding light nonaqueous-phase liquid (LNAPL) movement in heterogeneous vadose environments is important for effective remediation design. We investigated LNAPL movement near a sloping fine- over coarse-grained textural interface, forming a capillary barrier. LNAPL flow experiments were performed in a glass chamber (50 cm×60 cm×1.0 cm) using two silica sands (12/20 and 30/40 sieve sizes). Variable water saturations near the textural interface were generated by applying water uniformly to the sand surface at various flow rates. A model LNAPL (Soltrol® 220) was subsequently released at two locations at the sand surface. Visible light transmission was used to quantitatively determine water saturations prior to LNAPL release and to observe LNAPL flow paths. Numerical simulations were performed using the Subsurface Transport Over Multiple Phases (STOMP) simulator, employing two nonhysteretic relative permeability–saturation–pressure (kSP) models. LNAPL movement strongly depended on the water saturation in the fine-grained sand layer above the textural interface. In general, reasonable agreement was found between observed and predicted water saturations near the textural interface and LNAPL flow paths. Discrepancies between predictions based on the van Genuchten/Mualem (VGM) and Brooks–Corey/Burdine (BCB) kSP models existed in the migration speed of the simulated LNAPL plume and the LNAPL flow patterns at high water saturation above the textural interface. In both instances, predictions based on the BCB model agreed better with experimental observations than predictions based on the VGM model. The results confirm the critical role water saturation plays in determining LNAPL movement in heterogeneous vadose zone environments and that accurate prediction of LNAPL flow paths depends on the careful selection of an appropriate kSP model.  相似文献   

20.
The relationship between aquifer hydraulic conductivity and aquifer resistivity, either measured on the ground surface by vertical electrical sounding (VES) or from resistivity logs, or measured in core samples have been published for different types of aquifers in different locations. Generally, these relationships are empirical and semi-empirical, and confined in few locations. This relation has a positive correlation in some studies and negative in others. So far, there is no potentially physical law controlling this relation, which is not completely understood. Electric current follows the path of least resistance, as does water. Within and around pores, the model of conduction of electricity is ionic and thus the resistivity of the medium is controlled more by porosity and water conductivity than by the resistivity of the rock matrix. Thus, at the pore level, the electrical path is similar to the hydraulic path and the resistivity should reflect hydraulic conductivity. We tried in this paper to study the effect of degree of groundwater saturation in the relation between hydraulic conductivity and bulk resistivity via a simple numerical analysis of Archie’s second law and a simplified Kozeny-Carmen equation. The study reached three characteristic non-linear relations between hydraulic conductivity and resistivity depending on the degree of saturation. These relations are: (1) An inverse power relation in fully saturated aquifers and when porosity equals water saturation, (2) An inverse polynomial relation in unsaturated aquifers, when water saturation is higher than 50%, higher than porosity, and (3) A direct polynomial relation in poorly saturated aquifers, when water saturation is lower than 50%, lower than porosity. These results are supported by some field scale relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号